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Abstract
The Bayesian nonparametric (BNP) approach is an effective tool for building flexible
spatio-temporal probability models. Despite the flexibility and attractiveness of this
approach, the resulting spatio-temporal models become computationally demanding
when datasets are large. This paper develops a class of computationally efficient and
easy to implement BNP models for large spatio-temporal data. To be more specific,
we introduce a random distribution for the spatio-temporal effects based on a stick-
breaking construction in which the atoms are modeled in terms of a basis system. In
this framework, a low rank basis approximation and a vector autoregressive process
are used to model spatial and temporal dependencies, respectively. We demonstrate
that the proposed model is an extension of the Gaussian low rank model with similar
computational complexity, hence it offers great scalability for large spatio-temporal
data. Through a simulation study, we assess the performance of the proposed model.
For illustration,we then analyze a set of data comprised of precipitationmeasurements.

Keywords Large datasets · Stick-breaking process · Non-stationarity ·
Non-Gaussianity

1 Introduction

With the advancement of technology in collecting data, spatio-temporal analysts often
encounter large amounts of observations from many spatial locations over time. This
type of data have applications in different sciences such as climatology, ecology,
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environmental health, and atmospheric science.Modeling and analysis of large spatio-
temporal data raise several challenges in the applications. Since such datasets are often
observed on a large spatial domain, they often show different behaviors at each time
point such as non-stationary in the spatial covariance structure and non-Gaussianity
in the marginal spatial distribution. On the other hand, the computational burden of
statistical analysis is a great problem. For example, the computational complexity
of the inverse and the determinant of the covariance matrix that are needed in both
inference and prediction, are of cubic order with the total number of observations.

In recent years computational issues attracted many spatial statisticians and sev-
eral approaches have been proposed; examples include Gaussian predictive processes
(Banerjee et al. 2008), fixed rank kriging (Cressie and Johannesson 2008), covariance
tapering (Furrer et al. 2006), Gaussian Markov random fields (Rue and Tjelmeland
2002; Rue and Held 2005), kernel convolution (Higdon 1998; Lemos and Sanso 2009)
and approximation of the spatial likelihood (Vecchia 1988; Stein et al. 2004). Latter,
some of these methods have been extended to the spatio-temporal setting. One of the
widely used techniques is to approximate the spatial process by a basis system which
leads to a low rank (LR) model. The LR representation of the process is the baseline of
many classes of spatial and spatio-temporal models such as predictive process, kernel
convolution and spatial and spatio-temporal randomeffectsmodel (Cressie et al. 2010).
The popularity of theLRmodels in analyzing large spatial and spatio-temporal datasets
have been raised by ability to reduce computational cost and inducing flexible corre-
lation structures. To be more specific, they are not restricted to stationary assumption,
and the order of computational complexity to calculate exact predictions is linear with
the total number of observations. Stein (2014) made some criticism about the ability of
low rank models for approximating the likelihood of spatial processes with parametric
covariances in certain low-noise situations. Although, high frequency or discontinuous
basis functions can address this criticism (Bradley et al. 2015), Bradley et al. (2016)
have shown that a carefully selected reduced rank set of basis functions can produce
as good or better predictions than those based on the full rank alternatives. A common
assumption in LR models is that the coefficients associated with the bases are consid-
ered as Gaussian random variables. While convenient, such assumption may be overly
restrictive in many applied problems. As mentioned before, large spatio-temporal data
often exhibit non-Gaussianity feature such as heavy tails, skewness andmultimodality.
An efficient strategy that allows us to mitigate the effect of Gaussianity assumption
on inference and prediction is to use the Bayesian nonparametric (BNP) approach.

There is a substantial literature proposing BNP approach for constructing flexible
models in different settings, such as density estimation (e.g. Escobar and West 1995;
Ghosal et al. 1999; Pati et al. 2013; Cavatti Vieira et al. 2013; Canale and Scarpa
2016), spatial data analysis (Gelfand et al. 2005; Duan et al. 2007; Petrone et al. 2009;
Reich and Fuentes 2012; Hosseinpouri and Khaledi 2016), regression (Walker and
Mallick 1999; Hanson and Johnson 2002; Schörgendorfer et al. 2013) and time series
analysis (Nieto-Barajas et al. 2008; Griffin and Steel 2011; Di Lucca et al. 2013;
Nieto-Barajas and Contreras-Cristán 2014; Kalli and Griffin 2018). However, there
are limited works available on spatio-temporal BNP modeling. Duan et al. (2007)
introduced a model which induces temporal dependence in the usual way with autore-
gressive models where the error term follows a generalized spatial DP (SDP). More
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precisely, they considered common dynamic model for spatio-temporal data and let
the error term of the evolution equation follows a generalized SDP. Alternatively,War-
ren et al. (2012) extended the spatial kernel DP (SKDP) model of Reich and Fuentes
(2007) to the spatio-temporal setting. Their model includes space and time simultane-
ously in both the weights and the atoms of the stick-breaking prior through the use of
kernel functions. Recently, Gutiérrez et al. (2016) introduced a time dependent BNP
model which is a nonparametric mixture of spatial parametric kernels. They induced
temporal dependence through the mixing measure based on a stick-breaking construc-
tion with time varying weights and fixed atoms where the weights follow aMarkovian
process. Although the above BNP models provide useful frameworks to account for
important features of data, they suffer from a large computational burden when the
number of spatial locations is large. More precisely, at each iteration of the MCMC
algorithm for the model proposed by Duan et al. (2007), we need to inverse an nt ×nt
matrix which requires O(n3t ) flops where nt is the number of spatial locations at time
point t . Therefore, when the number of spatial locations is large, the computational
complexity is not negligible. A similar cost is incurred in the model proposed by
Gutiérrez et al. (2016) and Warren et al. (2012).

In this paper, we aim to develop a flexible and easy to implement spatio-temporal
BNP model in a computationally feasible way. More precisely, we are interested to
introduce a model while relax the Gaussianity assumption, it preserves the properties
of the low rank models. For this purpose, we propose a spatio-temporal model that is
a nonparametric mixture of Gaussian kernels, where the mixing measure is a stick-
breaking process that induces the spatio-temporal dependence through the atoms in
terms of a basis system. Specifically, a low rank basis approximation and a vector
autoregressive process are used to model spatial and temporal dependencies, respec-
tively. We demonstrate that the proposed model is also an extension of the Gaussian
low rank (GLR) model with the similar computational complexity. More precisely,
the computational cost of our model increases linearly by the total number of obser-
vations, similar to the GLR, hence it offers great scalability for large to very large
spatio-temporal data. Moreover, the proposed model induces a closed form expression
for the mean and the covariance functions in a similar fashion to the low rank model.

This modeling approach can be considered as a temporal extension of the model
proposed byGelfand et al. (2005). To bemore specific,Gelfand et al. (2005) introduced
a novel SDP mixture model where spatial dependence is induced through the atoms.
Indeed, the atoms are considered as a realization of a stationary Gaussian process.
Their model allows for a large amount of flexibility, since the resulting random spatial
process is neither Gaussian nor stationary. The proposed dependent model not only
has similar properties to their model, but also it induces a closed form expression for
the first and second order structures of the process, as pointed before. However, our
modeling framework introduces models marginally rather than jointly in the Gelfand
et al. (2005). Another way for constructing a temporal extension of the SDP, is the
approach was proposed by Duan et al. (2007). As we pointed out before, when the
spatio-temporal datasets are large, the computational burden of statistical analyses is
not negligible.

The remainder of this paper is as follows. Section 2 presents the proposed model
with its properties. Prior specification, posterior implementation and prediction are
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described in Sect. 3. The computational complexity of our model is investigated in
Sect. 4. Section 5 evaluates the performance of the proposed model in accordance with
the GLR via simulated examples. Section 6 illustrates the approach through a real data
set. Finally, in Sect. 7 we present a short discussion and some future directions.

2 A Bayesian nonparametric spatio-temporal model

Let’s assume that the spatio-temporal random field Z(., .) = {Z(s, t); s ∈ D ⊆
R
d , t ∈ {1, 2, . . .}} is observed at locations si,t at times t for i = 1, . . . , nt and

t = 1, 2, . . . , T . Also, let the sampling model be

Z(si t , t) = Y (si t , t) + ε(si t , t), (1)

with
Y (si t , t) = μ(si t , t) + ν(si t , t), (2)

whereμ(si t , t)models the large-scale variability and is assumed to be a linear function
of p regressors f′t (.) = ( ft,1(.), . . . , ft,p(.)) with the unknown vector of coefficients
βt ∈ �p. Further, the random effects ε(si t , t) and ν(si t , t) are a pure error process
with distribution ε(si t , t) ∼ N (0, σ 2

ε ), and a spatio-temporal process which follows a
random probability measure Gsi,t ,t , respectively.

For the random measure Gsi,t ,t , we admit a spatio-temporal stick-breaking process
(ST-SBP) in which the spatial and temporal dependencies are induced through the
atoms. More specifically,

Gsi,t ,t =
∞∑

l=1

plδωl (si,t ,t), (3)

where δωl (si,t ,t) denotes the point mass at ωl(si,t , t). The weights {pl}l≥1 with their
infinite sum of one, follow a stick-breaking process, i.e. p1 = V1, and for l > 1,

pl = Vl
∏

i<l (1 − Vi ), with Vl
iid∼ Beta(1, α), α > 0. The atoms {ωl(si,t , t)}l≥1 are

considered as realizations of a spatio-temporal random field.When the number of spa-
tial locations at each time point t , i.e. nt , is large, a computationally efficient approach
to handle this kind of datasets is the low rank model. In this framework, the spatial and
temporal dependencies are modeled through the low-rank basis approximation and a
vector autoregressive process, respectively. More precisely,

ωl(si,t , t) = B′
t (si,t )θl,t + ξ(si,t , t), (4)

where B′
t (si,t ) = (B1,t (si,t ), . . . , Brt ,t (si,t )) represents a set of rt (rt 	 nt ) known

spatio-temporal basis functions and θ ′
l,t = (θ1,l,t , . . . , θrt ,l,t ) is a zero-mean normal

random vector with a covariance matrixWt . Also, ξ(si,t , t) is the approximation error
introduced by the dimension reduction. It ismodeled as awhite-noiseGaussian process
in space and time with mean zero and variance σ 2

ξ , independent of θl,t . Now, assume
that a Markovian evolution for the random coefficient θl,t as
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θl,t = Htθl,(t−1) + ζl,t , l = 1, 2, . . . , t = 1, 2, . . . , T

ζl,t ∼ N (0,Wt ), (5)

where θl,0 ∼ N (m0,C0), the rt ×rt matrixHt which is the evolutionmatrix, measures
the dynamic dependence of the process {θl,t }t≥1, and the covariancematrixWt controls
the magnitude of the change at time t . Also, the innovation vector {ζl,t }l,t are assumed
to be independent of {θl,t }l,t .

According to the Eq. (4), we see that the problem of modeling a spatio-temporal
process is reduced to that of modeling the coefficients associated with the bases. The
main feature of the proposedmodel (hereafter, referred to asBNP-LR) is that it includes
GLR as a limiting case. To be more specific, by letting α → 0, BNP-LR reduces to
GLR. Specifically, by letting α to zero, the Vj , j = 1, 2, . . . are tend to be selected
from a Beta distribution with mean 1 and variance zero. In this case, by the definition
of weights, the p1 tends to be one and the other weights, pl ; l > 1 tend to be zero.
Moreover, we can rewrite Gsi,t ,t as B

′
t (si,t )Gt where

Gt =
∞∑

l=1

plδθl,t ,

and θl,t follows the model in Eq. (5). Since, for any measurable set A, E(Gt (A)) =
G0t (A)whereG0t is a normal distribution with the mean ofHtθ

∗
t−1 and the covariance

of W∗
t [induced by a vector autoregressive process as in (5)], hence

E(Gsi,t ,t (A)) = B′
t (si,t )G0t (A).

In fact, the base measure of our proposed model is the same as the random effect’s
distribution of GLR.

Thefinite-dimensional conditional distributionofZt = (
Z(s1,t , t), . . . , Z(snt ,t , t)

)′

given βt , Gt and σ 2
ε is

∞∑

l=1

pl Nnt

(
Zt |Ftβt + Btθl,t + ξt , σ

2
ε Int

)
(6)

where Bt = (Bt (s1,t ), . . . ,Bt (snt ,t ))
′, Ft = (ft (s1,t ), . . . , ft (snt ,t ))

′ and Nnt denotes
nt -dimensional normal distribution. It is easy to verify that any finite-dimensional
distribution function of {Z(si,t , t)}i,t satisfies the following Kolmogorov’s conditions
of symmetry and consistency:

(1) Symmetry For any permutation π = (π1, . . . , πnt ) of the set {1, 2, . . . , nt },

Pnt (Z(sπ1,t , t) < zπ1, . . . , Z(sπnt ,t , t) < zπnt
)

= Pnt (Z(s1,t , t) < z1, . . . , Z(snt ,t , t) < znt ).
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(2) Consistency For any nt > 1,

Pnt+1(Z(s1,t , t) < z1, . . . , Z(snt ,t , t) < znt , Z(snt+1,t , t) < ∞)

= Pnt (Z(s1,t , t) < z1, . . . , Z(snt ,t , t) < znt ).

Details are presented in the supplemental Appendix B. The mean and covariance
functions of BNP-LR are (in the sequel of the paper, for simplicity, we consider
rt = r for t = 1, . . . , T )

E(Z(si,t ; t)) = f′t (si,t )βt + B′
t (si,t )

((
t∏

r=1

Ht−r+1

)
m0

)
,

and

Cov(Z(si,t , t), Z(si ′,t+k, t + k))

= 1

1 + α
B′
t (si,t )Var(θ∗

t )(Ht+kHt+k−1 . . .Ht+1)
′

× Bt+k(si ′,t+k) + σ 2
ξ I (i = i ′, k = 0) + σ 2

ε I (i = i ′, k = 0), (7)

respectively, where Var(θ∗
t ) is given by

Var(θ∗
t ) =

(
t∏

r=1

Ht−r+1

)
C0

(
t∏

r=1

Ht−r+1

)′

+
t−1∑

r=1

(
t−r∏

s=1

Ht−s+1

)
Wr

(
t−r∏

s=1

Ht−s+1

)′
+ Wt . (8)

Details have been provided in the supplemental Appendix A. Interestingly, these func-
tions have closed form expressions with similar structures as in GLR. Since α > 0,
the covariance function of BNP-LR is strictly less than that of GLR’s. This is not
surprising because the nonparametric mixture models provide conditions that allow
observations to come from different models. This leads to higher uncertainty in model
specification and therefore reduction of the overall dependency with respect to the
GLR. A computational problem of BNP-LR is that the stick-breaking prior (3) is infi-
nite mixture. Oneway tomake the stick-breaking procedure applicable in practice is to
approximate it with a finite number of mixtures. An alternative approach for posterior
sampling which does not involve an approximation of the nonparametric prior can
be designed based on the slice sampling presented in Walker (2007) and Kalli et al.
(2011), that described in the next section.

When BNP-LR model is adopted as the sampling model, two issues need to be
considered for their effect on model fitting, prediction results and the computational
burden. These issues are the basis functions and the evolution matrix Ht . We address
them in the following two subsections.
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2.1 Basis functions

Selecting an appropriate set of basis functions depends on the three following matters:

– The type of basis functions,
– The rank of basis functions (the number of knots),
– The location of knots.

In general there are two class of basis functions: orthogonal (e.g., Fourier, orthogonal
polynomials and empirical orthogonal functions (EOFs)) and non-orthogonal (kernel
based) (Gelfand et al. 2010). As each of these basis functions has advantages and
disadvantages, there is no consensus about the best type of basis function in the lit-
erature. However, it is recommended to use multiresolutional one to capture different
scales of spatial variations (Cressie and Johannesson 2008). One obvious class of
multiresoltional basis functions is bisquare given by

Bj(l)(s) ≡
{ {1 − (||s − u j(l)||/rl)2}2 ||s − u j(l)|| ≤ rl
0 otherwise

(9)

where {u j(l)} j are the center points of lth resolution and ||.|| denotes the Euclidean
distance. Additionally, the radius of a bisquare basis function of a particular reso-
lution, rl , is defined as 1.5 times the shortest distance between the center points of
that resolution (Cressie and Johannesson 2008). Besides to multiresolution property,
bisquare basis functions have another appealing features such as they can be evaluated
at any point in spatial domain without needing interpolation. Although, the proposed
BNP-LR model is applicable with any kind of basis functions, we use bisquare basis
functions in the analysis of both simulated and real datasets.

Akey component in the low-rank representation is the number of the basis functions.
It is clear that a large number of knots is preferable for prediction, but more knots
generally lead to increased computational cost. Several remedies have been proposed
in the literature to tackle this problem. The main idea in this context is based on
implementing the analysis over different number of knots and evaluating the stability
of results using a criterion function such as spatially averaged predictive variance
(Gelfand et al. 2012) and Akaike information criterion (AIC) (Bradley et al. 2011).
Alternatively, the number and the location of knots could be considered random and
estimated similar to the method in Katzfuss (2013). However, this approach imposes
extra computation (Heaton et al. 2014). In this paper, by using deviance information
criterion (DIC) which simultaneously controls goodness of fit and model complexity,
we select optimal number of basis functions in the real data example.

The only remaining issue is to select the location of knots for each resolution. It is
clear that the location of the basis functions should be covered the entire spatial domain.
Also to capture the boundary effects, it is recommended that some knots are selected
outside the study region. For fairly equally distributed data locations, one possibility is
to select locations on a grid overlaid on the domain (Banerjee et al. 2010). For highly
irregularly distributed locations, one can use the clustering algorithm such as k-means
for selecting the locations of knots (Kaufman and Rousseeuw 1990). Another strategy
could be to use design-based approach (Gelfand et al. 2012). When the basis functions
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are multiresolution, the locations of the basis functions from different resolutions
should not be coincident. Two suitable approaches for selecting the locations of knots
at each resolution are quadtree structure (Nguyen et al. 2012) and Discrete Global
Grid (DGG) (Sahr et al. 2003; Katzfuss and Cressie 2011). These two approaches
typically imply a space-covering design. In this study we use quadtree design idea to
select the location of basis functions.

2.2 The evolutionmatrix

Since the properties of the base measure (3) are related to the evolution matrix Ht’s,
appropriate determination of it is necessary. To avoid identifiability problem, we
assume the matrix Ht and Wt are time invariant. Several parameterizations for H
have been proposed in the literature. The simplest parameterization is to assume that
H = I, corresponding to a multivariate random walk (Gelfand et al. 2005). Another
parameterizations are H = ρI and H = diag(ρ1, . . . , ρr ) (Xu et al. 2005). Alter-
natively, the evolution matrix H could be considered totally unknown and estimated
similar to the method in Katzfuss and Cressie (2011). According to our experiments
(not shown here), an unknown evolution matrix leads to some identifiability problems.
In the spatio-temporal setting presented here, the number of basis functions r is larger
than the number of times. Therefore, without any prior information, the elements of
H are not identifiable. Even with a block-diagonal matrix for H, where blocks are
evolution matrices for each resolution, we observed non-identifiability of H. Hence,
in the analysis of real data, the evolution matrix is considered to be diag(ρ1, . . . , ρr ).

3 Posterior inference and prediction

The most widely used posterior inference methods in BNP models are Markov Chain
Monte Carlo (MCMC) methods. Our method is based on a Gibbs MCMC algorithm
with slice sampling steps (Walker 2007) that incorporates the forward filtering back-
ward sampling (FFBS) algorithm (Carter and Kohn 1994; Frühwirth-Schnatter 1994
and West and Harrison 1997). In a Gibbs sampler, each unknown variable is updated
from its full conditional distributions, that is proportional to the joint distribution of all
variables. Due to the conditional independency, the joint distribution can be written as
the product of the data model, the process model and the parameter (prior) model. To
specify the data model, we introduce latent φ1, . . . , φT where φt = h if the lth θ·,t is
drawn from the hth mixture component. Therefore, conditionally on φt , observations
from time point t , Zt , is drawn from the hth mixture component. Then, conditionally
on φt observations from time point t ; Zt is drawn from a single multivariate normal
distribution. We consider an augmented model given βt , Gt and σ 2

ε as

f (Zt , ut , φt ) = I (ut < pφt )N
(
Zt |Ftβt + Btθφt ,t + ξt , σ

2
ε Int

)
(10)

where ut is a uniform random variate on (0, pφt ).
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To compute the full conditional distributions of parameters we utilize data augmen-
tation to incorporate Θ1:T = (Θ1, . . . , ΘT ). Let Z ≡ (Z′

1, . . . ,Z
′
T )′ be the vector of

all observations. By defining ΔP as the process model parameters, including β1:T ,
p1:T , φ1:T , σ 2

ξ , α,W, u1:T and Ξ P as the vector of (ξ ′
1, . . . , ξ

′
T )′, the joint distribution

can be writen as

[Z,Θ1:T ,ΔP , Ξ P ] = [Z|Θ1:T ,ΔP , Ξ P ][Θ1:T , , Ξ P |ΔP ][ΔP ]

where the notation [X |Y ] and [X ] stand for the conditional probability density function
of X given Y and the marginal density function of [X ], respectively. Also, we use [X |.]
to denote the conditional distribution of variable X given other variables including the
data.

The specification of our Bayesian hierarchical model is completed by placing priors
on the remaining parameters and determining [ΔP ]. Due to the independency assump-
tion, the joint distribution of ΔP is the product of the distribution of each parameter.
To avoid identifiability problem, the measurement error variance σ 2

ε is assumed to
be known and determined based on the emprical variogram (Kang et al. 2010). Also,
we assume that the evolution matrix H is known. However as pointed out before, in
the applied example we set H = diag(ρ1, . . . , ρr ), and for each diognal element we
consider a uniform prioir on (−1, 1). Moreover, Metropolis–Hastings (MH) updates
(Metropolis et al. 1953; Hastings 1970) is employed to sample ρ1, . . . , ρr . For other
parameters, we adopt independent vague normals for the elements of the regression
parameters, βt , t = 1, . . . , T , and a vague inverse Gamma prior IG(a0, b0) with the
mean of b0/(a0 −1) for σ 2

ξ . Also a gamma prior with the mean of c0/d0 is considered
for α. We assign an inverseWishart prior toW, i.e.W ∼ IW (ν0, Ψ )where ν0 denotes
the degree of freedom and Ψ is a scale positive definite matrix.

The iterations of the Gibbs sampler will consist of sampling from closed form
distributions which are presented below.

For each t, t = 1, . . . , T , update ut from the uniform distribution on the interval
(0, pφt ).

For each h, h = 1, . . . , N ,

Vh |. ∼ Beta

(
1 + Mh, α +

∑

k>h

Mk

)
,

where N := maxt {Nt }, Nt is the largest φt such that ut < pφt . This is equivalent to

determine Nt such that
∑Nt

i=1 pi > 1 − ut .
Other full conditionals are

φt |. ∼
∑

Ap(ut )

ph f (Zt |ΔP , ξt , θh,t )δh(φt ),

βt |. ∼ N

([
F′
tFt

σ 2
ε

+ V−1
0

]−1
[
F′
t

[
Zt − B

′
tθφt ,t − ξt

]

σ 2
ε

+ V−1
0 β0

]
,
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[
F′
tFt

σ 2
ε

+ V−1
0

]−1
)

,

W|. ∼ IW (ν0 + T N + 1, Ψ +
T∑

t=1

N∑

h=1

(θh,t − Hθh,t−1)(θh,t − Hθh,t−1)
′),

α|. ∼ G

(
N + c0 − 1, d0 − log

(
1 −

N−1∑

h=1

ph

))
,

ξt |. ∼ Nnt

⎛

⎝
(

1

σ 2
ε

+ 1

σ 2
ξ

)−1
1

σ 2
ε

(
Zt − Ftβt − B

′
tθφt ,t

)
,

(
1

σ 2
ε

+ 1

σ 2
ξ

)−1
⎞

⎠ ,

and

σ 2
ξ |. ∼ IG

((
T∑

t=1

nt − 1

)
/2,

T∑

t=1

ξ ′
t ξt

)
,

where Ap(ut ) = { j; ut < p j } and Mh is the number of φt
,s that are equal with h.

The details of full conditionals are presented in the supplemental Appendix C. Since
all full conditionals are standard distributions, sampling from them is straightforward.

To sample from the full conditional distribution of the latent process Θ1:T =
(Θ1, . . . , ΘT ), we use the FFBS algorithm. The first stage of FFBS is the recursive
application of the forward filter in time for t = 1, . . . , T . More precisely, for each t ,
t = 1, . . . , T and h, h = 1, . . . , N , θh,t ’s can be sampled from N (mh,t ,Ch,t ) where

mh,t = ah,t + Ah,teh,t ,

and
Ch,t = Rh,t − Ah,tQh,tA

′
h,t ,

with Ah,t = Rh,tBtQ
−1
h,t , eh,t = Yt − fh,t , fh,t = Ftβt + Btah,t , Qh,t = B

′
tRh,tBt +

σ 2
ε I + σ 2

ξ I, ah,t = Hmh,t−1 and Rh,t = HCh,t−1H′ + W. It should be noted that
for every h, mh,0 = m0 and Ch,0 = C0 are known. The second stage of the FFBS
starts by sampling θh,T from its full conditional distribution, i.e. N (mh,T ,Ch,T ), for
each h = 1, . . . , N , and then continues with the recursive backward sampling from
N (dh,t ,Dh,t ) for t = T−1, T−2, . . . , 2, 1,wheredh,t = mh,t+Eh,t (θh,t+1−ah,t+1),
Dh,t = Ch,t − Eh,tRh,t+1E′

h,t and Eh,t = Ch,tHR−1
h,t+1.

One of the primary goals of spatio-temporal data analysis is to predict the underlying
process at new locations and/or times. Under the proposed model in Sect. 2, the
predictive distribution of Y (s0, t0) is

f (Y (s0, t0)|Z) =
∫

f (Y (s0, t0)|Θt0 ,Δ
P
t0 ) f (Θt0 |ΔP

t0 )π(ΔP
t0 |Z)dΔP

t0dΘt0 .

where ΔP
t0 denotes the parameters of the aforementioned ΔP at time point t0. Given

parameter estimates, the Rao-Blackwellized estimate of the predictive distribution
Y (s0, t0) is
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1

L

L∑

l=1

f (Y (s0, t0)|Θ(l)
t0 ,Δ

P(l)
t0 ),

where f (Y (s0, t0)|Θ(l)
t0 ,Δ

P(l)
t0 ) is N ( f ′

t0(s0)β
(l)
t0 + B

′
t0(s0)θ

(l)

φ
(l)
t0

,t0
, σ

2(l)
ξ ).

4 Computational complexity of the BNP-LR

In this section, we evaluate the computational feasibility of our proposed model. The
computational complexity is reported in terms of the number of observed time points,
the number of regression covariates, the dimension of basis functions, the number of
observed locations at each time point t , nt , and the number of the mixing components
N in the BNP-LR model.

At each iteration of the MCMC algorithm, we need to implement the FFBS algo-
rithm. Following Sect. 3, in the forward filtering step, it is required to calculate BtQ

−1
h,t

and Ah,tQh,tA
′
h,t where Qh,t = B

′
tRt,hB + (σ 2

ε + σ 2
ξ )I. Using Sherman-Morrison-

Woodbury formula to invert Qh,t , we have

BtQ
−1
h,t = Bt (((σ

2
ε + σ 2

ξ )I )−1 − ((σ 2
ε + σ 2

ξ )I )−1
B

′
t (R

−1
t,h

+ Bt ((σ
2
ε + σ 2

ξ )−1
B

′
t )Bt ((σ

2
ε + σ 2

ξ )I )−1)

= (σ 2
ε + σ 2

ξ )−1
Bt − (σ 2

ε + σ 2
ξ )−2

BtB
′
t (R

−1
t,h + (σ 2

ε + σ 2
ξ )−1

BtB
′
t ). (11)

This reduces computational complexity from O(n3t ), to O(r2nt ). In addition, by defin-
ingMt,h = At,hB′

t , we have

At,hQt,hA
′
t,h = At,h(B

′
tRt,hBt + (σ 2

ε + σ 2
ξ )I )A′

t,h

= At,hB
′
tRt,hBtA′

t,h + (σ 2
ε + σ 2

ξ )At,hA′
t,h

= Mt,hRt,hM′
t,h + (σ 2

ε + σ 2
ξ )At,hA′

t,h (12)

which has the computation cost of O(r2nt ), leading to O(Nr2nt ) for N components of
ST-SBP. The other stage of FFBS algorithm costs O(r3) floating operations. Other
calculations at each iteration of the MCMC algorithm need only O(p3) + O(r3)
where O(p3) is required to invert the covariance matrix in the posterior density of
the regression parameters and O(r3) is induced by calculating the determinant in the
posterior density of Wt . Therefore, since p, r , and N are fixed, the computational
complexity at each iteration of the MCMC algorithm is of order O(n) with n the total
number of observations in space and time.

5 Simulation study

To assess the performance of the proposed model in terms of model fitting and predic-
tion accuracy, we conducted a simulation study comparing our BNP-LR model with
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the Gaussian LR model in two different situations. More precisely, in the Example
1, the data are generated from a full rank non-stationary and non-Gaussian process
while in the next example, we generate data from low rankGaussian and non-Gaussian
models.

5.1 Example 1

We generate 15 datasets at 1000 randomly selected locations within [0, 50] × [0, 50]
square for t = 1, . . . , 10 from model (1) where Y (si,t , t) follows a two component
mixture of independent Gaussian processes. The kth process, k = 1, 2, is a Gaussian
process with constant meanμk and covariance function σ(si,t )σ (s j,t ) exp(−τk ||si,t −
s j,t ||), for each i, j = 1, 2, . . . , 1000 and t = 1, 2, . . . , 10, where at time t the
first process is sampled with probability λt and the second process is sampled with
probability 1 − λt . Specifically, the time dependency is induced by λt and we set
λt = δt

δt+γt
, t = 1, . . . , T , such that δt |δt−1 ∼ LN (log(δt−1), 0.25) and γt |γt−1 ∼

LN (log(γt−1), 0.25)with δ0 = γ0 = 1.5, where LN denotes log-normal distribution.
Moreover, we set μ1 = −2, μ2 = 2, τ1 = τ2 = 0.0025, and σ 2

ε = 0.25. Similar
to Gelfand et al. (2005), σ 2(s) is modeled as max(ς(s), 1) with ς(s) = σ 2{(lat(s) −
midlat)2 + (lon(s) − midlon)2}, where σ 2 = 0.05, and lat(s) and lon(s) denote the
latitude and longitude for location s and midlat = (max lat(s) + min lat(s))/2 and
midlon = (max lon(s) + min lon(s))/2. It is worth mentioning that this simulation
strategy yields a non-stationary process which is non-Gaussian.

After generating the datasets, we randomly select 10% of observations at each time
point t = 1, . . . , 10 as test data. Then, nt = 900 samples at each time point are used
for the model estimation and prediction at the locations of remaining samples.

To apply BNP-LR and GLR models, we consider a bisquare basis function with
two resolutions, one with 25 knots and the other one with 16 knots. Also, we set
μ(si,t , t) = β. For priors, we consider β ∼ N (0, 103), σ 2

ξ ∼ IG(0.01, 0.01), W ∼
IW (r , Ir ), and for the stick-breaking parameter α, we choose G(2, 1). According to
our sensitivity analysis, we see that estimations of parameters are robust in the face of
moderate changes in the prior of α. For each datasets, the MCMC algorithm was run
with a total number of 20,000 iterations based on BNP-LR and GLR where we use
a simple random walk, Ht = I, for describing the evolution of atoms. The posterior
inferences are based on the last 15,000 iterations. To reduce the correlation between
samples after burn in time, the lag value was taken to be 5.

To compare GLR and BNP-LR models, we compute the root mean squared pre-
diction error (RMSPE) and the deviance information criterion (DIC) as introduced by
Spiegelhalter et al. (2002) and defined as DIC = D̄ + pD . Here D̄ is the posterior
mean of the deviance and pD is the effective number of parameters. Smaller RMSPE
indicates better predictions. Also, the smaller the DIC, the better the trade-off between
model fit and complexity.

Figure 1 shows the distribution of the two criteria across the 15 sets of holdout sam-
ples. In general, the BNP-LR model performs better than the GLR under two criteria.
However, in term of DIC criterion, the BNP-LR has overwhelming performance com-
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Fig. 1 Box plots of the RMSPE and DIC for two models fit to the simulated data in Example 1, summarized
for each of 15 holdout replicates
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Fig. 2 Computational complexity (CPU timemeasured in seconds on a 1.8GHz Intel R i7-8550U computer)
of the proposed model with 5 mixture components (“o”) and 10 mixture components (“+”) as a function of
sample size, n

pared to the GLR. The pD of BNP-LR and GLR models averaged over 15 simulated
datasets are 1788 and 1792, respectively.

As mentioned before, the computational complexity of the proposed model is of
the order O(Nr2n) with n as the total number of observations. We carried out a small
simulation study to demonstrate it, numerically. The data were generated as above
mechanism with different sample sizes, 50 × 10, 100 × 10, . . . , 450 × 10 where the
first and second numbers indicate the number of locations and time points, respectively.
To fit the BNP-LR model, we used the bisquare basis function with 41 knots from two
resolutions, one with 25 knots and the other one with 16 knots. Also, two values
were considered for the number of mixture components, N , to assess its impact on
computational complexity. Figure 2 shows the CPU times of running 1000 iterations
of the MCMC algorithm for N = 5 and N = 10. As observed, there is a linear
pattern between CPU times and sample sizes. As it is expected, the computational
cost increases with the number of mixture components.
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Fig. 3 Box plots of the RMSPE and DIC for two models fit to the simulated data from the model (13),
summarized for each of 15 holdout replicates

5.2 Example 2

In this example, we simulate several datasets from Gaussian and non-Gaussian low-
rank models to assess the BNP-LR and GLR. First, we generate 15 datasets at 1000
randomly selected locations on the square [0, 50]× [0, 50] for t = 1, . . . , 10 from the
followingmechanism. For each location si,t , i = 1, 2, . . . , 1000 and t = 1, 2, . . . , 10,
we generate Z(si,t , t) from a mixture of two constant normal distributions with fixed
locations and scales but time varying weights, that is

Z(si,t , t)|β, ηt , σ
2
ε ∼ N (μ(si,t , t) + B ′(si,t )ηt , σ 2

ε ),

ηt ∼ λt N (.|μ1, I ) + (1 − λt )N (.|μ2, I ), (13)

where μ(si,t , t) = 2, μ1 = (1.5, . . . , 1.5)′, μ2 = (−1.5, . . . ,−1.5)′ and σ 2
ε =

0.25. To induce time dependency in the weights, we model λt similar to the previous
example. We note that the above mechanism to generate data is not included in our
specification in Sect. 2. In fact, the data generation mechanism is not in the class of
models defined in this paper.

Further feature that we consider is a bisquare basis function with two resolutions,
one with 25 knots and the other one with 16 knots. After the data were generated,
we randomly omit 10% of observations at each time point and use them as test
data.

We applied the MCMC algorithm described in Sect. 4 with Ht = I for estimation.
We also fit the GLR model to the training data. Figure 3 presents the distribution
of obtained RMSPE and DIC. It’s evident that, while there is not much difference
between the prediction performance of two models, the proposed model outperforms
the GLR in terms of DIC, even though the data generation mechanism is not a member
of the class of our models.

In what follows, we assess the goodness of fit and predictive performance of BNP-
LR in the case that the data come from GLR. for this purpose, we generate 15 datasets
at 1000 locations that are selected randomly on the square [0, 50] × [0, 50] for each
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Fig. 4 Box plots of the RMSPE and DIC for two models fit to the simulated data from model (14),
summarized for each of 15 holdout replicates

time point t , t = 1, 2, . . . , 10 from GLR model. Specifically, datasets are generated
from

Y (si,t , t)|β, ηt , σ
2
ε ∼ N (μ(si,t , t) + B ′(si,t )ηt , σ 2

ε ),

ηt ∼ N (Htηt−1,Wt ), (14)

where the basis functions are bisquare with two resolutions, one with 25 knots and the
other one with 16 knots. Moreover we set Ht = I, and a fixed mean μ(si,t , t) = 2.
Similar to the above, 10% of generating observations at each time point are holdout
for prediction model assessment. Then the GLR and BNP-LR models are fitted on
simulated data. The distribution of the obtained RMSPE and DIC is shown in Fig.
4.

The results indicate that the mean square prediction error of applying BNP-LR on
these data provides similar prediction results to GLR model. In addition, the BNP-LR
model outperforms the GLRmodel in terms of DIC, even though when the true model
of data is GLR.

6 Application to precipitation data

Precipitation is one of the important meteorological elements that influence various
activities. Accurate knowledge of precipitation levels is a fundamental requirement for
understanding and managing the climate changes. In this section, we aim to assess the
effectiveness of the proposed BNP-LRmodel in prediction of annual precipitation. To
this end, we apply the BNP-LR to a precipitation dataset, provided by the Institute for
Mathematics Applied to Geosciences (http://www.image.ucar.edu/Data/US.monthly.
met/).

The dataset is annual total precipitation in the region D = [−122,−90]×[32, 37],
between the years 1982 and 1993 from 1976 stations. The data available to us had
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(a) (b)

(c) (d)

Fig. 5 a Location of stations (red dots). b Annual total precipitation reported from observed stations. c
Predicted annual total precipitation using BNP-LR model for year 1993, d estimated prediction standard
errors (color figure online)

missing observations for each year; leaving about 1000–1250 observations from 1976
stations.

Figure 5a shows the location of stations across the study area that includes Cali-
fornia, Arizona, New Mexico, Oklahoma, Arkansan, large part of Texas, and small
part of Nevada, Louisiana, and Missouri states. This reveals the climate diversity
in the study area, in such a way that Northern Arizona and New Mexico have a
semi-desert climate, while California has a Mediterranean climate. On the other
hand, northern Texas and Oklahoma have temperate climate while western Texas
has semi-arid climate. The eastern Arizona has hot semi-arid climate and the western
Arizona has hot desert climate. Then it seems unreasonable to assume stationarity.
Additionally, the p values of the stationary test proposed by Bandyopadhyay and
Rao (2017) at each time point are 0.030, 0.020, 0.007, 0.003, 0.001, 0.096, 0.002,
0.012, 0.015, and 0.132 which confirm spatial non-stationarity over time except for
time instants 6 and 10. Additionally, Fig. 6 shows the histogram of measurements
for sites s1 = (−112.25, 33.45), s2 = (−92.72, 35.98), s3 = (−108.00, 36.83),
s4 = (−107.23, 34.12), s5 = (−100.25, 35.23), s6 = (−96.85, 32.40), s7 =
(−108.25, 36.70), s8 = (−106.39, 35.92) and s9 = (−109.15, 33.80). As observed,
different distributional behaviors including multimodality are witnessed over spatial
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Fig. 6 Histograms of observations for several sites

domainwhichmakes it challenging to choose an appropriate transformation. Therefore
we apply our model to the observed data with following features.

Since explanatory analysis of the data showed a significant linear relation between
annual total precipitation and elevation (in meters, divided by 100), then the mean
function is assumed to be a first order linear function of elevation.

In the sequel, it needs to construct a set of appropriate basis functions. To this end,
three resolutions of bisquare basis functions with 36, 16 and 9 knots are chosen to
model the spatio-temporal random effect. As it was mentioned previously, the number
of basis functions were selected based on DIC. According to our investigation (not
shown here), there we no significant difference between DIC based on r = 36+16+9
knots and more number of knots. The respective radius of each resolution are r1 =
259,643, r2 = 346,190 and r3 = 649,104 km.

The prior distributions are determined in the way described in the previous sec-
tion. Additionally, for the evolution matrix, we consider a diognal form as H =
diag(ρ1, . . . , ρr ) where ρ1, .., ρr are unknown autoregressive parameters and r is
the number of knots.

In what follows, we evaluate the predictive performance of our BNP-LR model in
smoothing, filtering and forecasting with the GLR. To assess the performance of the
proposed model in smoothing and filtering, we create 10 datasets by randomly taking
90% of the available data as the training data and the rest as prediction locations.
For each dataset, we ran 20,000 MCMC iterations where the burn in time was 5000.

123



170 Z. Barzegar, F. Rivaz

Table 1 Forecasting results for
BNP-LR and GLR models

BNP-LR GLR

RMSPE 37.17 61.31

DIC 5430.18 7396.30

Again, the lag value was taken to be 5 in order to reduce the correlation between
samples after burn in time. The convergence of the MCMC was verified through the
autocorrelations and visual inspection of the trace plots. Evidence reveals no obvious
convergence problem.

Also, the GLR model was fitted to the data and the averaged RMSPE over the
10 previously created datasets was calculated. The relative RMSPE is 1.73 for GLR
model (53.0) compared with BNP-LR (30.64). Also, the relative DIC over 10 datasets
is 1.43 for GLR (7494) compared with the BNP-LR (5248.8).

To evaluate the BNP-LR model in forecasting, we split the data into two parts: the
first 11 years as training data and the last year as testing data.Similar to the above,
the MCMC samples were obtained. Two models comparison criteria are shown in
Table 1. Based on two criteria, the BNP-LRmodel outperforms the GLRmodel. More
precisely, relative RMSPE and DIC are 1.65 and 1.36 for GLR model compared with
BNP-LR model, respectively.

Figure 5c, d shows the posterior mean surface and standard error of the precipitation
for the year 1993, based on the first 11 time data. According to the Fig. 5c the proposed
model detected the behavior of underlying process with an acceptable accuracy.

7 Discussion

In this paper, we have proposed a computationally convenient BNP model for analyz-
ing large spatio-temporal datasets. The core of the nonparametric component is the
introduction of a spatio-temporal stick-breaking process to model the random effect
where the spatio-temporal dependence is induced through the atoms. A low rank basis
approximation and a vector autoregressive process are used to model spatial and tem-
poral dependencies, respectively.

Ourmodel is easy to implement and flexible in adapting to non-normal datasets. The
BNP-LR as an extension of the GLR, inherits the advantageous properties of GLR. In
other words, it preserves the mean and the covariance structures, as well as the cost of
computation. In particular, the computational cost of BNP-LR increases linearly with
the total number of observations. This feature of our model is its main advantage over
other spatio-temporal BNPmodels. Our experiments with simulated data indicate that
our BNP-LR offers improved performance over GLR in model fitting and prediction.

Based on the applied example, it seems that annual precipitation highly depend
on elevation (Fig. 7). Therefore, accounting for elevation in the correlation structure
in addition to the mean structure may result in improved inference and prediction.
Our further investigation will focus on introducing a spatio-temporal BNP model to
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Fig. 7 Elevation map (in meters)

incorporate covariate information in the covariance structure in a computationally
feasible way.

Further extensions of BNP-LR can also be envisioned. For instance, in addition
to the atoms, we can supplement the spatio-temporal dependency with stick-breaking
weights. Constructing such BNPmodels with varyingweights is well-justified in some
applications since it would grant substantial flexibility albeit with more burdensome
computation. Another issue with this extension would be that it cannot be regarded as
an extension of the flexible GLR.
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