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Abstract
The matched case–control study is a popular design in public health, biomedical, and
epidemiological research for human, animal, and other subjects for clustered binary
outcomes. Often covariates in such studies aremeasuredwith error. Not accounting for
this error can lead to incorrect inference for all covariates in the model. The methods
for assessing and characterizing error-in-covariates in matched case–control studies
are quite limited. In this article we propose several approaches for handling error-
in-covariates that detect both parametric and nonparametric relationships between
the covariates and the binary outcome. We propose a Bayesian approach and two
approximate-Bayesian approaches for addressing error-in-covariates that is additive
and Gaussian, where the variable measured with error has an unknown, nonlinear
relationship with the response. The Bayesian approaches use an approximate latent
variable probit model. All methods are developed using the nonparametric method of
low-rank thin-plate splines. We assess the performance of each method in terms of
mean squared error and mean bias in both simulations and a perturbed example of 1–4
matched case-crossover study.

Keywords Bayesian methods · Latent variable probit · Mixed model ·
Thin-plate splines

1 Introduction

Case–control studies are retrospective studieswhere the response variableY is dichoto-
mous, e.g. presence or absence of some disease or injury. Subjects where Y = 1 are
called cases and subjects where Y = 0 are called controls. Often there are poten-
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tial confounding variables that are not of interest. Subjects with similar responses on
these variables are considered part of the same stratum S. Matching subjects based on
their stratum can reduce the effect of the confounding. A case–control study where 1
case is matched with M controls within the same stratum is called a 1–M matched
case–control study (Agresti 2002; Hosmer and Lemeshow 2000). A special case of
the matched case–control study is a matched case-crossover study where the stratum
is the subject (Woodward 2013). Matched case–control studies are popular in public
health, biomedical, and epidemiological applications, e.g., vaccine studies (Whitney
et al. 2006), organ transplant studies (Peleg et al. 2007), and studies on traffic safety
(Tester et al. 2004).

A semiparametricmodel formatched case–control studieswith covariatesmeasured
with error is,

P(Y = 1|X̃ , Z , S) = H−1[m∗(X̃ , Z) + q(S)], (1.1)

where H(·) is the link function, q(S) is the effect of stratum S,m∗(·, ·) is some function
of Z , the covariates measure without error, and X̃ , the covariates measured with error.
As matched case–control studies are retrospective studies, H is chosen to be the logit
link function since it is the only link function that can be used to recover the prospective
model (Scott and Wild 1997). Often the model is analyzed using conditional logistic
regression in order to avoid estimating q(S). An alternative approach, and the approach
we take in this paper, is to estimate the prospective model directly as a longitudinal
binary outcomes and model q(S) as a random effect.

There is someexistingworkon the error-in-covariates for thesemodels. Formatched
case–control studies analyzed using conditional logistic regression there is the work
of McShane et al. (2001), Guolo and Brazzale (2008) and the related work on partial
likelihood models of Huang and Wang (2000, 2001) which also account for func-
tional covariate relationships. There are structural approaches where the unknown true
covariate is parametrically modeled (Guolo 2008). These methods require knowledge
of the true exposure rate and themeasurement error distribution, including parameters.
Others use functional approaches where the unobserved true covariate is unknown,
but considered to be fixed and consequently no assumption is made regarding the dis-
tribution of the unobserved true covariate (Buzas and Stefanski 1996; Stefanski and
Carroll 1987). There are texts available for a thorough review of non-Bayesian and
Bayesian error-in-covariate methods (Carroll et al. 2006; Gustafson 2003).

There are some related Bayesian methodologies for measurement error in covari-
ates, but none of them handle the clustered binary outcomes of the problem we
confront. Berry et al. (2002) used smoothing splines and regression splines in the
classical measurement error problem to a linear model set up, but not to the important
case of binary data. Carroll et al. (2004) used Bayesian spline-based regression when
an instrument is available for all study participants. In addition, both papers assumed
that the unknown X is normally distributed. Sinha et al. (2010) proposed a semipara-
metric Bayesian method for handling measurement error under logistic regression
setting. They developed a flexible Bayesian method where not only is the relationship
between the disease and exposure variable treated semiparametrically, but also the
relationship between the surrogate and the true exposure is modeled semiparametri-
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cally. The two nonparametric functions aremodeled simultaneously viaB-splines. Ryu
et al. (2011) also proposed nonparametric regression analysis in a generalized linear
model (GLM) framework for data with covariates that are the subject-specific random
effects of longitudinalmeasurements. They proposed to applyBayesian nonparametric
methods including cubic smoothing splines or P-splines for the possible nonlinearity
and use an additive model setting. The posterior model space is explored through a
Markov chain Monte Carlo (MCMC) sampler. Bartlett and Keogh (2018) first gave
an overview of the Bayesian approach to handling covariate measurement error under
parametric model setting, and contrast it with regression calibration, arguably themost
commonly adopted approach. Bartlett and Keogh (2018) then demonstrated why the
Bayesian approach has a number of statistical advantages compared to regression cal-
ibration and demonstrate that implementing the Bayesian approach is usually quite
feasible for the analyst.

We adapt a fully Bayesian approach for covariate measurement error in semipara-
metric regression models for normal responses Y (Berry et al. 2002) for use with
matched case–control studies, which treats X̃ as a latent variable to be integrated over.
This is similar to the work of Sinha et al. (2005) who take a Bayesian approach to
error-in-covariates in conditional logistic linear regression models. We also develop
two approximate-Bayesian approaches which use a first order Laplace approximation
(Tierney and Kadane 1986) to marginalize X̃ out of the likelihood.

For estimating m∗(·, ·), we assume m∗(X̃ , Z) = m(x) + Zβz , where m(·) is a
smooth function that can be approximated by the user’s favorite spline method, and
where only one variable x is measured with error. Our focus will then be on a semi-
parametric mixed model approach for estimatingm(x)+ Zβz that addresses covariate
measurement error in x in 1–M matched case–control studies. Existing methods
for characterizing error-in-covariates in models with clustered binary outcomes can-
not estimate nonparametric relationships between the clustered binary outcome and
covariates measured with error. Hence, the method we propose are unified approaches
in their ability to handle error-in-covariates and detect both parametric and nonpara-
metric relationships between clustered binary outcome and error-in-covariates. The
Bayesian approaches are for computational convenience developed using a latent vari-
able probit model (Albert and Chib 1993) with a scaled linear predictor to approximate
a logitmodel (Camilli 1994). All are developed using low-rank thin-plate splines (Rup-
pert et al. 2003). We show through both simulations and a perturbed example of a 1–4
matched case–control study that the (fully) Bayesian approach performs similarly to
the approximate-Bayesian approaches, except under model misspecification, where it
tends to perform better.

This article is organized as follows: In Sect. 2, we describe a semiparametric mixed
model with error-in-covariates and estimate it using low-rank thin-plate splines. In
Sect. 3, we develop the approximate- and fully Bayesian approaches based on a latent
variable probit approximation to a logistic model. In Sect. 4, we conduct a simulation
study to compare our methods. In Sect. 5, we apply each approach to a 1–4 matched
case–case control study for juvenile aseptic meningitis. Section 6 contains concluding
remarks and possible future work.
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2 Semiparametric mixedmodel with error-in-covariates

We can approximate m(x) using some basis function method such that m(x) ≈
B(x)βB , where B(x) is a matrix of the basis function and βB are the basis coeffi-
cients. For the purposes of this paper using low-rank thin-plate splines (Ruppert et al.
2003) with order p (chosen to be some natural number) and knots (ξ1, ξ2, . . . , ξκ),
κ < N × (M + 1), chosen a priori. This produces the following linear model,

m(x) ≈ B(x)βB

B(x) = [X∗ L∗
p(x)

]
,

βB = [β∗
x β∗

L

]T

X∗ = [1 x . . . x p−1
]
,

L∗
p(x) = [|x − ξ1|2p−1 |x − ξ2|2p−1 . . . |x − ξκ |2p−1

]
.

The penalty on β∗
L is treated as the prior in a Bayesian framework. For low-rank

thin-plate splines this is N (0, σ 2
β�−1), where the the (r , c)th element of the penalty

matrix � is |ξr − ξc|2p−1. However, � is not positive definite, and thus an invalid
covariance matrix. To address this, singular value decomposition is used to find
(�−1/2)T (�−1/2) = �−1. We scale �1/2β∗

L = βL and L∗
p(x)�

−1/2 = L p(x) so
that L p(x) is an orthogonal basis with prior distribution (i.e. penalty) N (0, σ 2

β I ) on
βL (Crainiceanu et al. 2005).

For error-in-covariates in matched case–control studies, we assume that we observe
wi jk = xi j +ui jk , however xi j is unobserved, themeasurement error ui jk ∼ N (0, σ 2

u ),
i = 1, 2, . . . , N (the number of strata), j = 1, 2, . . . , M + 1 (the number of subjects
in each strata), and k = 1, 2, . . . , Ki j is the number of replicated measurements for
subject j in strata i . In order to properly estimate σ 2

u , Ki j must be greater than or equal
to 2 for at least one i j .

To ease computations we approximate the logistic link function by using a latent
variable probit model (Albert and Chib 1993) where the the linear predictor is scaled
by

√
π/8 (Camilli 1994). The model is as follows,

yi j |xi j , Zi j , Si ∼ Bernoulli(πi j ),

πi j = logit−1(ηi j ),

≈ 	(li j ),

li j |yi j ∼
{
Normal+

(
ηi j

√
π/8, 1

)
, yi j = 1

Normal−
(
ηi j

√
π/8, 1

)
, yi j = 0

,

ηi j = m(xi j ) + Zi jβz + q(Si ),

≈ X∗
i jβ

∗
x + L p(xi j )βL + Zi jβz + q(Si ),

q(Si ) ∼ Normal(0, σ 2
q ),

βL ∼ Normal(0, σ 2
β ),

wi jk |xi j ∼ Normal(xi j , σ
2
u ),
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where l is a latent variable, Normal+(·, 1) and Normal−(·, 1) are truncated normal
distributions, to the left and to the right of zero, respectively.

3 Methods

We develop a fully Bayesian (FB) approach and two approximate-Bayesian (AB)
approaches using first order Laplace approximation in Sects. 3.1 and 3.2, respectively.

3.1 Fully Bayesian approach

To improve computations, we let the intercept β0 be absorbed into q(S). We work
with Xi j , which is X∗

i j without the column of ones, and βx , which is β∗
x without

β0. The response Y depends on the regression parameters through l. Thus, a natural
parametrization of the likelihood for modeling additive Gaussian measurement error
is as follows,

L(W , l|Y , x, Z , β, σ 2
u ) ∝

N∏

i=1

M+1∏

j=1

{

Normal
[
li j ; ηi j

√
π/8, 1

]
×
[
δ(li j≥0)δ(yi j=1)

+ δ(li j<0)δ(yi j=0)

]

×N (Wi j ; xi j , σ 2
u IKi j×Ki j )

}

ηi j = Zi jβz + Xi jβx + L p(xi j )βL + q(Si ).

As mentioned previously, the prior on βL should be chosen to be π(βL |σ 2
β ) ∼

N (0, σ 2
β ), where σ 2

β is a hyperparameter. In practice, the prior distributions placed
on x and on q(S) should be chosen to reflect the data collected. For instance, a flexible
approach might model x using a mixture of normals (Carroll et al. 1999). For this arti-
cle, we choose π(x |μx , σ

2
x ) ∼ N (μx , σ

2
x ) and π [q(S)|β0, σ

2
q ] ∼ N (β0, σ

2
q ), where

μx ,β0,σ 2
x , andσ 2

q are hyperparameters. Theprior distributions for the other parameters
are: π(σ 2

u ) ∼ IG(σ 2
u ; Au, Bu), and π [βz, βx ] ∼ N (βz, βx ; gβ, t2β). Finally, we take

the prior distributions for the hyper parameters as follows: π(μx ) ∼ N (μx ; gμ, t2μ),
π(σ 2

x ) ∼ IG(σ 2
x ; Ax , Bx ), π(σ 2

β ) ∼ IG(σ 2
β ; Aσ 2

β
, Bσ 2

β
), π(β0) ∼ N (β0; g0, t20 ), and

π(σ 2
q ) ∼ IG(σ 2

q ; Aq , Bq). Both the likelihood and prior structure are adapted from
existing work where Y is continuous (Berry et al. 2002), which defaults to normal
priors on mean-like parameters and inverse-gamma priors on variance parameters. In
practice, careful choice of an informative prior structure can further improve infer-
ence. For example, it may be more appropriate to restrict the support of the prior on
σu to be less than the value of σw since σw should be greater than σu when errors are
additive and Gaussian.
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We use Metropolis–Hastings (Metropolis et al. 1953; Hastings 1970) and Gibbs
(Geman and Geman 1984) algorithms to sample the joint posterior of these param-
eters using Markov chain Monte Carlo (MCMC). The joint posterior distribution of
x uses a Metropolis–Hastings step, while all other parameters can be sampled using
Gibbs steps. The conditional posterior distributions for each parameter along with the
proposal distribution for xi j can be found in Appendix A.

3.2 Approximate-Bayesian approaches

Updating each xi j via Metropolis–Hastings can be time consuming computationally,
especially for large N × M . We propose two approximate-Bayesian (denoted AB1
and AB2) approaches to reduce computation time, by integrating each xi j out of the
conditional likelihood a priori. This integration is intractable due to the spline portion
of the linear predictor.We use a first order Laplace approximation (Tierney andKadane
1986) to solve the integration.

For AB1, we place an improper flat prior on xi j and find:

∫
L(li j ,Wi j |Yi j , xi j , Zi j , S, β, σ 2

u ) dxi j ≈ L(li j |Yi j , xi j = w̄i j ·, Zi j , S, β),

where w̄i j · = K−1
i j

∑Ki j
k=1 wi jk . See Appendix 2.1 for derivation.

For AB2, we place prior a normal prior on xi j (as in Sect. 3.1) and find:

∫
L(li j ,Wi j |Yi j , xi j , Zi j , S, β, σ 2

u )N (xi j |μx , σ
2
x ) dxi j

≈ L(li j |Yi j , x = w̃i j ·, Zi j , S, β),

where w̃i j · = Ki j w̄i j ·σ 2
x +μxσ

2
u

Ki jσ
2
x +σ 2

u
. See Appendix 2.1 for derivation. The parameters μx ,

σ 2
x , and σ 2

u need to be estimated a priori. We recommend setting each to the MLE:

μx = w̄···,

σ 2
u =

N∑

i=1

M+1∑

j=1

Ki j∑

k=1

[N (M + 1)(Ki j − 1)]−1(wi jk − w̄i j ·)2, and

σ 2
x =

N∑

i=1

M+1∑

j=1

[N (M + 1) − 1]−1(w̄i j · − μx )
2 − σ 2

u .

Both approximate-Bayesian methods produce simple ways of handling error-in-
covariates, equivalent to using a plug-in estimatorw∗ and proceeding as if no covariate
measurement error. To be clear, we use the following likelihood in the approximate-
Bayesian analysis:
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L(Y |l, w∗, Z , β) ∝
N∏

i=1

M+1∏

j=1

N [li j ; ηw,i j
√

π/8, 1]

× [δ(li j≥0)δ(yi j=1) + δ(li j<0)δ(yi j=0)],
ηw,i j = Zi jβz + W ∗

i j ·βx + L p(w
∗
i j ·)βL + q(Si ),

where w∗
i j · = w̄i j · for AB1 and w∗

i j · = mw̄i j ·σ 2
x +μxσ

2
u

Ki jσ
2
x +σ 2

u
for AB2, and W ∗

i j · =
(w∗

i j ·, w∗2
i j ·, . . . , w∗p−1

i j · ).
The prior structure we adopt for the rest of this model, i.e. β, q(S), and their

hyperparameters, is the same as in Sect. 3.1. We then obtain the same conditional
posteriors for them as well.

4 Simulation study

To assess the adequacy of each approach for correcting for covariate measurement
error, we conducted a simulation study to address performance in terms of mini-
mizing both the mean squared error (MSE) and the mean bias. We considered the
fully Bayesian approach of Sect. 3.1 and the two approximate-Bayesian approach of
Sect. 3.2. In Sect. 4.1 we address model performance when the assumptions concern-
ing the covariate measurement error are met. In Sect. 4.2 we address the robustness of
each method when there is model misspecification error in the distribution of x and
u. In Sect. 4.3 we describe the results.

For all simulations we set Ki j = 2 for all i j , M = 4. We look at only a single
covariate z measured without error, with βz = −0.5. We simulate z ∼ N (0, 1) and
q(S) ∼ N (0, 0.12). We look at two functions m(x) = x2/6 and m(x) = sin(πx/2).
The quadratic function was chosen for its simplicity and because quadratic models are
usually fit parametricallywith a linear term,while the sinusoidal patternwas chosen for
its similarity to the relationship found in our juvenile aseptic meningitis data described
in Sect. 5. To generate the clustered binary outcomes, sets of 1+ M binary outcomes
were generated from P(Y = 1|x, z, S, βz) = 	[m(x) + zβz + q(S)] until a set is
found such that

∑1+M
j=1 Y j = 1. This was repeated for each of the N strata. And again

repeated to produce 100 datasets for each simulation setup.
It should be noted that the choice of probit link function for data generation is

arbitrary. We use the logit link function for analysis because the estimated parameters
are the same whether the data were collected prospectively or retrospectively, and not
because said estimated parameters will be from the “true model,” if such a thing is
knowable.

For each Bayesian approach, we use the same prior structure as noted in
Sect. 3.1, where {Au, Bu, Ax , Bx , Aσ 2

β
, Bσ 2

β
, Aq , Bq} = 0.1, {gμ, gβ, g0} = 0, and

{t2μ, t2β, t20 } = 52. For estimation, we use low-rank thin-plate splines with κ = 10
knots, chosen at evenly spaced percentiles of w̄, and with order p = 2, for

all methods. The mean squared error
∑N

i=1
∑M+1

j=1

(
η̂

(·)
i j − η̂

(T )
i j

)2
and mean bias
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∑N
i=1
∑M+1

j=1

(
η̂

(·)
i j − η̂

(T )
i j

)
is computed for each simulation dataset, where η̂(·) is the

estimated linear predictor using one of the proposedmethods, and η̂(T ) is the estimated
linear predictor for the fully Bayesian approach with perfect measurements for x .

For all simulations, all Bayesianmethodswere run for 10000 iterationswith the first
2000 treated as burn-in. These values were determined graphically from the results
of repeated test cases for each simulation combination. Every 10th iteration was kept
after burn-in. Acceptance rates for the xi j s averaged around 0.4 across all simulations.
Simulations were run using Matlab 2012a (MATLAB 2012) and GNU Octave (Eaton
et al. 2008). For code, please contact the authors.

4.1 Correctly specifiedmodel

In simulations where the measurement error distribution and distribution of x are
correctly specified, we generate each xi j from a standard normal and each ui jk such
that σu = {0.1, 0.3, 0.5}, corresponding to small, large, and very large amounts of
measurement error when σx = 1 (Parker et al. 2010). We also consider small and
large sample situations with the number of strata N = {25, 100}.

4.2 Model mis-specification

We consider three cases of model misspecification, one where only the distribution of
x is misspecified, one where only the distribution of u is misspecified, and one where
the distribution of both x and u are misspecified:

• 23/2 × (x + 4) ∼ χ2
4 and u ∼ N (0, σu = 0.5)

• x ∼ N (0, 1) and u ∼ Laplace
[
0, scale = 2−3/2

]

• 23/2 × (x + 4) ∼ χ2
4 and u ∼ Laplace

[
0, scale = 2−3/2

]

The misspecified distributions are chosen such that σu/σx = 0.5 for all cases. For
this set, we consider a moderate sample size with the number of strata N = 50.

4.3 Simulation results

Tables 1 and 2 present the results for when the distribution of x and u are cor-
rectly specified, for the quadratic m(x) = x2/6 and sinusoidal m(x) = sin(πx/2)
cases, respectively. We observe that for the quadratic cases, no method consistently
reduces the bias or MSE over the other. However, it should be noted that the fully
Bayesian approach is never the worst at reducing MSE. For the sinusoidal cases the
fully Bayesian approach is worst at reducing MSE in one case, where N = 100 and
σu = 0.1, but it is the best choice for reducing MSE and bias for all cases where
σu = {0.3, 0.5}. These results suggest that the fully Bayesian is at least as good as
both approximate-Bayesian approaches, particularly at reducing MSE, and it is not
clear which approximate-Bayesian approach is the better that the other.

Tables 3 and 4 present the results for when the distribution of x and u are incorrectly
specified, for the quadratic m(x) = x2/6 and sinusoidal m(x) = sin(πx/2) cases,
respectively. We observe that for the quadratic cases, the fully Bayesian approach
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Table 1 The MMB×102 (mean
mean bias) and the MMSE×102

(mean mean squared error) of
the linear predictors η̂(·) for the
case where m(x) = x2/6 for
comparing the
approximate-Bayesian methods
with flat (AB1) and normal
(AB2) prior on x and the fully
Bayesian method (FB)

σu N AB1 AB2 FB

0.1 25 MMB 0.0812 − 0.0268 − 0.3399

MMSE 0.8200 0.7881 0.7530

100 MMB 0.0795 0.1776 0.0236

MMSE 0.3634 0.3899 0.3827

0.3 25 MMB − 0.2167 − 0.5135 − 1.0846

MMSE 4.8584 5.0369 4.9435

100 MMB 0.2223 − 0.0003 − 0.0768

MMSE 1.9779 1.9631 1.9111

0.5 25 MMB − 0.2700 0.2242 − 2.0456

MMSE 10.8233 10.3909 10.7041

100 MMB 0.3681 0.4187 − 0.2370

MMSE 4.5485 4.4818 4.3825

Table 2 The MMB×102 (mean
mean bias) and the MMSE×102

(mean mean squared error) of
the linear predictors η̂(·) for the
case where m(x) = sin(πx/2)
for comparing the
approximate-Bayesian methods
with flat (AB1) and normal
(AB2) prior on x and the fully
Bayesian method (FB)

σu N AB1 AB2 FB

0.1 25 MMB 0.1143 0.2341 − 0.1522

MMSE 1.6226 1.5989 1.6203

100 MMB 0.1482 0.2456 0.1580

MMSE 1.1938 1.1994 1.2200

0.3 25 MMB 2.1800 2.0676 0.3136

MMSE 10.8182 10.7291 10.4553

100 MMB 1.6864 1.6714 0.5713

MMSE 8.2323 8.2445 7.8472

0.5 25 MMB 3.6901 4.1200 0.1591

MMSE 26.6599 26.3365 24.6970

100 MMB 3.7132 3.8774 1.2278

MMSE 18.3059 18.3925 17.4123

Table 3 The MMB×102 (mean mean bias) and the MMSE×102 (mean squared error) of the linear predic-
tors η̂(·) for assessing robustness of the approximate-Bayesian methods with flat (AB1) and normal (AB2)
prior on x , and the fully Bayesian method (FB) to model misspecification of the distribution of x and u
when m(x) = x2/6

Distribution of X Distribution of U AB1 AB2 FB

Normal Laplace MMB 0.1361 0.2477 − 0.9131

MMSE 6.9562 6.8001 6.7604

χ2 Normal MMB − 0.2797 − 0.1178 − 1.2173

MMSE 7.4255 7.1806 6.8872

χ2 Laplace MMB − 0.1482 − 0.1652 − 1.3037

MMSE 6.8544 6.6766 6.3983
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Table 4 The MMB×102 (mean mean bias) and the MMSE×102 (mean mean squared error) of the linear
predictors η̂(·) for assessing robustness of the approximate-Bayesian methods with flat (AB1) and normal
(AB2) prior on x , and the fully Bayesian method (FB) to model misspecification of the distribution of x
and u when m(x) = sin(πx/2)

Distribution of X Distribution of U AB1 AB2 FB

Normal Laplace MMB 3.7703 3.9309 0.6109

MMSE 21.5896 21.3823 20.1694

χ2 Normal MMB 3.2538 3.4483 − 0.4529

MMSE 20.7194 20.7156 19.6295

χ2 Laplace MMB 3.0307 3.1729 − 0.1932

MMSE 19.9894 19.9152 18.6234

provides better reduction in MSE than both the approximate-Bayesian approaches for
all misspecification types. Similarly, approximate-Bayesian approach AB2 dominates
AB1 in terms ofMSE. The opposite is observed for bias, where approximate-Bayesian
approaches provide better reduction than the fully Bayesian for all misspecification
types, though one approximate-Bayesian approach does not dominate the other. How-
ever, this is not true for the sinusoidal cases where the fully Bayesian approach reduces
both the bias and MSE more than the approximate-Bayesian approaches for all mis-
specification types. Approximate-Bayesian approach AB1 dominates AB2 in terms
of bias, however AB2 dominates AB1 in terms of MSE. These results suggest the
approximate-Bayesian approaches might be at least as good at reducing bias, how-
ever the fully Bayesian approach is at least as good at reducing MSE, both when the
distribution of x or u is misspecified.

5 Application: juvenile aseptic meningitis data

We consider the aseptic meninitis data of ADD CITATION. Aseptic meningitis is a
viral infection that causes inflammation of the membrane that covers the brain and
spinal chord. It is rarely fatal, but can take about two weeks to recover from fully.
The study design was for a 1–4 case-crossover study with 211 subjects (i.e., strata).
Case-crossover studies are a special case of matched case–control studies where the
stratum is the subject. The turbidity of drinking water (i.e., the amount of suspended
matter in the water) is believed to affect the risk of aseptic meningitis. For this study
water turbidity was measured by a nephelometer. A nephelometer shoots a beam of
light at water then measures the scattered light. It then uses a formula to determine the
turbidity, measured in nephelometric turbidity units (NTU). The device is susceptible
to miscalibration, and can be thrown off by air bubbles that may make water that does
not actually contain any suspended particles appear cloudy. This study design was
not setup for multiple measurements of NTU, so for illustrative purposes we treat
NTU measurements collected on two separate samples dates as error prone measure-
ments of NTU from the sample data of interest. These measurements are centered and
scaled across dates. We use the same model specification as used in our simulations.
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Fig. 1 The posterior-mean fits of m(x) for the aseptic meningitis data, where x is centered and scaled
Nephelometric Turbidity Units (NTU). The black dots are the centered (across all methods) fitted values
using approximate-Bayesian method 1 (AB1) evaluated over a grid of NTU values. Similarly, the black
circles are for approximate-Bayesian method 2 (AB2) and the black squares are for the fully Bayesian
method (FB)

For Z we use the centered and scaled body temperature of the subjects in degrees
Celsius.

Figure 1 shows a plot of the posterior mean fitted value (centered across method)
for m(·) using the approximate-Bayesian and fully Bayesian methods. The choice of
method leads to dramatically different inference concerning the effect of NTU on the
probability of acquiring aseptic meningitis, primarily for large measurements of NTU.
By using the fully Bayesian method, we do a much better job capturing the decreasing
effect of NTU for large values of NTU.

The posterior mean of σu from the fully Bayesian model is 0.8854 with a 90%
equal tail credible interval of [0.8548, 0.9176]. Given σx ≈ σw̄ = 0.7788, we are in
a large measurement error scenario with σu/σx ≈ 1.1369. From Fig. 2 we can see
that the distribution of NTU is not normally distributed. As a result, we made a model
misspecification error by placing a normal prior on the distribution of NTU. Given
these conditions and our simulations results, we believe the fully Bayesian approach
is the best approach for this data.

6 Discussion

We have proposed a fully Bayesian and two approximate-Bayesian approaches for
handling a semiparametric mixed model with error-in-covariates for matched case–
control studies. These approaches are developed using low-rank thin-plate splines
and a latent variable probit model. The strength of these methods is that they can
handle both error-in-covariates and explain nonlinear relationships between matched
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Fig. 2 Histogram of w̄, the subject-specific mean measurement of Nephelometric Turbidity Units (NTU),
from the aseptic meningitis data. The black line is a fit from a normal distribution. The measurement for
NTU are somewhat symmetric and are unimodal, but normality does not hold

binary outcomes and covariates measured with error. Additionally, we have shown
these methods exhibit some robustness to model misspecification of x and u. Based
on our knowledge, there is no existing methodology that has been shown to do these
in matched case–control studies.

The fully-Bayesian approach treats x as a latent variable and then integrates it
out. The approximate-Bayesian approaches use a first order Laplace approximation
to the likelihood, marginalizing out x . Deciding which approach to take, AB1, AB2,
or FB, can be challenging as it appears somewhat to depend on what the unknown
function m(x) is and how well our assumptions are met about the normality of the
distribution of x and of u. When all assumptions are met, the fully Bayesian approach
tended to perform best more often. However, improvements were often small and
not consistent across sample sizes or size of measurement error. As a result, it may
not be worth the additional computation for large datasets when there is a reasonable
chance it will not actually lead to an improvement. The stronger argument for using
the fully Bayesian method is made by its performance under model misspecification,
particularly in terms of MSE. If you believe the adage that ‘All models are wrong...,’
then this is the more compelling argument for using the fully Bayesian method, as
it outperformed the approximate methods in almost every scenario in terms of mean
bias, and every scenario in terms of MSE. Though, again these improvements were
often only of modest size. A user may still feel that a faster solution has greater utility
than a more accurate one. It is up to the user to consider what is best for their own
project.

We note that our approach was developed for the univariate x . Our approach
can be generalized for several covariates x measured with error into an additive
model,
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m∗(X̃ , Z) =
R1∑

r1=1

mr1(xr1) +
R2∑

r2=1

mr2(zr2),

where there are R1 covariatesmeasuredwith error and R2 covariatesmeasuredwithout
error. Generalization to a nonadditive model will be an interesting and challenging
problem because of the unknown interaction structure among unknown covariates.
We illustrated our technique using low-rank thin-plate splines, however, it is straight
forward to change the spline basis to any other where the smoothness penalty can be
thought of as a N (0, σ 2

β ) prior on βL the spline coefficients (Ruppert et al. 2003).
We assumed that the measurement error u was additive and normally distributed.

This assumption creates a computational convenience, as we can choose an inverse-
gamma conjugate prior for σ 2

u so that it can be sampled in a Gibbs step. If we change
the distributional assumption on u, this convenience will be lost. More complicated
measurement error distributions that may depend on x or Y are worthwhile future
research problems.Another choice of computational conveniencewas to use a rescaled
latent variable probit model to approximate the logistic model. This validity of this
choice depends the quality of this approximation and the user’s personal loss function
for tolerating this approximation. However, we gained the ability to use conjugate
normal priors on βx , βz , βL and q(S) and sample them using Gibbs steps. Changing
the link function would also remove this convenience.

Finally, we assumed the distribution of x was normal. In practice this might not
be the case, and was not the case for our data analysis example. We showed the
fully and approximate-Bayesian methods were somewhat robust to violations of this
assumption, as well as assumptions about the distribution of u. However, flexible
methods for properlymodeling the distribution of x and u should improve performance
of Bayesian error-in-covariates models.
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Appendix

A Marvok chain Monte Carlo details for implementation

The full poserior conditional distributions are as follows:

• Full conditional for xi j is:

[xi j |−] ∝L(li j ,Wi j |Yi j , xi j , Zi j , β, q(S), σ 2
u ) × N (xi j ;μx , σ

2
x ),

• Full conditional for σ 2
u is:
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[σ 2
u |−] ∼IG

⎡

⎣σ 2
u ; (1/2)

N∑

i=1

M+1∑

j=1

Ki j + Au ,

N∑

i=1

M+1∑

j=1

(Wi j − xi j )
T (Wi j − xi j )/2 + Bu

⎤

⎦ ,

• Full conditional for μx is:

[μx |−] ∼N

⎧
⎨

⎩
μx ;

⎡

⎣t2μ

N∑

i=1

M+1∑

j=1

xi j + gμσ 2
x

⎤

⎦
/

[N (M + 1)t2μ + σ 2
x ],

t2μσ 2
x /[N (M + 1)t2μ + σ 2

x ]
⎫
⎬

⎭
,

• Full conditional for σ 2
x is:

[σ 2
x |−] ∼IG[σ 2

x ; N (M + 1)/2 + Ax , (x − μx )
T (x − μx )/2 + Bx ],

• Full conditional for (βx , βz) is:

[βx , βz |−] ∼MN {βx , βz;
[(X , Z)T (X , Z) + I/t2β ]−1(X , Z)T [l − L p(x)βL − Jq(S)],
[(X , Z)T (X , Z) + I/t2β ]−1},

• Full conditional for βL is:

[βL |−] ∼MN {βL ;
[L p(x)

T L p(x) + I/σ 2
β ]−1L p(x)

T [l − Xβx − Zβz − Jq(S)],
[L p(x)

T L p(x) + I/σ 2
β ]−1},

• Full conditional for σ 2
β is:

[σ 2
β |−] ∼IG(σ 2

β ; κ/2 + Aβ, βT
L βL/2 + Bβ),

• Full conditional for q(S) is:

[q(S)|−] ∼MN [q(S);
(J T J + I/σ 2

q )−1{β0/σ
2
q + J T [l − Xβx − Zβz − L p(x)βL ]},

(J T J + I/σ 2
q )−1],
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• Full conditional for σ 2
q is:

[σ 2
q |−] ∼IG{σ 2

q ; N/2 + Aq , [q(S) − β0]T [q(S) − β0]/2 + Bq},

• Full conditional for β0 is:

[β0|−] ∼N

{

β0;
[
t20

N∑

i=1

q(Si ) + g0σ
2
q

]
/(Nt20 + σ 2

q ), t2qσ 2
q /(Nt2q + σ 2

q )

}

,

where J is a N (M+1)×N matrix defined by theKronecker product IN×N⊗1(M+1)×1.
When choosing a proposal distribution for xi j , we followed Berry et al. (2002)

and used x (t)
i j ∼ N (x (t−1)

i j , 22σ 2(t−1)

u /Ki j ), where 2σu/
√
Ki j is chosen as the proposal

standard deviation because it covers about 95% of the sampling distribution for w̄i j · =
K−1
i j

∑Ki j
k=1 wi jk . Alternatively, an automatically tuned proposal distribution (Shaby

and Wells 2010) could be used to ensure optimal acceptance rates.

B Derivation of Laplace approximations

2.1 First order Laplace approximation for approximate-Bayesianmethods

The goal of this section is to show using first order Laplace approximation that,

∫
L(l,W |Y , x, Z , S, β, σ 2

u ) dx ≈ L(l|Y , x = w̄, Z , S, β).

Note that:

L(li j ,Wi j |Yi j , xi j , Zi j , S, β, σ 2
u ) = L(li j |Yi j , xi j , Zi j , Si , β) × N (Wi j ; xi j , σ 2

u )

= L(li j |Yi j , xi j , Zi j , Si , β)(2πσ 2
u )Ki j /2

× exp[−(Wi j − xi j )
T (Wi j − xi j )/(2σ

2
u )].

We will write A(xi j ) = L(li j |Yi j , xi j , Zi j , β)(2πσ 2
u )−Ki j /2 and h(xi j ) = (Wi j −

xi j )T (Wi j − xi j )/(2σ 2
u ). It is easy to show h(xi j ) has unique maximum w̄i j ·, since

h(·) is a quadratic form, and that the second derivative h′′(xi j ) = 1/σ 2
u , both for all i j .

Tierney and Kadane (1986) show that we can approximate
∫
A(xi j ) exp[−h(xi j )] dxi j

by A(x̃) exp[−h(x̃)]
√

2π
Ki j h′′(x̃) , where x̃ is the value that maximizes h(·). We then get:

∫
A(xi j ) exp[−h(xi j )] dxi j ≈ L(li j |Yi j , w̄i j , Zi j , Si , β)

[
Ki j (2πσ 2

u )Ki j−1
]−1/2

× exp[−(W − w̄)T (W − w̄)/(2σ 2
u )]

∝ L(li j |Yi j , w̄i j , Zi j , Si , β).
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It is then clear that:

∫
L(l,W |Y , x, Z , S, β, σ 2

u ) dx

=
N∏

i=1

M+1∏

j=1

∫
L(li j ,Wi j |Yi j , xi j , Zi j , Si , β, σ 2

u ) dxi j

≈
N∏

i=1

M+1∏

j=1

{
L(li j |Yi j , w̄i j , Zi j , Si , β)

[
Ki j (2πσ 2

u )Ki j−1
]−1/2

× exp[−(Wi j − w̄i j )
T (Wi j − w̄i j )/(2σ

2
u )]
}

∝
N∏

i=1

M+1∏

j=1

L(li j |Yi j , w̄i j , Zi j , β)

= L(l|Y , w̄, Z , β).

It follows from a similar argument that,

∫
L(l,W |Y , x, Z , S, β, σ 2

u )N (x |μx , σ
2
x ) dx

≈ L

(
l|Y , x = K w̄σ 2

x + μxσ
2
u

Kσ 2
x + σ 2

u
, Z , S, β

)
.

2.2 First order Laplace for E2 approach to E-step

Consider now where the goal is to use first order Laplace approximation to find:

E{log[L(Y |x, Z , S, β)]} =
∫
log[L(Y |x, Z , S, β)]N (W ; x, σ 2

u )N (x;μx , σ
2
x ) dx,

≈ log[L(Y |x̃, Z , S, β)],

x̃i j = Ki j w̄i j ·σ 2
x + μxσ

2
u

Ki jσ 2
x + σ 2

u
.

We can rewrite the integration as follows:

∫
log[L(Yi j |xi j , Zi j , Si , β)]N (Wi j ; xi j , σ 2

u )N (xi j ;μx , σ
2
x ) dxi j

=
∫
log[L(Yi j |xi j , Zi j , Si , β)](2πσ 2

u )−Ki j /2

× exp

⎡

⎣−0.5

Ki j∑

k=1

(wi jk − xi j )
2/σ 2

u

⎤

⎦
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× (2πσ 2
x )−1/2 exp

[
−0.5(xi j − μx )

2/σ 2
x

]
dxi j

≈ log[L(Y |x̃, Z , S, β)],
=
∫

A(xi j ) exp
[−h(xi j )

]
dxi j ,

where:

A(xi j ) = log[L(Yi j |xi j , Zi j , Si , β)](2πσ 2
u )−Ki j /2(2πσ 2

x )−1/2, and

h(xi j ) =
∑Ki j

k=1(wi jk − xi j )2 + (xi j − μx )
2

2σ 2
x σ 2

x
.

It should be clear since h(xi j ) is the sum of two quadratic functions of xi j , that the

unique maximum of h(·) is the Bayes estimator x̃i j = Ki j w̄i j ·σ 2
x +μxσ

2
u

Ki jσ
2
x +σ 2

u
. Also the second

derivative h′′(xi j ) = 1
σ 2
x σ 2

u
. It follows then that:

∫
A(xi j ) exp

[−h(xi j )
]
dxi j ≈ A(x̃i j ) exp

[−h(x̃i j )
]
√
2πσ 2

u σ 2
x

Ki j + 1
,

∝ log[L(Yi j |x̃i j , Zi j , Si , β)].

It follows from a similar argument as in Appendix 2.1 that:

E{log[L(Y |x, Z , S, β)]} ≈ log[L(Y |x̃, Z , S, β)].
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