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Abstract
This paper is concernedwith the estimation problemof a periodic autoregressivemodel
with closed skew-normal innovations. The closed skew-normal (CSN) distribution
has some useful properties similar to those of the Gaussian distribution. Maximum
likelihood (ML),Maximuma posteriori (MAP) andBayesian approaches are proposed
and compared in order to estimate the model parameters. For the Bayesian approach,
the Gibbs sampling algorithm and for computing the ML and MAP estimations, the
expectation–maximization algorithms are performed. The simulation studies are then
conducted to compare the frequentist average losses of competing estimators and to
study the asymptotic properties of the given estimators. The proposed model and
methods developed in this paper are also applied to a real time series. The accuracy
of the CSN and Gaussian models is compared by cross validation criterion.

Keywords PAR models · VAR models · Closed skew-normal · ECM algorithms ·
MAP estimate · Bayesian approach · Noninformative priors · Hit-and-run sampler ·
MCMC algorithms

1 Introduction andmotivation

The main aim of this article is to make inference on the parameters of the periodically
correlated (PC) time series with a flexible class of skewed innovations. The PC time
series has potential applications in describing many phenomena in different area of
sciences and technology (e.g. climatology, hydrology, economics, electrical engineer-
ing and signal processing). To indicate a part of many relevant works done on the
theory and application of PC time, we cite Gladyshev (1961), Noakes et al. (1985),
Osborn andSmith (1989),McLeod (1993),Gardner (1994),Hipel andMcLeod (1994),
McLeod (1994), Franses and Paap (1994), Franses (1996), Novales and de Frutto
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(1997), Nematollahi and Soltani (2000), Serpedin et al. (2005), Lund et al. (2006),
Hurd and Miamee (2007), Ursu and Turkman (2012), Chaari et al. (2014, 2015 and
2017) and Nematollahi et al. (2017).

Several estimation techniques are available for PAR models, namely the least
squares method used by Franses and Paap (2004) for the univariate case and by Lutke-
pohl (2005) for multivariate case, the method of moments based on Yule–Walker
equations and asymptotic properties provided by Pagano (1978), Troutman (1979)
and Hipel and McLeod (1994) and the maximum likelihood estimation given by Vec-
chia (1985a, b). Ursu and Duchesne (2009) have studied the asymptotic distributions
of the least squares estimators of the model parameters in periodic Vector-ARmodels.
Lund andBasawa (2000) considered the recursive prediction and likelihood evaluation
techniques for periodic autoregressive moving average (PARMA) time series models.
The asymptotic properties of parameter estimates for causal and invertible PARMA
models are studied by Basawa and Lund (2001).

In recent years, consideration has been given to the non-Gaussian time series model
in analysis real data sets. Time series models with non-Gaussian innovations are well-
studied in the literature. Li and McLeod (1988) considered the ARMA model with
non-Gaussian innovations. Ni and Sun (2003) and Sun and Ni (2004, 2005) used
the Bayesian inferences on the estimation parameters of vector autoregressive (VAR)
model with multivariate normal and multivariate-t innovations and compared them
with ML estimators via frequentist risk. Shao (2006, 2007) applied the ML estimation
to mixture periodic autoregressive models with asymmetric or multimodal distribu-
tions. Bondon (2009) considered the estimation problem of the autoregressive (AR)
model with epsilon-skew-normal innovations by using the method of moments and
maximum likelihood estimations. Sharafi and Nematollahi (2016) studied the general
AR model with skew normal (SN) innovation introduced by Azzalini (1985). The
Maximum a posteriori (MAP) estimation of AR processes based on finite mixtures
of scale-mixtures of skew-normal distributions is proposed by Maleki and Arellano-
Valle (2017). Maleki et al. (2018) used a Bayesian analysis to AR models with scale
mixtures of skew-normal (SMSN) innovations.

The main motivation of this paper is to provide a modification and improvement
of the results derived by Manouchehri and Nematollahi (2019), where the estima-
tion problems of the PAR(1) time series with symmetric and asymmetric innovations
are discussed. In the asymmetric case, they proposed the multivariate skew-normal
as the distribution of the T -dimensional innovations. In this paper, the multivariate
closed skew normal (CSN) distribution is proposed, as an alternative innovation to the
symmetric ones, to provide improved estimates in the PAR(p) time series.

The stationary ARMA models with multivariate skew-normal distributions intro-
duced by Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999) are well
studied by Pourahmadi (2007), where the innovations are assumed to be correlated
and the predictors are assumed to be nonlinear and heteroscedastic. In this case a
limitation for modelling real time series will be occurred; the autocorrelations of the
ARMA model do not converge to zero for large lags, unlike their Gaussian ARMA
counterparts, as pointed out by Pourahmadi (2007). Interestingly, when the multi-
variate closed skew-normal distributions introduced by González-Farías et al. (2004)
(and re-parametrized and re-generalized by Arellano-Valle and Azzalini (2006)) are

123
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used in the ARMA models, the autocorrelations of the ARMA model decay to zero
exponentially and the predictors are linear and homoscedastic as in the Gaussian case,
when the innovations are considered as a sequence of iid random variables with a
univariate distribution in this family, see Pourahmadi (2007) and Bondon (2009) for
more details.

The multivariate CSN distribution was first introduced by González-Farías et al.
(2004). A p-dimensional vector U is said to have a CSN-distribution, in symbol U ∼
CSNp,q(μ,Σ,Γ , ν,Δ), if its density function is given by

f p,q(u) � Φ−1
q

(
0; ν,Δ + �ΣΓ ′)ϕp(u;μ,Σ)Φq(�(u − μ); ν,�), (1.1)

where μ ∈ R
p, υ ∈ R

q , Σ ∈ R
p×p and Δ ∈ R

q×q are both covariance matrices,
Γ ∈ R

q×p, ϕp(·;μ,Σ) and Φp(·;μ,Σ) are the density and distribution functions
of a p-dimensional normal with the indicated mean vector and covariance matrix.
Comprehensive listing of the existing references is presented by Genton (2004) and
Azzalini (2005). The multivariate CSN distribution has some useful properties sim-
ilar to those of the Gaussian distribution. Linear combinations of components CSN
random variables are also CSN random variables, thus, the CSN distribution is closed
under linear transformations. The sum of two independent CSN variables will also be
CSN. The CSN random variables conditional of the components are also CSN. The
composition of two independent CSN variables will be also CSN. For more details,
see the work of González-Farías et al. (2004). These favorable characteristics of the
CSN distribution make them analytically tractable, relatively simple to fit observed
data with lack of symmetry but with shape of the empirical distribution like normal
distribution.

In this paper, it is shown that application of the multivariate CSN for the distribu-
tion of T -dimensional innovation associated with a second order PAR(p) time series of
period T , is more appropriate and the obtained results are more accurate as compared
to those reported by Manouchehri and Nematollahi (2019). The Maximum likelihood
(ML), Maximum a posteriori (MAP) and Bayesian estimates of the model parameters
were studied and the technical difficulties which are usually encountered in handling
these methods were reported. The MAP estimate can be interpreted as a Bayes esti-
mate when the loss function is not specified. It provides a way to incorporate prior
information on the estimation process, and can be regarded as an extension of the ML
estimation. The MAP estimation procedures are well proposed in the literature, see
e.g. Gauvain and Lee (1994), Tolpin andWood (2015), White et al. (2015) andMaleki
and Arellano-Valle (2017) and references therein.

The outline of the paper is as follows: In Sect. 2, the PAR(p) model with the
CSN innovations are introduced and the relation between the PC time series and the
stationary vector series is recalled here for completeness. TheML andMAP estimation
are computed by the EM algorithms in Sect. 3. In this section, the Bayesian estimates
of the parameters are also obtained by theMCMCalgorithms. In Sect. 4, the simulation
studies are performed to check the validity of the estimation method. The consistency
and asymptotic normality of estimators are also discussed. The model is then applied
to a real data set in Sect. 5. Finally, a brief discussion is given in the last section.
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2 Periodic autoregressive models with closed skew-normal
innovations

The zero mean and real second order time series X � {Xt }∞−∞ is called a periodic
autoregressive of order p (PAR(p)) if

Xt �
p∑

j�1

φ j t Xt− j + εt , (2.1)

where the innovations {εt }∞−∞ are to be assumed independent and closed skew-
normally distributed, denoted by εt ∼ CSN1,1

(
0, σ 2

t , αt , 0,�t
)
, and T is the smallest

integer for which φ j t � φ j(t+T ), σ
2
t � σ 2

t+T , αt � αt+T , j � 1, . . . , p. In our appli-
cations, it is supposed that the parameter �t is a function of the unknown parameter,
σ 2
t .

Gladyshev (1961) showed that X is periodically correlated time series with period
T if and only if the T -dimensional vector (XtT , XtT+1, . . . , XtT+T−1)

′
is stationary

in the wide sense. It can be shown that each periodic autoregressive time series X with
period T is related to a stationary T dimensional vector autoregressive time series

Y �
{
Y t � (XtT , XtT+1, . . . , XtT+T−1)

′
, t ∈ Z

}
, (Pagano (1978)). For example,

for p � 2 and T � 4, the model (2.1) can be written as a vector autoregressive model
[VAR(1)] given by

Y t � Φ−1
0 Φ∗

1Y t−1 + Φ−1
0 Et , (2.2)

where

Φ0 �

⎛

⎜⎜
⎝

1 0 0 0
−φ12 1 0 0
−φ23 −φ13 1 0
0 −φ24 −φ14 1

⎞

⎟⎟
⎠, Φ∗

1 �

⎛

⎜⎜
⎝

0 0 φ21 φ11
0 0 0 φ22
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠,

Y t �

⎛

⎜⎜
⎝

X4t−3
X4t−2
X4t−1
X4t

⎞

⎟⎟
⎠, Et �

⎛

⎜⎜
⎝

ε4t−3
ε4t−2
ε4t−1
ε4t

⎞

⎟⎟
⎠.

In general, each PAR(p) process with period time T has a VAR(P) model represen-

tation, where, P �
[
p+T−1

T

]
and [] denotes the integer part (Pagano 1978).

Therefore, assuming the period T is known, one can consider the following general
VAR(P) model

Y t �
P∑

j�1

Φ jY t− j + U t , (2.3)

where Φ j � Φ−1
0 Φ∗

j , j � 1, . . . , P are unknown T × T coefficients matri-
ces, {U t }∞−∞ are independent and closed skew normally distributed from CSNT ,T
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(
0,Σ∗,�∗, 0, IT

)
. Here, Σ∗ � Φ−1

0 Σ
(
Φ−1

0

)′
, Γ ∗ � Δ−1/2αΦ0, Σ � diag

(
σ 2
1 , . . . , σ 2

T

)
and α � diag(α1, . . . , αT ) are T ×T diagonal matrices. It can be shown

that Y t |Y t−1, . . . ,Y t−P ∼ CSNT ,T

(∑P
j�1 Φ j yt− j ,Σ

∗,Γ ∗, 0, IT
)
, (González-

Farías et al. 2004). In Sect. 3, the ML, MAP and Bayesian approaches were examined
to estimate the parameters of the VAR model (2.3) which in turn can be applied to
estimate the parameters of PAR model (2.1).

3 Inferencemethod for estimation of parameter

In this section, three technical methods were applied to estimate parameters in the
proposed model (2.1).

3.1 ML estimation

The ML estimation of the parameters is the values for which the exact (full) likeli-
hood f (Y1, . . . ,Yn) � f (Y1) f (Y2) · · · f (Y P ) f (Y P+1, . . . ,Yn|Y1,Y2, . . . ,Y P ),
is maximized. In this section, we apply the conditional likelihood f
(Y P+1, . . . ,Yn|Y1,Y2, . . . ,Y P ) due to the stationarity condition, see Manouchehri
and Nematollahi (2019). When the non-normal innovations are found in a general
framework and under the stationarity condition, Li and McLeod (1988) have shown
that the conditional MLE and the MLE are consistent and have the same limiting
normal distribution.

The conditional likelihood function of θ � (Φ1, . . . ,ΦP ,Σ∗,Γ ∗) provided the
observed data matrix Y � (Y1, . . . ,Yn) is

CL(θ |Y) � f (Y P+1, . . . ,Yn|Y1, . . . ,Y P )

� ∣∣Σ∗∣∣−n∗/2
n∏

t�P+1

ΦT

⎛

⎝Γ ∗
⎛

⎝ yt −
P∑

j�1

Φ j yt− j

⎞

⎠; 0, IT

⎞

⎠

exp

⎡

⎢
⎣trace

⎧
⎪⎨

⎪⎩
−1

2
Σ∗−1

n∑

t�P+1

⎛

⎝ yt −
P∑

j�1

Φ j yt− j

⎞

⎠

′⎛

⎝ yt −
P∑

j�1

Φ j yt− j

⎞

⎠

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦, (3.1)

where n∗ � n − P .
The objective is to find the conditional MLE of θ which requires a high dimen-

sional nonlinear procedure. Instead, the latent structure of the model proposed by
Theorem 3.1 was applied for the beneficial EM-based methods.

Theorem 3.1 Let V t ∼ NT

(∑P
j�1 Φ j yt− j , G

)
and W t ∼ N 0

T (0,Λ) (N 0
T denotes

the truncated multivariate normal at 0) and V t is independent of W t and
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Y t � V t + DW t , t � P, . . . , n

where D � Σ∗Γ ∗′
−1 is a full rank matrix, G � Σ∗ − DΛD′ and  � IT +

Γ ∗Σ∗Γ ∗′
, then

(a) Y t ∼ CSNT ,T

(∑P
j�1 Φ j yt− j ,�

∗,�∗, 0, IT
)
,

(b) Y t |W t � wt ∼ NT

(∑P
j�1 Φ j yt− j + Dwt , G

)
,

(c) W t |Y t � yt ∼ C
(
yt , θ1

)
N 0
T

(
ν∗,∗),

where ∗ �
(
Λ−1 + D′G−1D

)−1
, ν∗ � ∗D′G−1

(
yt −∑P

j�1 Φ j yt− j

)
and C is

a function of parameters θ1 � (
Φ j ,, G, D

)
and observed data yt . Also we have

E(W t |Y t ) � C
(
yt , θ1

)(
ν∗ + ∗ξ1

)
, (3.2)

E
(
W

′
tW t |Y t

)
� C

(
yt , θ1

)(
∗ξ2 + ∗ξ1ν∗′

+
(
∗ξ1ν∗′)′

+ ν∗ν∗′
+ ∗

)
, (3.3)

where

ξ1 �
∂ΦT (s;−ν∗,∗)

∂s

ΦT
(
0;−ν∗,∗) |s�0,

ξ2 �
∂2ΦT (s;−ν∗,∗)

∂s∂s′

ΦT
(
0;−ν∗,∗) |s�s′�0

and
∂ΦT (s;−ν∗,∗)

∂s ,
∂2ΦT (s;−ν∗,∗)

∂s∂s′ are the first and second derivatives of multivariate
normal distribution function, respectively.

The proof is left to “Appendix A”.
It is not possible to compute the high dimensional Eqs. (3.2) and (3.3), analytically,

since there is no any analytical solution for ΦT (.; ., .). Thus the numerical approxi-
mations is needed to solve these equations. Alternatively, E(Wi ) � ∫

wi
wi pi (wi )dwi

can be approximated by a numerical method. For example, a sample of size N , say
x1, x2, . . . , xN can be generated from N 0

T

(
ν∗,∗) and so the traditional estimates

are given by

E
(
Ŵ t |Y t

) � C
(
yt , θ1

) 1
N

N∑

j�1

x j , E

(
̂W

′
tW t |Y t

)
� C

(
yt , θ1

) 1
N

N∑

j�1

x
′
j x j .

(3.4)
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Therefore, the conditional log-likelihood function of θ � (Φ,�,α) based on the
complete data Y � (Y1, ..,Yn) (observed data) and W � (W1, ..,Wn) (hidden
variables or missing data) is given by

Cl(θ |Y ,W) � log

⎛

⎝
n∏

t�P

f (W t ) f
(
Y t |W t ,Y t−1, . . . ,Y t−P

)
⎞

⎠

� log

⎛

⎝
n∏

t�P

Φ−1
T (0; 0, Λ)ϕT (wt ; 0, Λ)ϕT

⎛

⎝Y t ;
P∑

j�1

Φ j yt− j + Dwt , G

⎞

⎠

⎞

⎠

� log

⎛

⎝
n∏

t�P

2T (2π)−T |ΛG|−1/2

× exp

⎛

⎜
⎝w

′
t

−1wt +

⎛

⎝ yt −
P∑

j�1

Φ j yt− j − Dwt

⎞

⎠

′

× G−1

⎛

⎝ yt −
P∑

j�1

Φ j yt− j − Dwt

⎞

⎠

⎞

⎠

⎞

⎠, (3.5)

And by simplifying the parameters G � Φ−1
0 ΣΛ−1Φ−1′

0 , D � Φ−1
0 Σ�−1/2α−1

and  � IT + �−1�α in (3.5), we have

Cl(θ |Y ,W) � n∗ log(|Φ0|) − n∗
2

log(|Σ |) + tr

(
−1

2
W

′
−PW−P

)

+ tr

{
−1

2

(
Σ−1Λ

)[
Φ0
(
Y−P − Z−PΦ

)′(
Y−P − Z−PΦ

)
Φ

′
0 − Φ0

(
Y−P − Z−PΦ

)′
W−PΛ−1α�− 1

2 Σ − Σ�− 1
2 αΛ−1W

′
−P
(
Y−P − Z−PΦ

)
Φ

′
0

]}
,

(3.6)

where

W−P �
⎛

⎜
⎝

W
′
P+1
...

W
′
n

⎞

⎟
⎠, Y−P �

⎛

⎜
⎝

Y
′
P+1
...
Y

′
n

⎞

⎟
⎠, Z−P �

⎛

⎜
⎝

Z
′
P+1
...
Z

′
n

⎞

⎟
⎠,

Φ �
⎛

⎜
⎝

Φ
′
1
...

Φ
′
P

⎞

⎟
⎠ and Z

′
t �

(
Y

′
t−1, . . .Y

′
t−P

)
.

The EM algorithm is a helpful technique for ML estimation in models with hidden
variables W and has several good features such as stability of monotone convergence
and simplicity of implementation (Liu and Rubin (1994)). However, if the M-step
of this algorithm is not in closed form, EM loses some of its attraction. The ECM
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algorithmproposedbyMengandRubin (1993) is a simplemodification ofEMinwhich
the M(maximization)-step is replaced by a sequence of computationally conditional
maximization (CM)-steps.

Here, the ECM algorithm is used for finding ML estimates of parameters. Condi-

tional expectation used in the ECM algorithm is Q
(
θ , θ (k)

)
� Eθ (k)[Cl(θ |Y ,W)|Y ],

where, θ (k) �
(
Φ(k),α(k),�(k),Φ

(k)
0

)
is the estimated value of θ in the k-th step of

algorithm as follows:
E-step Calculate M(k) and R(k) obtained from conditional expectations of N 0

q(
ν∗,∗), given by (3.4),

M(k) �
{
E

θ (k) [W t |U t ]
}n

t�P
, R(k) �

n∑

t�P

E
θ (k)

[
W

′
tW t |U t

]
, U t � Y t −

P∑

j�1

Φ
(k)
j Y t− j ,

(3.7)

So in the E-step of the algorithm, we have

Q
(
θ , θ (k)

)
� E

θ (k) [Cl(θ |Y ,W)|Y ]

� n∗ log
(∣∣
∣Φ(k)

0

∣
∣
∣
)

− n∗
2

log
(∣∣
∣�(k)

∣
∣
∣
)

+ tr

{
−1

2

(
Σ(k)−1

Λ(k)
)[

Φ
(k)
0

(
Y−P − Z−PΦ(k)

)′(
Y−P

−Z−PΦ(k)
)
Φ

(k)′
0 − Φ

(k)
0

(
Y−P − Z−PΦ(k)

)′
M(k)Λ(k)−1

α(k)Δ(k)−1/2
Σ(k)

−Σ(k)Δ(k)−1/2
α(k)Λ(k)−1

M(k)′
(
Y−P − Z−PΦ(k)

)
Φ

(k)
′

0

]}
. (3.8)

• CM-steps
Updating of parameters in the CM-steps evidently, will be done in the following
parts:

• CM-step 1 Update Φ(k) by maximizing (3.8) over Φ which gives

Φ(k+1) �
(
Z

′
−P Z−P

)−1
[

Z
′
−PY−P − Z

′
−PM

(k)
(

Φ
(k)−1

0 Δ(k)−
1
2
Σ(k)α(k)Λ(k)−1

)′]

.

(3.9)

• CM-step 2UpdateΣ (k) bymaximizing (3.8) overΣ by solve the following equation

Σ (k+1) −
diag

[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′(
Y−P − Z−PΦ(k+1)

)
Φ

(k+1)′
0

]

n∗

+ Σ2(k+1)

(
δΔ−1

δΣ

)(k+1)

×
diag

[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′(
Y−P − Z−PΦ(k+1)

)
Φ

(k+1)′
0 α(k)2

]

n∗
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Periodic autoregressive models with closed skew-normal… 1191

+ Σ2(k+1)

(
δΔ− 1

2

δΣ

)(k+1) diag
[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′
M(k)α(k)

]

n∗ � 0.

(3.10)

• CM-step 3 Update α(k) by maximizing (3.8) over α which gives

α(k+1) �
{
diag

[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′(
Y−P − Z−PΦ(k+1)

)
Φ

(k+1)′
0 Δ(k+1)−1

]}−1

diag

[
Δ(k+1)−

1
2
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′
M(k)

]
. (3.11)

The simple starting values of the parameters θ can be the diagonal positive matrix

(identity matrix) for Σ and α and also
(
Z

′
−P Z−P

)−1
Z

′
−PY−P for Φ. The E- and

CM-steps are alternated repeatedly until a suitable convergence rule is satisfied, for

example
∣∣∣Cl
(
θ (k+1)|Y

)
/Cl

(
θ (k)|Y

)
− 1

∣∣∣ ≤ tolerance. The value considered here is

10−3, but the choice of tolerance may vary with different users.

3.2 Bayesian estimation

The Bayesian analysis is implemented here for the proposed model. So, we need to
consider prior distribution for all the unknown parameters θ � (Φ,Σ,α). Since no
any prior information is available from historical data or from previous experiment,
we choose noninformative prior distributions for the parameters. We also suppose
that the prior distributions of parameters are independent. The prior for Φ is assumed
to be the constant prior (πC (Φ) ∝ 1) and the Jeffreys prior and RATS (Regression
Analysis of Time Series) prior (a modified version of the Jeffreys prior, a software
package popular among macroeconomists) are chosen for Σ given by πJ (Σ) ∝
|Σ |− T+1

2 and πA(Σ) ∝ |Σ |−(T+1), respectively, See Sun and Ni (2004, 2005).
Similar to the approximate Jeffreys priors for α in the univariate case, which is t(
0, π2

4 , 1
2

)
(Bayes and Branco (2007)), we consider its multivariate version given by

πJ (α) � ∏T
j�1

√
π
2

(
1 +

2α2
j

π2
4

)− 3
2

.

So, the joint prior distributions of θ are

πC J J (Φ,Σ,α) ∝ |Σ |− T+1
2

T∏

j�1

√
π

2

(

1 +
2α2

j

π2

4

)− 3
2

, (3.12)

and

πCAJ (Φ,Σ,α) ∝ |Σ |−(T+1)
T∏

j�1

√
π

2

(

1 +
2α2

j

π2

4

)− 3
2

, (3.13)
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where CJJ and CAJ indicate the Constant–Jeffreys–Jeffreys and Constant–RATS–J-
effreys priors.

The full conditional posteriors of (W ,Φ,Σ,α) are as follows

(a) W t |Φ,Σ,α,Y−P ∼ C
(
yt , θ1

)
N 0
q

(
ν∗,∗), t � P, . . . , n, where, ν∗ and ∗

are given by part (c) in Theorem 3.1.
(b) The conditional distribution of Φ given (Σ,α,Y−P ,W−P ) is given by

π (Φ|Σ,α,Y−P ,W−P ) ∝ etr

{
−1

2

[
ΛΣ−1

(
Φ0(Y−P − Z−P�)

′
(Y−P − Z−P�)Φ

′
0

)

−
(
Δ− 1

2 (Φ0(Y−P − Z−P�)
′
W−Pα + α′W

′
−P (Y−P − Z−P�)Φ

′
0

)]}
. (3.14)

(c) The conditional density of Σ given (Φ,α,Y−P ,W−P ) for CJJ priors is given
by

π(Σ |Φ,α,Y−P ,W−P ) ∝ |Σ |− n∗+p+1
2 etr

{
−1

2

[
Σ−1

(
Φ0(Y−P − Z−P�)

′

× (Y−P − Z−P�)Φ
′
0

)
+ Δ−1α2

(
Φ0(Y−P − Z−P�)

′
(Y−P − Z−P�)Φ

′
0

)

−Δ− 1
2

(
Φ0(Y−P − Z−P�)

′
W−Pα + αW

′
−P (Y−P − Z−P�)Φ

′
0

)]}
.

(3.15)

(d) The conditional density of α given (Φ,Σ,Y−P ,W−P ) is given by

π(α|Φ,Σ,Y−P ,W−P ) ∝ etr

{
−1

2

[
α2Φ0(Y−P − Z−P�)

′
(Y−P − Z−P�)Φ

′
0�

−1

−�− 1
2

(
Φ0(Y−P − Z−P�)

′
W−P + W

′
−P (Y−P − Z−P�)Φ

′
0

)
α
]}

×
T∏

j�1

√
π

2

(

1 +
2α2

j

π2

4

)− 3
2

. (3.16)

In this study, the Gibbs sampling Markov chain Monte Carlo (MCMC) methods
were applied for sample from the posteriors. The conditional posterior density of
(Φ,Σ,α) are not available in closed form. Thus, a MC algorithm was developed for
sample W−P directly from the posterior distribution and sample from the conditional
distribution of (Φ,Σ,α), adopting a hit-and-run algorithm. For this, the one-to-one
transformation Σ∗ � log(Σ), or Σ � exp

(
Σ∗) was considered. It can be shown that
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the conditional posterior density of Σ∗ for CJJ prior given (α,Φ,�,Y−P ,W−P ) is
then

π
(
�∗|�,α,Y−P ,W−P

) ∝ etr

{
− (

n∗ + p − 1/2
)
D∗

+ −1

2

[
exp(�∗)−1

(
�0(Y−P − Z−P�)

′
(Y−P − Z−P�)�

′
0

)

+ �−1
exp(�∗)α

2
(
�0(Y−P − Z−P�)

′
(Y−P − Z−P�)�

′
0

)

−�
− 1

2
exp(�∗)

(
�0(Y−P − Z−P�)

′
W−Pα + αW

′
−P (Y−P − Z−P�)�

′
0

)]}
,

(3.17)

where Σ∗ � OD∗O ′, O is T × T orthogonal matrix, and D∗ � diag
(
d∗
1 , . . . , d∗

T

)
,

satisfies d∗
1 ≥ d∗

2 ≥ · · · ≥ d∗
T . Assume we have a Gibbs sample (W k,Φk,Σk,αk)

from the previous cycle. At cycle k + 1, we then use our proposed algorithm (CJJ)
for sample (W k+1,Φk+1,Σk+1,αk+1). Details and steps of the CJJ algorithm can be
found in “Appendix B”.

Finally, the Bayes estimators depend on the loss function that is characterized as
follows:

1. The following three loss functions for � were considered

L(1)
Σ

(
Σ̂,Σ

)
� tr

(
Σ̂

−1
Σ
)

− log
∣∣∣Σ̂

−1
Σ

∣∣∣− T , (3.18)

L(2)
Σ

(
Σ̂,Σ

)
� tr

(
Σ̂

−1
Σ − I

)2
, (3.19)

and

L(3)
Σ

(
Σ̂,Σ

)
� tr

(
Σ̂Σ

−1)− log
∣∣∣Σ̂Σ

−1
∣∣∣− T . (3.20)

2. The following two well-known loss function for Φ were also considered

L(1)
Φ

(
Φ̂,Φ

)
� tr

{(
Φ̂ − Φ

)′
W
(
Φ̂ − Φ

)}
, (3.21)

where, W is a constant weighting matrix, and

L(2)
Φ

(
Φ̂,Φ

)
�

PT∑

i�1

T∑

j�1

[
exp
{
ai j
(
φ̂i j − φi j

)}
− ai j

(
φ̂i j − φi j

)
− 1

]
, (3.22)

where, ai j is a given constant.
3. The most common loss for α are the quadratic loss

L(1)
α

(
α̂,α

) � trace
{(

α̂ − α
)′
A
(
α̂ − α

)}
, (3.23)

where, A is a constant weighting matrix. If the weighting matrix A is the identity
matrix, then the loss of L(1)

α is simply the sum of squared errors of all elements of
α,
∑T

i�1

(
α̂i − αi

)2
.
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TheBayesian estimates of�,α andΦ under the above loss functions can be derived
separately from minimizing expected posterior loss functions regarding (Φ,�,α)

provided the minimum is finite. In the following well-known facts, the results are
summarized.

(a) The generalized Bayesian estimators of � under loss functions L(1)
Σ , L(2)

Σ and

L(3)
Σ are given by

Σ̂1 � E(Σ |Y−P ), (3.24)

vec
(
Σ̂2

)
�
[
E
{(

Σ−1 ⊗ Σ−1
)
|Y−P

}]−1
vec

{
E
(
Σ−1|Y−P

)}
, (3.25)

and

Σ̂3 � {E(Σ−1|Y−P )}−1, (3.26)

respectively.
(b) The generalized Bayesian estimators of Φ under loss functions L(1)

Φ and L(2)
Φ are

given by

Φ̂1 � E(Φ|Y−P ), (3.27)

and

φ̂i j � − 1

ai j
log
[
E
{
exp
(−ai jφi j

)|Y−P
}]

, (3.28)

For i � 1, . . . , PT , j � 1, . . . , T , where φ̂i j is the (i, j)-th element of the
Bayesian estimator Φ̂2, respectively.

(c) Under the loss L(1)
α , the generalized Bayesian estimator of α is given by

α̂1 � E(α|Y−P ). (3.29)

3.3 MAP estimation

In this part, theECMalgorithmwas applied to obtain theMAPestimates of the parame-
ters (Φ,Σ,α). Constant–Jeffreys–Jeffreys and Constant–RATS–Jeffreys priors were
used for θ � (Φ,Σ,α) given by (3.12) and (3.13), respectively. According to the
results obtained in the previous sections, the posterior function based on data to be
maximized is π(Φ,Σ,α|Y) ∝ CL(Φ,Σ,α|Y)π(Φ,Σ,α), where CL(Φ,Σ,α|Y)

and π(Φ,Σ,α) are given by (3.6) and (3.12 and 3.13), respectively.
E-step Conditional expectation used in the ECM algorithm for finding MAP esti-

mates of parameters θ is
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Q
(
θ , θ (k)

)
� Eθ (k) [π(θ |Y ,W)|Y ] � Eθ (k)[Cl(θ |Y ,W)|Y ] + log(π(θ)). (3.30)

where Eθ (k)[l(θ |Y ,W)|Y ] is given by (3.8).
CM-steps Updating of parameters in the CM-steps obviously, will be done in the

following parts:

• CM-step 1 Update Φ by (3.9)
• CM-step 2 Update Σ by solving the following equation

Σ (k+1) −
diag

[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′(
Y−P − Z−PΦ(k+1)

)
Φ

(k+1)′
0

]

n∗ + T + 1

− Σ2(k+1)

(
δΔ−1

δΣ

)(k+1)

×
diag

[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′(
Y−P − Z−PΦ(k+1)

)
Φ

(k+1)′
0 α(k)2

]

n∗ + T + 1

+ Σ2(k+1)

(
δΔ− 1

2

δΣ

)(k+1) diag
[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′
M(k)α(k)

]

n∗ + T + 1
� 0.

(3.31)

• CM-step 3 Update α by solving the following equation

α3
j −

[
Δ(k+1)−

1
2
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′
M(k)

]

j, j[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′(
Y−P − Z−PΦ(k+1)

)
Φ

(k+1)′
0 Δ(k+1)−1

]

j, j

α2
j

+

⎧
⎪⎨

⎪⎩

π2

8
+

3
[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′(
Y−P − Z−PΦ(k+1)

)
Φ

(k+1)′
0 Δ(k+1)−1

]

j, j

⎫
⎪⎬

⎪⎭
α j

−
π2
[
�(k+1)−

1
2
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′
M(k)

]

j, j

8
[
Φ

(k+1)
0

(
Y−P − Z−PΦ(k+1)

)′(
Y−P − Z−PΦ(k+1)

)
Φ

(k+1)′
0 Δ(k+1)−1

]

j, j

� 0,

j � 1, . . . , T . (3.32)

4 Simulation studies

This section includes the numerical results of two simulation studies for different
models. In the first part, performance of the ML, MAP and Bayes estimators in the
PARmodelswith closed skewnormal innovation are compared by using the frequentist

risks under a loss function L , that is, EY |θ L
(
θ, θ̂

)
which is estimated by 1

n

∑n
i�1 L
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Table 1 True parameters model

Coefficient model Scale innovation Skewness parameter

Model 1 (1.5,0.4,− 2,0.9) (0.7,0.06,1, 2) (0.2,− 1.5,− 0.5,1)

Model 2 (− 0.3,− 1.4,0.8,− 2) (0.5,1,0.04,2) (− 0.1,2,− 1.2,0.6)

Model 3 (1.5,0.2,2,1) (0.5,1,0.01,2) (− 1,0.5,1.5,− 0.5)

(
θ, θ̂i

)
, where θ̂i is the estimate θ in the i-th sample (i � 1, . . . , n). In the second

part, some numerical results are provided to show the consistency and asymptotic
distribution of the estimators.

4.1 Simulation 1

In this part, a PAR(1) model with T � 4 and closed skew normal innovations for
a sample of N � 200 observations was considered. In the study, it is supposed that
�t � σ 2

t . 200 samples were generated from three PAR(1) models with true different
parameters shown in Table 1. To compare theML,MAP and Bayesian estimates under
priors and loss functions proposed in Sect. 3, 10,000 MCMC iterations were run after
500 burn-in cycles. The weighting matrix in the first loss function for Φ (3.21) and α

(3.23) is the identity matrix. The parameter a in the second loss function for Φ (3.22)
for all elements is also assumed to be − 3.

Tables 2, 3 and 4 show the frequentist average losses and standard deviations (in
parentheses) of Σ , Φ and α, respectively, under different loss functions and Constan-
t–Jeffreys–Jeffreys (CJJ) andConstant–RATS–Jeffreys (CAJ) priors for three different
considered models. For example, in these tables Σ̂1C J J represents the estimator of Σ

under loss L(1)
Σ and Constant–Jeffreys–Jeffreys prior.

Tables 5, 6 and 7 provide the means and standard deviations (in parentheses) of the
estimated coefficient, scale and skewness parameters of three different PAR models
with skew-normal innovation, respectively, under different loss functions and CJJ or
CAJ priors. In these tables, the best results are highlighted in bold and also, the MAP1
and MAP2 denote the maximum a posteriori estimates form CJJ and CAJ priors,
respectively.

In general, it is observed that the Bayes estimates provide the best performance with
the lowest frequentist average losses as compared to the ML and MAP estimates in
all parameters. The estimates of Σ , Φ and α under Constant–Jeffreys–Jeffreys (CJJ)
prior also performed better than Constant–RATE–Jeffreys (CAJ) prior in almost all
the cases.

According to Table 2, the estimates ofΣ under the loss functions L(1)
Σ and L(3)

Σ and
CJJ prior provided the best result. Table 6 also shows that, in most cases, the estimates
of the scale parameters under loss functions L(1)

Σ and CJJ prior are very close to the
true parameters and has the lowest biases.

The frequentist average losses of Φ under CJJ and CAJ priors with loss function
L(1)

Φ have almost similar performances; however, it seems that the CAJ prior performs
better than CJJ prior with LINEX loss function (Table 3). In all the cases and methods,
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Table 3 Frequentist average losses (with standard deviations in parentheses) of Φ with closed skew-normal
innovation

Model 1 Model 2 Model 3

L(1)
Φ L(2)

Φ L(1)
Φ L(2)

Φ L(1)
Φ L(2)

Φ

Φ̂ML .0596(.055) .261(.242) .261(.315) 1.810(4.753) .065(.084) .367(.638)

Φ̂MAP1 .0594(.055) .261(.245) .261(.318) 1.806(4.754) .064(.084) .365(.633)

Φ̂MAP2 .0581(.053) .262(.250) .260(.308) 1.699(3.987) .064(.083) .351(.605)

Φ̂1CJJ .0103(.015) .047(.070) .069(.101) .393(1.173) .031(.089) .242(1.304)

Φ̂2CJJ .0107(.016) .048(.072) .078(.112) .356(.832) .029(.063) .171(.646)

Φ̂1CAJ .0095(.012) .043(.058) .061(.071) .312(.573) .027(.052) .169(.611)

Φ̂2CAJ .0098(.013) .044(.059) .068(.084) .293(.440) .028(.058) .143(.468)

Table 4 Frequentist average losses (with standard deviations in parentheses) of α with closed skew-normal
innovation

Model 1 Model 2 Model 3

L(1)
α L(1)

α L(1)
α

α̂ML .530(.489) .729(.729) .725(.852)

α̂MAP1 .644(.785) 1.075(1.179) .963(1.161)

α̂MAP2 .592(.600) .929(.997) .851(1.032)

α̂1CJJ .388(.473) .752(2.264) .522(.655)

α̂1CAJ .369(.509) .710(1.498) .548(.773)

the estimate of the coefficient parameters showed the same bias but the results for the
estimate of CAJ prior with L(1)

Φ performwere better than that of CJJ prior with LINEX
loss (Table 5).

The results shown in Tables 4 and 7, also suggest that the estimates of skewness
parameter α under CAJ prior has lower bias and lower frequentist average losses than
CJJ prior.

In summary, the Bayes approach showed the best results for estimation of unknown
parameters of the PAR models with closed skew normal innovation in almost all the
cases.

4.2 Simulation 2

In this part, we conduct Monte Carlo simulation to evaluate the accuracy and asymp-
totic properties of the various estimation methods.We generate samples from the CSN
PAR(1) model with T � 2 and true parameters shown in Table 8 for small (n � 60),
moderate (n � 100) and large (n � 140, 200) sample sizes. In this study, in addition
of ML estimate, we also consider the posterior mean for Bayes estimate and MAP
estimate under CJJ and CAJ prior distributions.
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Table 8 True model parameters Coefficient model Scale innovation Skewness parameter

(1.5,− 0.2) (0.5,2) (0.5,− 1.5)

Fig. 1 The MSE of the proposed estimators for different sample size, where the piecewise linear functions
with nodes indicated by ©,�,+, × and ♦ illustrate the MSE of the ML, MAP-CJJ, MAP-CAJ, Bayesian
CJJ and Bayesian CAJ estimators, respectively

We compute the mean square error (MSE) and deficiency (Def) criteria for differ-
ent sample sizes. The Def criterion is an essential measure for comparing the joint
efficiencies of the different methods used for estimating a set of parameters (here,
(Φ,Σ,α)). It is defined as the sum of theMSE values of the estimators of the unknown
parameters (Gebizlioglu et al. (2011) and is given by

Def (Φ,Σ,α) �
T∑

k�1

MSE
(
φ̂k

)
+ MSE

(
σ̂ 2
k

)
+ MSE

(
α̂k
)
,

where MSE
(
θ̂
)

� Var
(
θ̂
)
+
(
Bias

(
θ̂
))2

.

The result based on 200 Monte Carlo runs are provided in Figs. 1, 2, 3, 4 and 5.
Figure 1 and 2 show the MSE and Def criteria of the proposed estimates. Figures 3,
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Fig. 2 The Def criteria of the
proposed estimators for different
sample size

Fig. 3 Histograms of the ML estimated of parameters for N � 200

4, 5 show the theoretical Gaussian density super-imposed over the histograms of the
proposed estimates when N � 200.

Figure 1 clearly illustrates the consistency properties of the estimators. When N is
small, all estimationmethods suffer from the bias problem, especially for the scale and
skewness parameters, however, the ML and Bayesian estimates has the lowest biased
in all the parameters. By increasing the sample size, the MSE of parameters converge
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Fig. 4 Histograms of the MAP estimated of parameters for N � 200 and CJJ prior distribution

to zero, which indicate the consistency of the parameter estimators. For large N, the
Bayesian estimator has the lowest bias in all the parameters.

Figure 2 indicates that as the sample size increases, the Def criteria decreases
in all methods and the Bayesian estimators show the best performance among the
estimators.

Figures 3, 4 and 5 are demonstrating that the histograms match pretty well to the
asymptotic normal distribution, especially for coefficients parameters in all method
estimations. The results of theKolmogorov–Smirnov test (not given here for the reason
of space limitation) also show that the asymptotic normality of the proposed estimates.
The p value of Kolmogorov–Smirnov normality test for all methods are greater than
0.05.

5 Real data analysis

In this section, as an illustrative case study of the proposed estimation methods, we
present an analysis of the quarterly United Kingdom macroeconomic variables. We
consider the average quarterly Final Consumption Expenditure in theUnitedKingdom
(FCEUK) from January 1, 1988, to December 31, 2017, from the National Statistical
Institute of the UK (https://www.ons.gov.uk). This data set consists of 120 data points.
The first 104 data points, that is, data from January, 1988 to December, 2013were used
formodel building, and the remaining 16 data points, that is, data from January, 2014 to

123
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Fig. 5 Histograms of the Bayes estimated of parameters for N � 200 and CJJ prior distribution

Fig. 6 Quarterly final consumption expenditure in the United kingdom 1988−2017

December, 2017, were used for model validation. After removing the linear trend and
seasonality by applying two differencing of order 4 and 1 from the original quarterly
data, respectively, some diagnostic methods are applied to determine the presence
of periodic correlation. The coherent, incoherent and the measure of fitness (MoF)
statistics are good tools for detecting the period of periodically correlated processes,
see e.g. Broszkiewicz-Suwaj et al. (2004) and Nematollahi et al. (2017) for more
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Fig. 7 The test parameters for coherent, incoherent and MoF statistics are M � 20, B � 100 and α � 0.01,
N � 220

details. These statistics take real values in the interval [0, 1] and due to the symmetry
are plotted only in the interval (0, N/2). Peaks at points wd , w2d , w3d , etc. indicate
periodic correlation with the period of length T � 1/wd . Figures 6 and 7 show the
descriptive plot of the original time series, Coherent statistic, Incoherent statistic and
MoF statistic of differenced data.

The coherent, incoherent andMoF statistics detect a 4-quarter period; peaks appear
at frequencies being multiples of 1

4 . Table 9 provide the result of fitting the PARmodel
with normal and skew normal innovations (Manouchehri and Nematollahi (2019)) and
closed skew normal innovations for quarterly FCEUK data. The root mean square pre-
diction error (RMSPE) value, mean absolute prediction error (MAPE) value, relative
mean absolute prediction error (RMAPE) value and also, AIC and BIC for validation
of the forecasts for fitted PAR model for the present data are summarized in these
tables.

The results of modeling and prediction of the PAR model with the normal, skew-
normal and closed skew normal innovations based on the ML, MAP and Bayes
estimates which are computed in several proposed methods, are also listed.

Figure 7 shows the plots of the individual elements of one step predicted, that
is, X̂104+ j , for j � 1, . . . , 12 in terms of X1, . . . , X104+1, . . . , X104+ j−1, assuming
that the innovations are distributed according to the normal, skew-normal and closed
skew normal laws. The figure also includes the 95% prediction intervals of the one
step forecasts which are calculated by X̂104+4t+k ∓ c1−α/2σ̂k, where, c1−α/2 is the
(1 − α/2)-th quantile of the normal and skew-normal distributions, and t � 0, 1, 2
and k � 1, 2, 3, 4 and σ̂k denotes the square root of the variance of one step forecasts.

Results in Table 9 and Fig. 8 suggest that the PAR model with closed skew-normal
innovation gives the best results.
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Table 9 The MAPE, RMSPE,
RMAPE, AIC and BIC values of
fitting PAR model with normal,
skew-normal and closed skew
normal innovation for FCEUK
data

AIC BIC MAPE RMSPE RMAPE

PAR model (normal)

ML − 377.909 − 295.85 369.144 442.346 1.179

CJ11 − 370.518 − 288.459 485.698 572.619 1.551

CJ12 − 377.894 − 295.835 366.102 434.556 1.169

CJ13 − 377.664 − 295.605 413.682 489.147 1.321

CA11 − 377.572 − 295.512 417.622 498.02 1.334

CA12 − 373.897 − 291.838 334.926 403.13 1.069

CA13 − 377.882 − 295.823 369.717 442.807 1.181

CR11 − 372.695 − 290.635 400.304 451.665 1.279

CR12 − 376.752 − 294.692 315.578 355.016 1.008

CR13 − 377.054 − 294.995 351.286 395.183 1.122

PAR model (skew normal)

ML − 417.888 − 387.115 78.466 89.639 0.251

CJJ111 − 414.003 − 383.231 75.084 90.252 0.24

CJJ121 − 409.39 − 378.618 79.595 91.68 0.254

CJJ131 − 413.493 − 382.721 76.789 90.162 0.245

PAR model (closed skew normal)

ML − 418.792 − 388.02 60.831 74.872 0.194

MAP1 − 416.958 − 386.186 63.979 71.878 0.204

MAP2 − 412.195 − 381.423 63.048 73.086 0.201

CJJ211 − 417.042 − 386.269 45.932 58.23 0.147

CJJ221 − 423.342 − 392.57 57.3 64.305 0.183

CJJ231 − 423.764 − 392.992 50.603 60.125 0.162

CAJ211 − 421.485 − 390.713 50.654 60.503 0.162

CAJ221 − 417.261 − 386.489 62.287 68.7 0.199

CJJ231 − 421.785 − 391.013 57.452 64.499 0.184

6 Concluding remarks

In this paper, it is shown that application of the multivariate CSN for the distribution of
T -dimensional innovation associated with a second order PAR(p) time series of period
T , is more appropriate with respect to the multivariate SN. The multivariate CSN has
some useful properties similar to those of the Gaussian distribution, which make them
analytically tractable, relatively simple to fit observed data with lack of symmetry but
with shape of the empirical distribution like to normal distribution. The Maximum
likelihood, Maximum a posteriori and Bayesian estimates of the model parame-
ters are examined and some technical recommendations are recommended to the
users.
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Fig. 8 The one step prediction and the 95% prediction intervals of fitting PAR model with normal, skew-
normal and closed skew normal innovation for FCEUK data

Appendix A: Proof of Theorem 3.1

In order to prove of Theorem 3.1, we need some preliminary definitions and properties.

Definition 1 (Truncated multivariate normal). If W ∼ Nq(μ,�) and U �{
W i f W ≥ c
0 i f W < c

where W ≥ c means Wj ≥ c j , j � 1, . . . , q, then the density

function of U is:

f (u;μ,Σ, c) � Φ−1
q (0; c− μ,Σ)ϕq(u;μ,Σ), u ≥ c.

U is truncated multivariate normal denote by U ∼ N c
q (μ,�).

Property 1 If U ∼ N c
q (μ,�) then the moment generating function of U is given by

MU (t) � Φ−1
q (0; c− μ,Σ)et

′μ+ 1
2 t

′Σ tΦq(Σ t; c− μ,Σ), t ∈ Rq .

Property 2 If Z ∼ CSNp,q(μ,Σ,Γ , ν,Δ), then the moment generative function of
Z is given in González-Farías et al. (2004) as

MZ(s) � Φq
(
Γ Σ s; ν,Δ + Γ ΣΓ ′)

Φq
(
0; ν,Δ + Γ ΣΓ ′) exp

(
s′μ +

1

2
s′Σ s

)
, s ∈ R

p.

Proof of Theorem 3.1 The result of part (a) is proved by using the uniqueness property
of the moment generating functions. Note that
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MY t (s) � MV t (s)MW t

(
D′s

) � e
s′
(

P∑

j�1
Φ j yt− j

)

+ 1
2 s

′
Gs

× Φ−1
T (0; 0,Λ)e

1
2 s

′DΛD′sΦT
(
ΛD′s; 0,Λ

)

� ΦT
(
ΛD′s; 0,Λ

)

ΦT (0; 0,Λ)
e
s′
(

P∑

j�1
Φ j yt− j

)

+ 1
2 s

′
(G+DΛD′)s

�
ΦT

(
Γ ∗Σ∗s; 0, IT + Γ ∗Σ∗Γ ∗′)

ΦT

(
0; 0, IT + Γ ∗Σ∗Γ ∗′) e

s′
(

P∑

j�1
Φ j yt− j

)

+ 1
2 s

′
Σ∗s

� MZ(s)

where Z ∼ CSNT ,T

(
P∑

j�1
Φ j yt− j ,Σ

∗,Γ ∗, 0, IT

)

.

(b) It is proved by using the linearity property of the multivariate normal distribu-
tions.

(c) It can be proved by the following arguments:

f (W t |Y t ) � f (Y t ,W t )

f (Y t )
� f (W t ) f (Y t |W t )

f (Y t )

�
Φ−1

T (0; 0,Λ)ϕT (wt ; 0,Λ)ϕT

(
yt ;
∑P

j�1 Φ j yt− j + DW t , G
)

ϕT

(
yt ;
∑P

j�1 Φ jY t− j ,Σ
∗
)
ΦT

(
Γ ∗
(
Y t −∑P

j�1 Φ j yt− j

)
; 0, IT

)
Φ−1

T (0; 0, IT )

�
ϕT (wt ; 0,Λ)ϕT

(
Y t ;

∑P
j�1 Φ j yt− j + Dwt , G

)

ϕT

(
yt ;
∑P

j�1 Φ j yt− j ,Σ
∗
)
ΦT

(
Γ ∗
(
yt −∑P

j�1 Φ j yt− j

)
; 0, IT

)

� C1
(
yt , θ1

)
ϕq
(
wt ; ν

∗,Λ∗) � C2
(
yt , θ1

)
Φ−1

T

(
0;−ν∗,Λ∗)ϕq

(
wt ; ν

∗,Λ∗)

� C
(
yt , θ1

)
N 0
T

(
wt ; ν

∗,Λ∗),wt ≥ 0,

where ∗ �
(
Λ−1 + D′G−1D

)−1
, ν∗ � ∗D′G−1

(

yt −
P∑

j�1
Φ j yt− j

)

, and C is

function of parameters θ1 � (
Φ j ,, G, D

)
and observed data yt .

The moment generating function of W t |Y t is given by

MW t |Y t (s) � C(Y t , θ1)
ΦT
(
∗s;−ν∗,∗)

ΦT
(
0;−ν∗,∗) es

′ν∗+ 1
2 s

′∗s, s ∈ RT ,

and so

E(W t |Y t ) � ∂MW t |Y t (s)
∂s

|s�0,

123



1210 T. Manouchehri, A. R. Nematollahi

where

∂MW t |Y t (s)
∂s

� C(Y t , θ1)

⎧
⎨

⎩
�∗

∂�T (s;−ν∗,∗)
∂s

�T
(
0;−ν∗,∗)e

s′ν∗+ 1
2 s

′∗s

+
�T
(
∗s;−ν∗,∗)

�T
(
0;−ν∗,∗)

(
ν∗ + ∗s

)
es

′ν∗+ 1
2 s

′∗s
}

.

Therefore

E(W t |Y t ) � ∂MW t |Y t (s)
∂s

|s�0� C(Y t , θ1)
(
ν∗ + Λ∗ξ1

)
,

where ξ1 �
∂ΦT (s;−ν∗,∗)

∂s
ΦT (0;−ν∗,∗) |s�0. Also,

E
(
W

′
tW t |Y t

)
� ∂2MW t |Y t (s)

∂s∂s′
|s�s′�0,

Where

∂2MW t |Y t (s)
∂s∂s′

� C(Y t , θ1)

⎧
⎨

⎩
∗

∂2ΦT (s;−ν∗,∗)
∂s∂s′

ΦT
(
0;−ν∗,∗)e

s′ν∗+ 1
2 s

′∗s

+∗
∂ΦT (s;−ν∗,∗)

∂s

ΦT
(
0;−ν∗,∗)

(
ν∗ + ∗s

)′
es

′ν∗+ 1
2 s

′∗s

+

⎛

⎝∗
∂ΦT (s;−ν∗,∗)

∂s

ΦT
(
0;−ν∗,∗)

(
ν∗ + ∗s

)′
es

′ν∗+ 1
2 s

′∗s

⎞

⎠

′

+
ΦT
(
∗s;−ν∗,∗)

ΦT
(
0;−ν∗,∗)

((
ν∗ + ∗s

)(
ν∗ + ∗s

)′
es

′ν∗+ 1
2 s

′∗s + ∗es′ν
∗+ 1

2 s
′∗s

)
⎫
⎬

⎭

Therefore

E
(
W

′
tW t |Y t

)
� ∂2MW t |Y t (s)

∂s∂s′
|s�s′�0

� C(Y t , θ1)

(
∗ξ2 + ∗ξ1ν∗′

+
(
∗ξ1ν∗′)′

+ ν∗ν∗′
+ ∗

)
,

where ξ2 �
∂2ΦT (s;−ν∗,∗)

∂s∂s′
ΦT (0;−ν∗,∗) |s�s′�0.
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Appendix B. Algorithm CJJ

Step 1 Compute ν(k+1) � IT and m(k+1) � αk�
−1/2
k Φ

′
0k(Y−P − Z−P�k). Simulate

W k+1 from a multivariate truncated normal with mean m(k+1) and T × T variance—
covariance matrix νk+1.

Step 2Select a T -dimention randomvector V 1 with elements v1i � z1i/(
∑

j
z21 j )

1/2,

where, z1i , 1 ≤ i ≤ T are i id ∼ N (0, 1). Generate λ1 ∼ N (0, 1) and set ϒ1 �
Φk + λ1V 1. Compute

τk+1 � log{π(ϒ1|W k+1)} − log{π(Φk |W k+1)}

Simulate u1 ∼ Unif(0, 1). If u1 ≤ min(1, exp(τk+1))., let Φk+1 � ϒ1. Otherwise,
let Φk+1 � Φk .

Step 3 Decompose �k � ODO ′, where, D � diag(d1, . . . , dT ), d1 ≥ d2 ≥ . . . ≥
dT , and OO ′ � I . Let d∗

i � log(di ), D∗ � diag
(
d∗
1 , . . . , d∗

T

)
and �∗

k � OD∗O ′.
Select a random symmetric T × T matrix V 2 with elements v2i j �

z2i j/(
∑

l≤m z22lm)
1/2, where, z2i j , 1 ≤ i ≤ j ≤ T × (T + 1)/2, are i id ∼ N (0, 1).

(the other elements of V 2 are defined by symmetry).
Generate λ2 ∼ N (0, 1) and set ϒ2 � �∗

k + λ2V 2. Decompose ϒ2 � QC∗ Q′,
where, C∗ � diag(c∗

1, . . . , c
∗
T ), c

∗
1 ≥ c∗

2 ≥ . . . ≥ c∗
T , and QQ′ � I . Compute

τk+1 � log{π(ϒ2|W k+1,Φk+1)} − log
{
π
(
�∗

k |W k+1,Φk+1
)}

Simulate u2 ∼ Unif(0, 1). If u2 ≤ min(1, exp(τk+1)), let �∗
k+1 � ϒ2, C � diag(

ec
∗
1 , . . . , ec

∗
T

)
and �k+1 � QC Q′. Otherwise, let �∗

k+1 � �∗
k and �k+1 � �k .

Step 4 Select a T -dimention randomvectorV 3 with elements v3i � z3i/(
∑

j
z23 j )

1/2,

where, z3i , 1 ≤ i ≤ T are i id ∼ N (0, 1). Generate λ3 ∼ N (0, 1) and set ϒ3 �
αk + λ3V 3. Compute

τk+1 � log{π(ϒ3|(W k+1,�k+1,Φk+1))} − log{π(αk |(W k+1,�k+1,Φk+1))}.

Simulate u3 ∼ Unif(0, 1). If u3 ≤ min(1, exp(τk+1)), let αk+1 � ϒ3. Otherwise,
let αk+1 � αk .

References

Arellano-Valle RB, Azzalini A (2006) On the unification of families of skew-normal distributions. J Stat
Theory Appl 33(3):561–574

Azzalini A (1985) A class of distribution which includes the normal ones. Scand J Stat 12(2):171–178
Azzalini A (2005) The skew normal distribution and related multivariate families. Scand J Stat

32(2):159–200 (with discussion)
Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew-normal distribution. J R

Stat Soc B 61:579–602
Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika 83:715–726

123



1212 T. Manouchehri, A. R. Nematollahi

Basawa IV, Lund RB (2001) Large sample properties of parameter estimates for periodic arma models. J
Time Ser Anal 22:651–663

Bayes CL, Branco MD (2007) Bayesian inference for the skewness parameter of the scalar skew-normal
distribution. Braz J Probab Stat 21:141–163

Bondon P (2009) Estimation of autoregressive models with epsilon-skew-normal innovations. J Multivar
Anal 100(8):1761–1776

Broszkiewicz-Suwaj E, Makagon A, Weron R, Wylomanska A (2004) On detecting and modeling periodic
correlation in financial data. Physica A 336(1–2):196–205

Chaari F, Leskow J, Napolitano A, Sanchez-Ramirez A (eds) (2014) Cyclostationarity: theory and methods.
Lecture notes in mechanical engineering. Springer, Cham

Chaari F, Leskow J, Napolitano A, Zimroz R, Wylomanska A, Dudek A (eds) (2015) Cyclostatioarity:
theory and methods II. Applied condition monitoring. Springer, Cham

Chaari F, Leskow J, Napolitano A, Zimroz R, Wylomanska A (eds) (2017) Cyclostationarity: theory and
methods III. Applied condition monitoring. Springer, Cham

Franses PH (1996) Periodicity and stochastic trends in economic time series. Oxford University Press,
Oxford

Franses PH, Paap R (1994) Model selection in periodic autoregressive. Oxf Bull Econ Stat 56(4):421–439
Franses PH, Paap R (2004) Periodic time series models. Oxford University Press, Oxford
Gardner WA (1994) Cyclostationarity in communications and signal processing. IEEE Press, New York
Gauvain J, Lee C (1994) Maximum a posteriori estimation for multivariate Gaussian mixture observations

of markov Chains. IEEE Trans Speech Audio Process 2(2):291–298
Gebizlioglu OL, Senoglu B, Kantar YM (2011) Comparison of certain value-at-risk estimation methods for

the two-parameter Weibull loss distribution. J Comput Appl Math 235(11):3304–3314
Genton ME (2004) Skew elliptical distributions and their applications: a journey beyond normality. CRC,

London
Gladyshev EG (1961) Periodically correlated random sequences. Sov Math 2:385–388
González-Farías G, Domı́nguez-Molina J, Gupta A (2004) Additive properties of skew normal random

vectors. J Stat Plan Inference 126:521–534
HipelKW,McleodAI (1994) Time seriesmodelling ofwater resources and environmental systems. Elsevier,

Amsterdam
Hurd HL, Miamee A (2007) Periodically correlated random sequences: spectral theory and practice. Wiley,

Hoboken
LiWK,McLeodAI (1988)ARMAmodellingwith non-Gaussian innovations. JTimeSerAnal 9(2):155–168
Liu C, Rubin DB (1994) The ECME algorithm: a simple extension of EM and ECM with faster monotone

convergence. Biometrika 81:633–648
Lund RB, Basawa IV (2000) Recursive prediction and likelihood evaluation for periodic arma models. J

Time Ser Anal 21:75–93
Lund R, Shao Q, Basawa I (2006) Parsimonious periodic time series models. Aust N Z J Stat 48(1):33–47
Lutkepohl H (2005) New introduction to multiple time series analysis. Springer, Berlin
MalekiM,Arellano-Valle RB (2017)Maximum a posteriori estimation of autoregressive processes based on

finite mixtures of scale-mixtures of skew-normal distributions. J Stat Comput Simul 87(2):1061–1083
Maleki M, Arellano-Valle RB, Dey DK, Mahmoudi MR, Jalili SMJ (2018) A Bayesian approach to robust

skewed autoregressive processes. Calcutta Stat Assoc Bull 69(2):165–182
Manouchehri T, Nematollahi AR (2019) On the estimation problem of periodic autoregressive time series:

symmetric and asymmetric innovations. J Stat Comput Simul 89(1):71–97
McLeod AI (1993) Parsimony, model adequacy, and periodic autocorrelation in time series forecasting. Int

Stat Rev 61:387–393
Mcleod AI (1994) Diagnostic checking of periodic autoregression models with application. J Time Ser Anal

15(2):221–233
Meng XL, Rubin DB (1993) Maximum likelihood estimation via the ECM algorithm: a general framework.

Biometrika 80:267–278
Nematollahi AR, Soltani AR (2000) Discrete time periodically correlated Markov processes. Math Stat

20:127–140
Nematollahi AR, Soltani AR, Mahmoudi MR (2017) Periodically correlated modeling by means of the

periodograms asymptotic distributions. Stat Pap 1(1):1–12
Ni S, Sun D (2003) Noninformative priors and frequentist risks of bayesian estimators of vector-

autoregressive models. J Econom 115:159–197

123



Periodic autoregressive models with closed skew-normal… 1213

Noakes DJ, McLeod AI, Hipel KW (1985) Forecasting monthly river-flow time series. Int J Forecast
1:179–190

Novales A, de Frutto RF (1997) Forecasting with periodic models: a comparison with time invariant coef-
ficient models. Int J Forecast 13:393–405

Osborn D, Smith J (1989) The performance of periodic autoregressive models in forecasting seasonal U.K.
consumption. J Bus Econ Stat 7:117–127

Pagano M (1978) On periodic and multiple autoregressions. Ann Stat 6:1310–1317
Pourahmadi M (2007) Skew-normal ARMA models with nonlinear heteroscedastic predictors. Commun

Stat Theory Methods 36:1803–1819
Serpedin E, Panduru F, Sarı I, Giannakis GB (2005) Bibliography on cyclostationarity. Signal Process

85(12):2233–2303
Shao Q (2006) Mixture periodic autoregressive time series models. Stat Probab Lett 76(6):609–618
Shao Q (2007) Robust estimation for periodic autoregressive time series. J Time Ser Anal 29:251–263
Sharafi M, Nematollahi AR (2016) AR(1) model with skew-normal innovations. Metrika 79(8):1011–1029
Sun D, Ni S (2004) Bayesian analysis of vector-autoregressive models with noninformative priors. J Stat

Plan Inference 121(2):291–309
Sun D, Ni S (2005) Bayesian estimates for vector autoregressive models. J Bus Econ Stat 23(1):105–117
Tolpin D, Wood F (2015) Maximum a posteriori estimation by search in probabilistic programs. In: The

8th annual symposium on combinatorial search will take place in EinGedi, the Dead Sea, Israel, from
June 11–13, 2015. The proceedings and workshop technical reports will be published by AAAI Press

Troutman BM (1979) Some results in periodic autoregression. Biometrika 66:219–228
Ursu E, Duchesne P (2009) On modelling and diagnostic checking of vector periodic autoregressive time

series models. J Time Ser Anal 30:70–96
Ursu E, Turkman KF (2012) Periodic autoregressive model identification using genetic algorithm. J Time

Ser Anal 33:398–405
VecchiaAV (1985a) Periodic autoregressive-moving average (PARMA)modelingwith applications towater

resources. Water Resour Bull 21:721–730
Vecchia AV (1985b) Maximum likelihood estimation for periodic autoregressive moving average models.

Technometrics 27:375–384
White M, Wen J, Bowling M, Schuurmans D (2015) Optimal estimation of multivariate ARMA models.

In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Periodic autoregressive models with closed skew-normal innovations
	Abstract
	1 Introduction and motivation
	2 Periodic autoregressive models with closed skew-normal innovations
	3 Inference method for estimation of parameter
	3.1 ML estimation
	3.2 Bayesian estimation
	3.3 MAP estimation

	4 Simulation studies
	4.1 Simulation 1
	4.2 Simulation 2

	5 Real data analysis
	6 Concluding remarks
	Appendix A: Proof of Theorem 3.1
	Appendix B. Algorithm CJJ
	References




