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Abstract
The mixture of factor analyzers (MFA) model, by reducing the number of free 
parameters through its factor-analytic representation of the component covariance 
matrices, is an important statistical model to identify hidden or latent groups in 
high dimensional data. Recent approaches to extend the approach to skewed data 
or skewness in the latent groups have been examined in a frequentist setting where 
there are some known computational limitations. For these reasons we consider a 
Bayesian approach to the restricted skew-normal mixtures of factor analysis MFA 
model. We examine the performance and flexibility of the approach on real datasets 
and illustrate some of the computational advantages in a missing data setting.

Keywords Bayesian analysis · Gibbs sampling · Mixture of factor analysis model · 
Restricted skew-normal distribution

1 Introduction

Factor analysis (FA) models and finite mixture (FM) models are both popular statis-
tical techniques which have wide application to the analysis of data and extraction of 
hidden or latent variables. In a FA model, the covariance relationship between vari-
ables can be explained by a fewer number of latent variables or latent factors which 
can be used to simplify analysis in high-dimensional settings or establish common 
themes or constructs (e.g., in psychometric testing). The FA model has wide appli-
cations in various fields such as social sciences, biology, medical sciences and epi-
demiological studies. An FM model is also a latent variable model and can repre-
sent the presence of subpopulations within an overall population, without requiring 
that an observed data set should identify the sub-population to which an individual 
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observation belongs [for further details see e.g. McLachlan and Peel (2000) and ref-
erences therein and Lee and McLachlan (2013a, b)].

A combination of the FA and FM models based on the Gaussian distribution 
was first studied by Hinton et al. (1997) and Ghahramani and Hinton (1997), com-
monly called the Gaussian mixture of factor analysis (MFA) model. However, in 
many applied problems, the data may be moderately or severely skewed which can 
result in seriously misleading inference even for small departures from normality 
(Wall et al. 2012). In practice, the imposition of symmetry in the components of the 
mixture models may be a fairly restrictive condition. For example Lin et al. (2007), 
Maleki and Arellano-Valle (2017) and Maleki et al. (2018a), argue the normal mix-
ture model tends to over-fit when additional components are included to capture the 
skewness and, sometimes, increasing the number of components may lead to dif-
ficulties in computations (e.g. small number of observations belonging to a group) 
and interpretation of results (See discussion and results in Murray et al. 2014).

In recent years, there has been much research on asymmetrical families of dis-
tributions which contain the Gaussian family as a special (symmetrical) case. For 
example, the class of Skew-Normal distribution studied by Azzalini (1985), Azzalini 
and Dalla-Vale (1996), Azzalini and Capitanio (1999) and Arellano-Valle and Azza-
lini (2006), have wide application in many statistical models (for more asymmetrical 
distributions and their applications see Azzalini 2014). In particular, Azzalini and 
Dalla-Vale (1996) and Sahu et al. (2003) studied the so called restricted multivari-
ate skew-normal (rMSN or rSN) distribution which is suitable for analyzing skewed 
multivariate data as well as symmetrically distributed. Recently, Lin et  al. (2016) 
applied the rMSN distribution to the structure of the MFA model, hereafter called 
the mixtures of skew-normal factor analyzers (MSNFA) model. In the rMSN distri-
bution, skewness is controlled by a vector of skewness parameters multiplied by a 
common skewing variable in its convolution type representation. An alternative for-
mulation of skew distributions is through the use of so called unrestricted forms in 
which there is no reliance on a common skewing variable and skewness is allowed 
to be represented in more than one direction [in contrast to a single direction for the 
restricted case; see e.g. Lee and McLachlan (2013b), Maleki et al. (2018b)]. How-
ever, this extra flexibility can lead to identifiability issues (the skewness matrix is 
not rotation invariant) and there are also issues in terms of computational tractabil-
ity. These forms and computational issues can be explored in future research.

In the MSNFA model the latent component factors follow the family of rMSN 
distributions in an attempt to model the data adequately in the presence of skewed 
sub-populations. The MSNFA model has a novel approach to dimension reduction 
and representing appropriately non-normal data. Lin et al. (2016) used an EM-type 
algorithm to obtain the maximum likelihood (ML) estimates of the proposed model 
parameters and estimated factor scores by products within the estimation procedure.

Most estimation methods for MFA models are classical inferences based on the 
maximum likelihood (ML) estimates. However, the likelihood function of the MFA 
and FM models can be unbounded for some samples and this is a problematic issue, 
so some researchers have considered the Bayesian approach to estimate the Gauss-
ian MFA model. Bishop (1999) proposed a partial Bayesian framework to the mix-
ture of principal component analyzer (PCA), which is an isotropic version of the 
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MFA based on the Gaussian distribution. Bishop (1999) used a maximum a-poste-
riori (MAP) method of estimation by using a simple Gaussian prior for the factor 
loadings, and also by using approximate Bayesian inference, derived an algorithm 
for estimation of the hyper-parameters (parameters of the prior). Ghahramani and 
Beal (2000) proposed an efficient and deterministic variational approximation to 
full Bayesian integration of Gaussian MFA model parameters. Ustugi and Kuma-
gai (2001) introduced a full prior on all parameters of the Gaussian MFA model by 
using conjugate priors.

More recent extensions to the Gaussian MFA model in a Bayesian framework 
include a matrix variate t distribution for the factor scores (Ando 2009) and nor-
mal/independent distributions for the error term to provide for outliers and a robust 
specification (Lee and Xia 2008a). A number of other extensions have focused on 
semi-parametric models (Yang and Dunson 2010; Lee and Xia 2008b; Song et al. 
2010; Murray et  al. 2013), non-parametric approaches (Chen et  al. 2010; Paisley 
and Carin 2009) and allowing for flexible prior distributions (Ghosh and Dunson 
2009). Other extensions have focused on exploiting the use of prior distributions 
or information for sparse applications in high-dimensional settings (Carvalho et al. 
2008; Knowles and Ghahramani 2007; Paisley and Carin 2009; Bhattacharya and 
Dunson 2011) and in a dynamic time series context (Chen et al. 2011). A difficulty 
with some of the more flexible semi-parametric or non-parametric models proposed 
for the factor analysis models is there is often a sacrifice that is made in terms of 
interpretation, parsimony and computation. This is particularly an issue in the fac-
tor analysis context where various forms of the factor loading matrix can be derived 
and where simplicity and interpretability often become appealing for users (see, e.g., 
Frühwirth-Schnatter and Lopes 2012; Conti et al. 2014).

There are several other computational advantages of using a Bayesian approach 
for mixtures of factor analysis models (compared to ML estimation) including the 
use of prior information or specification of prior distributions to regularize the 
parameter space, particularly in high dimensional settings (Carvalho et  al. 2008) 
and/or in cases where there is considerable noise (e.g., imaging data). In particular, 
Suarez and Ghosal (2016) examine the performance of placing a prior distribution 
on the error term of a principal components approach for functional data with the 
degree of informativeness or smoothing determined by apriori knowledge or empir-
ically derived. We note that this information is relatively easily included in a Bayes-
ian model without the need for introducing additional computational demands or 
complexity. Finally, we note that the number of components and factors could be 
allowed to vary and be updated as part of the computational approach (Frühwirth-
Schnatter and Lopes 2012).

Extensions to the more general case of structural equation modeling are also rel-
atively easier than in the ML estimates setting (e.g., Lee and Xia 2008a). Further 
extensions to allow for the influence or effect of missing data on parameter estimates 
is quite natural in a Bayesian setting as various patterns of missing data (e.g., class 
dependent missingness) can be imputed at each MCMC iteration from the posterior 
predictive distribution (e.g., using a mixture model defined using open source soft-
ware such as JAGS or NIMBLE). Computation of the standard error or uncertainty 
of parameter estimates also does not rely on using asymptotic approximations to the 
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observed information matrix if the sample size is large or resorting to a bootstrap 
method which requires a very large amount of computations (Basso et al. 2010).

In this paper, we consider the MSNFA model of Lin et al. (2016) and propose a 
Bayesian inference with full priors of all model parameters. This parametric model 
has several desirable properties, including representation of the symmetrical MFA 
model as a special case. The distribution also has a convenient hierarchical represen-
tation which leads to closed form marginal posteriors and facilitates ease of compu-
tations using a Gibbs sampler MCMC algorithm to estimate the model parameters. 
To illustrate the flexibility of the Bayesian approach in this setting, we also consider 
the performance of the model in missing data settings.

The paper is organized as follows. In Sect.  2, we provide a review and back-
ground to the rSN distribution and the MSNFA model. Section 3 presents a Bayesian 
analysis of the MSNFA and details of the Gibbs sampling algorithm. In Sect. 4, we 
illustrate the performance of the proposed model on real datasets. Finally, in Sect. 5, 
we present our main conclusions and discuss possible extensions and areas of fur-
ther research.

2  A review of the multivariate rSN family and MSNFA model

In this part we begin with a brief review of the multivariate restricted skew normal 
(rMSN) family introduced and studied by Azzalini and Dalla-Vale (1996) and Lee 
and McLachlan (2013b). We then outline details for the mixtures of factor analysis 
model based on the rMSN family.

2.1  The multivariate restricted skew normal family

A q-dimensional random vector X follows an rMSN distribution with q-dimensional 
location vector � , q × q positive definite dispersion matrix � , and q-dimensional 
skewness parameter vector � , denoted by X ∼ rSNq(�,�,�) , can be constructed sto-
chastically by

where W = ||V0
|| is the absolute value of V0 ∼ N1(0, 1) and independent of 

V ∼ Nq

(
0, Iq

)
 . Note that E(X) = � + c� and Cov(X) = � +

(
1 − c2

)
��⊤ , where 

c =
√
2∕�.

Considering the stochastic representation of X ∼ rSNq(�,�,�) leads to the fol-
lowing probability density function (pdf)

where � = � + ��⊤ , 𝜎2 = 1 − �⊤
�

−1� =
(
1 + �⊤

�
−1�

)−1 , and �q(⋅|�,�) and 
�1(⋅) are, respectively, the probability distribution function (pdf) for the multivariate 
normal distribution Nq(�,�) , and the cumulative distribution function (cdf) of the 
standard univariate normal distribution.

(1)X = � + �W + �
1∕2V,

(2)f (x|�,�,�) = 2𝜙q(x|�,�)𝛷1

(
𝜎−1�⊤

�
−1(x − �)

)
, x ∈ Rq,
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Also the random vector X ∼ rSNq(�,�,�) has the following hierarchical 
representation:

where HN1 is the univariate right-half of standard normal distribution
For more details about this family of distributions (including the mean, variance, 

the moment generating function, and other interesting properties), see e.g., Lee and 
McLachlan (2013b), Lin et al. (2016) and Maleki et al (2018a, b).

2.2  The mixture of restricted skew‑normal factor model

Lin et  al. (2016) introduced the generalization of traditional factor analysis (FA), 
called restricted skew-normal factor model. Given a p-dimentional random sample 
Y =

{
Y1,… ,Yn

}
 and location vector � , a p × q matrix of factor loadings L , factor 

analysis finds uncorrelated symmetrical/asymmetrical q-dimensional (q < p) vectors 
of latent factors F1,… ,Fn that explain a large amount of variability in the data, and 
�1,… , �n are the p-dimentional vector of Gaussian errors. The factor analysis model 
for j = 1,… , n can be written as

for which the latent factors and model errors are independently distributed as:

where c =
√
2∕� , the scale matrix � = Iq +

(
1 − c2

)
��⊤ , positive diagonal matrix 

D = diag
(
D1,… ,Dp

)
 and SN denotes a skew-normal distribution. Note that 

E
[
Fj

]
= 0 , Cov

[
Fj

]
= Iq , E

[
�j
]
= 0 and also, E

[
Yj

]
= � , Cov

[
Yj

]
= LL⊤ + D . This 

model we will refer to as the SNFA model, and due to Proposition 3 from Lin et al. 
(2016),

where � = L�−1∕2� and � = L�−1L⊤ + D . To ensure the identifiability of the SNFA 
model (4a, b), we constrain the loading matrix L so that the upper-right triangle is 
zero and diagonal entries are strictly positive (Fokoué and Titterington 2003; Lopes 
and West 2004; Lin et al. 2016). At times these conditions may be too restrictive and 
influence the ordering of the factors, so alternative formulations have been examined 
in Leung and Drton (2016), Frühwirth-Schnatter and Lopes (2012) and Conti et al. 
(2014)

Lin et al. (2016) generalize the SNFA model to its corresponding mixture model, 
called Mixture of restricted skew-normal factors denoted by MSNFA model with the 
following details. Let Yj =

(
Yj1,… , Yjp

)⊤
, j = 1,… , n are p-dimentional vector of p 

feature variables, for which Yj follows from finite groups. The latent membership-indi-
cator variables Z1,… ,Zn indicate which component each observation belongs to. In 
detail, Zij =

(
Zj

)
i
 for i = 1,… , g and j = 1,… , n is one or zero, according to whether 

(3)
X|W = w ∼ Nq(� + �W,�),

W ∼ HN1(0, 1),

(4a)Yj = � + LFj + �j,

(4b)Fj

iid
∼rSNq

(
−c�−1∕2�,�−1,�−1∕2�

)
, �j

iid
∼Np(�,D),

(5)Yj ∼ rSNq(� − c�,�,�), j = 1,… , n,
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Yj belongs or does not belong to the i-th component. These latent variables have mul-
tinomial distribution denoted by Z1,… ,Zn ∼ (1;�) , for which � =

(
𝜋1,… ,𝜋g

)⊤ , 
with marginal probability mass function (pmf) given by

So given Zij = 1 , Yj has the structure

where the latent factors and model errors are independently
distributed as
Fij

ind
∼rSNq

(
−c�

−1∕2

i
�i,�

−1
i
,�

−1∕2

i
�i

)
, �ij

ind
∼Np

(
0,Di

)
 , for which �i = Iq +

(
1 − c2

)

�i�
⊤

i
 and positive diagonal matrix Di = diag

(
Di1,… ,Dip

)
 for j = 1,… , n and 

i = 1,… , g.
Also density of Yj is

where fi
(
yj|�i

)
 is the pdf of each SNFA component (6) given by (5) and (2), and 

�i =
(
�i,Li,Di,�i

)
 , for which � =

(
�1,… ,�g−1,�1,… ,�g

)
 . Therefore, the log-

likelihood function due to model (6) is given by

3  Bayesian analysis

In this section we construct the augmented likelihood function based on the completed 
data (including the latent variables) to derive the joint posterior distribution.

3.1  Augmented likelihood function

Let  = {Y,W,Z} denote the complete data, where Y =
(
Y1,… ,Yn

)
 , 

W =
(
W1,… ,Wn

)
 and Z =

(
Z1,… ,Zn

)
 . In accordance with the hierarchical repre-

sentation (3) to the model (6), the following flexible hierarchical representations are 
satisfied:

P
(
Zj;�

)
= 𝜋

z1j

1
𝜋
z2j

2
…𝜋

zgj
g , j = 1,… , n, subject to

g∑

i=1

𝜋i = 1 and 𝜋i > 0, i = 1,… , g.

(6)Yj = �i + LiFij + �ij, with probability�i,

(7)f
(
yj|�

)
=

g∑

i=1

�ifi
(
yj|�i

)
; j = 1,… , n,

(8)(�|y) =
n∑

j=1

log

(
g∑

i=1

�ifi
(
yj|�i

)
)
.

(9)

Yj
|||Fij, Zij = 1

ind.
∼ Np

(
�i + LiFij,Di

)
,

Fij
|||Wj = wj, Zij = 1

ind.
∼ Nq

(
−c�

−1∕2

i
�i + wj�

−1∕2

i
�i,�

−1
i

)
,

Wj
|||Zij = 1

ind.
∼HN1(0, 1).
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Note that the above hierarchical representation can be reformulated as

where c =
√
2∕� , L̃i = Li�

−1∕2

i
 , F̃ij = �

1∕2

i
Fij and TN1(c, 1)I

(
Wj > c

)
 denotes the 

truncated normal distribution with mean c and variance one before truncation on 
(c,+∞) . So, the complete-data augmented likelihood function of � is given by

3.2  Priors and posteriors

Our Bayesian approach is based on a Gibbs sampler MCMC algorithm to draw the 
samples from the full conditional posteriors. We assign prior distributions to the 
unknown model parameters and consider independently weak informative proper 
priors for the elements of � . Also, we consider the loading matrix in the form of 
L̃i =

[
�i.rt

]
 ( �i.rt are Li elements). So, for the unknown parameters in the MSNFA 

model, we consider priors given by

for i = 1,… , g , r = 1,… , p and t = 1,… , q , where notations Dir and IG represent 
the Dirichlet and inverse Gamma distributions, respectively.

The joint posterior distribution p(�,F,w, z|y) ∝ L(�| )p(�) is (generally) 
analytically intractable and MCMC methods such as Gibbs sampling (Gelfand and 
Smith 1990) by using the full conditional posterior distributions are often needed to 
draw samples from this distribution. The full conditional posteriors for i = 1,… , g , 
t = 1,… , p and r = 1,… , q are given as follows: (in the following quantities �(−�) 
is the set of parameters without the parameter � , ℑi =

{
j ∶ zij = 1

}
 and ni is equal to 

the number of observations allocated to the i-th FA component),

where � = �

�
M−1

i
mi +

∑
ℑi
D−1

i

�
yj − L̃iF̃ij

��
 and � =

�
M−1

i
+
∑

ℑi
D−1

i

�−1

.

(10)

Yj
|||F̃ij, Zij = 1

ind.
∼ Np

(
𝝁i + L̃iF̃ij,Di

)
,

F̃ij
|||Wj = wj, Zij = 1

ind.
∼ Nq

(
wj𝝀i, Iq

)
,

Wj
|||Zij = 1

ind.
∼ TN1(c, 1)I

(
Wj > c

)
,

(11)

L(�| ) =

n∏

j=1

g∏

i=1

Zij

[
𝜋i𝜙p

(
yj
|||�i + L̃iF̃ij,Di

)
𝜙q

(
F̃ij

|||wj�i, Iq

)
𝜙1

(
Wj

|||c, 1
)
I
(
Wj > c

)]
.

� =
(
�1,… ,�g−1

)
∼ Dir

(
�1,… , �g

)
, �i ∼ Np

(
mi,Mi

)
, �i ∼ Nq

(
i,i

)
,

�i.rt ∼ N1

(
𝜇
�i, 𝜎

2
�i

)
; r > t,�i.rr ∼ HN1

(
𝜇
�i, 𝜎

2
�i

)
, Di.r ∼ IG

(
�i, �i

)
,

�|�(−�), y,F,w, z ∼ Dir
(
�1 + n1,… , �g + ng

)
.

�i
||�(−�i), y,F,w, zij = 1 ∼ Np(�,�),
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where 𝜇 = 𝜎2
�
𝜇
�i𝜎

−2
�i

+ D−1
i.r

∑
ℑi
Fij(t)

�
yjr − 𝜇ir − �

⊤
ir(−t)

F̃ij

��
 and 

�2 =
�
�−2
�i

+ D−1
i.r

∑
ℑi
F2
ij(t)

�−1

 , for which yjr and �ir be the r-th components of yj and 
�i , respectively, Fij(t) be the t-th components of F̃ij , and �ir be the r-th row of L̃i (so 
�i.rt is the t-th element of �ir ), and �ir(−t) be the r-th row of L̃i which t-th component 
zero.

Also �i.rr
||�(−�i.rr), y,F,w, zij = 1 ∼ N1

(
𝜇, 𝜎2

)
I
(
�i.rr > 0

)
, with the above param-

eters for which indices t replaced by r.

where � = �

(
wj�i + L̃

⊤

i
D−1

i

(
yj − �i

))
 and � =

(
Iq + L̃

⊤

i
D−1

i
L̃i

)−1

.

where a = �i + ni∕2 and b = 𝔟i +
1

2

∑
ℑi

�
yjr − 𝜇ir − �

⊤
i
F̃ij

�2.

where � = �

�
−1
i
i +

∑
ℑi
wjF̃ij

�
 and � =

�
−1
i

+
�∑

ℑi
w2
j

�
Iq

�−1

.

where 𝜇 = 𝜎2
�
c +

∑g

i=1
�⊤

i
F̃ij

�
 and 𝜎2 =

�
1 +

∑g

i=1
�⊤

i
�i

�−1.

where fi
(
yj|�i

)
; i = 1,… , g , are the component’s pdf defined in (7).

3.3  Imputation of missing values

An advantage of the hierarchical representation in (9) or (10) is the ability to eas-
ily simulate from the model or sample from the parameters using existing Bayes-
ian software such as Stan (Stan Development Team 2017) or NIMBLE (NIMBLE 
Development Team 2017) (JAGS or OpenBUGS were not able to be used due to the 
absence of functions to enable matrix inversion). One advantage of this is the ability 
to easily accommodate missing data and impute values from the model naturally as 
part of the parameter updates.

Let YM and YO represent the missing and observed responses, respectively. Miss-
ing data imputation in a Bayesian framework relies on the posterior predictive 

�i.rt
||�(−�i.rt), y,F,w, zij = 1 ∼ N1

(
�, �2

)
,

F̃ij
|||�, y,w, zij = 1 ∼ Nq(�,�),

Di.r
||�(−Di.r), y,F,w, zij = 1 ∼ IG(a, b),

�i
||�(−�i), y,F,w, zij = 1 ∼ Nq(�,�),

W
j

|||�, y,F, zij = 1 ∼ TN1

(
𝜇, 𝜎2

)
I
(
W

j
> c

)
,

Z��, y,F,w ∼ 

�
1;

�1f1
�
yj��1

�

∑g

i=1
�ifi

�
yj��i

� ,… ,
�gfg

�
yj��g

�

∑g

i=1
�ifi

�
yj��i

�

�
.
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distribution for the missing data,P
(
YM

||YO

)
= ∫ P(YM|YO,�)P(�|YO)d� . As for 

most missing data problems with an unknown missing pattern, the posterior predic-
tive distribution cannot be simulated directly and a Gibbs sampling algorithm is 
often used with parameters updated in two generic steps, y(t+1)

i,M
∼ P

(
yi,M

||yO,�
(t)
)
 

for i = 1,… ,N and �(t+1) ∼ P
(
�

(t)|||yO, yi,M
)
 . Starting from reasonable initial val-

ues y(0)
i,M

 and �(0) and running the algorithm for a large number of iterations provides 
convergence towards these limiting distributions. In this paper, we implement this 
approach in NIMBLE as it can be undertaken relatively easily (using only one extra 
line of code) and extended (if needed) to include situations where missingness may 
depend on other covariates (e.g. conditions relating to the experiment or particular 
characteristics of individuals in a survey).

4  Applications

In this section, we assess the performance and flexibility of the proposed MSNFA 
model using real data examples which display signs of skewness and are challenging 
to fit using the MFA model.

4.1  Priors and computation

For estimation of the different models, largely non-informative prior distribu-
tions were used for each of the component parameters: �i ∼ Np

(
mi,Mi

)
 , where 

mi = 0 and Mi = 103Ip priors of its columns as �i ∼ Nq

(
i,i

)
 , which i = 0 and 

i = 103Iq , �i.rt ∼ N1(0, 100);r > t, �i.rr ∼ HN1(0, 100) , Di.r ∼ IG(1, 1) for i = 1, 2 , 
and � ∼ Dir(1,… , 1) . All computations are implemented on the R software ver-
sion 3.3.1 (R Core Team 2017) with a core i7 760 processor 2.8 GHz. Gibbs sam-
pling runs of 50,000 iterations with burn-in of 10,000 was used and convergence 
criteria was established using the Gelman–Rubin statistic (Gelman and Rubin 1992) 
and by visual inspection. Computations were also verified and models developed 
using NIMBLE. To address the issue of label switching over the MCMC iterations 
(Mengersen et  al. 2011), we used the maximum a posteriori estimate (MAP) to 
select one of the k! modal regions and a distance based measure on the space of 
parameters to re-label parameters in proximity to this region (Celeux et al. 2000). A 
sample copy of the R and NIMBLE code used are available from the authors upon 
request (and will be available on a public website shortly). To avoid some computa-
tional issues common to factor analysis (e.g. underflow errors) we scale the datasets 
examined using the scale function in R. Finally note that a lot of different solutions 
have been proposed to boost MCMC (see, among others, Meng and Van Dyk 1999; 
van Dyk and Meng 2001; Yu and Meng 2011; Van Dyk 2010).

Model performance was assessed by comparing the classification accuracy and 
model selection criteria for MSNFA and MFA (see Table 2). For classification accu-
racy we report the adjusted Rand Index (ARI) (Hubert and Arabie 1985) which 
ranges from 0 (no match) to 1 (perfect match). We also report the EAIC and EBIC 
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which are variations of the classical AIC and BIC criteria for use in a Bayesian set-
ting (Carlin and Louis 2011) (lower values indicate a better fit). In a mixture setting 
it is also possible to compare the DIC values using one of the measures suggested by 
Celeux et al. (2006).

4.2  Seeds example

In the first example, we examine a clustering problem for a seeds dataset analyzed 
by Lin et al. (2016) and originally analyzed by Charytanowicz et al. (2010). The data 
consists of seven geometric features (area, perimeter, compactness, length of ker-
nel, asymmetry coefficient, and length of kernel groove) measured from the X-ray 
images of 210 wheat kernels, belonging to three different wheat varieties (Kama, 
Rosa and Canadian). To illustrate the performance of MSNFA family we will focus 
on the case where g is a priori known to be 3 with q varying from 2 to 4.

For the MFA model (see Table  1) the best classification results were obtained 
for q = 4 with an ARI estimate of 0.69, however, all of the model selection criteria 
appeared to clearly favor q = 3 with a slightly lower ARI estimate of 0.66. The best 
classification results for the MSNFA model appeared to be for the q = 3 case and 
with a higher ARI estimate of 0.76. In terms of model selection criteria, estimates 
for all of the criteria for the MSNFA also clearly favored this particular model. 
Overall, the MSNFA model appears to better fit the three groups in this data quite 
well compared to the MFA case with significant improvements in model choice cri-
teria estimates and classification results.

4.3  AIS data

The second example considers the Australian Institute of Sport (AIS) data con-
taining a number of physical and hematological measurements (p = 11) from 100 
female and 102 male athletes (n = 202). As a number of variables in the dataset (e.g. 

Table 1  Results for seeds data 
example

The best values are indicated in bold
MFA and MSNFA denote the normal and restricted skew-normal 
factor analysis models respectively

Model q Log-
likelihood 
(max)

m EAIC EBIC DIC2 ARI

MFA 2 − 730.9 83 1739.7 2017.5 1685.6 0.46
3 − 572.6 98 1495.4 1823.4 1453.6 0.66
4 − 829.3 110 1957.1 2325.3 1815.5 0.69

MSNFA 2 − 819.0 89 1891.4 2189.2 1788.6 0.29
3 − 543.3 107 1384.0 1742.2 1253.5 0.76
4 − 861.3 122 2033.4 2441.8 1856.3 0.63
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BMI) display signs of moderate skewness, a number of previous studies have used 
this dataset to examine the performance of skew-normal and skew-t mixture mod-
els to correctly classify the male and female athletes into their respective groups 
(e.g. Murray et  al. 2014; Lee and McLachlan 2013a). Similarly, we are interested 
in assessing the performance of the MSNFA to correctly classify male and female 
athletes using all of the variables available (most of the previous studies have used 
only two variables).

From Table 2 we can see quite clearly that the classification performance of the 
MSNFA is very good with an ARI of 0.96 and model choice criteria all appear to 
favor this model. By contrast the MFA model is not able to accommodate the skew-
ness in the data and the best ARI was 0.85 for the q = 5 model.

To illustrate one of the benefits of using a Bayesian approach, we conduct an 
experiment on the AIS data by assessing the performance of the classification and 
associated errors in a missing data context. As mentioned previously, the hierarchi-
cal structure of the MNSFA allows the model to be coded and computations per-
formed in NIMBLE (or Stan) which relatively easily facilitates the imputation of 
missing values from the full model (i.e. conditional means). In this experiment, we 
randomly delete values in the dataset under two different degrees of missingness 
[5% (low) and 30% (high) of the total sample ( n × p )] and compare the performance 
of imputing values using the model (conditional approach) or according to mean 
imputation (unconditional approach) where the missing values are replaced by their 
unconditional means (mean of complete values for the variable). This type of miss-
ingness is often described as missing at random (MAR) (See Little and Rubin 1987). 
Along with the model selection and performance measures outlined previously, we 
also assess the results using the mean squared errors (MSE),

MSE =
1

n

n∑

j=1

(
ym
j
− ŷ

m

j

)⊤(
ym
j
− ŷ

m

j

)
,

Table 2  Results for AIS data

The best values are indicated in bold
MFA and MSNFA denote the normal and restricted skew-normal factor analysis models respectively

Model q Log-likelihood (max) EAIC EBIC DIC2 ARI

MFA 2 − 2124.0 4495.5 4783.4 4395.0 0.94
3 − 1795.2 3877.3 4224.7 3744.2 0.92
4 − 1624.9 3567.8 3968.1 3401.7 0.85
5 − 1580.5 3510.2 3956.8 3319.4 0.85
6 − 1591.3 3578.3 4064.6 3386.1 0.85

MSNFA 2 − 2126.3 4499.4 4800.5 4382.2 0.94
3 − 1776.4 3859.2 4226.4 3721.6 0.90
4 − 1578.5 3460.3 3820.9 3327.7 0.88
5 − 1548.9 3439.8 3853.3 3281.5 0.96
6 − 1709.3 4208.0 4667.9 4441.5 0.94
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where ŷ denotes the imputed value and n∗ =
∑n

j=1
(p − po

j
) is the number of total 

missing values. A smaller value of MSE indicates a more accurate prediction of 
missing values.

Table  3 presents the results of the two models (unconditional and conditional) 
against the mean values of the model selection criteria (EIC, EBIC, etc.), classifica-
tion performance (ARI) and the MSE over 30 replications of the dataset under each 
missingness rate scenario (5% or 30%).

Under both degrees of missingness, the results for the conditional model 
(MSNFA-CO) are clearly superior to the results for the unconditional model 
(MSNFA-UC) with only a relatively small decrease in performance. In contrast, the 
results for the unconditional model have quickly deteriorated with an average classi-
fication result for the ARI of 0.68 (compared to 0.83 for the conditional model). The 
extent and type of deterioration in performance obviously depend on the setting but 
in this setting we saw substantial deterioration for a relatively small degree of miss-
ingness (5%). An alternative to the unconditional approach includes listwise dele-
tion where an entire record is deleted from the analysis if a single value is missing. 
This approach is only really applicable for large samples, which is rarely the case 
for most applications where factor analysis is commonly used. Thus, the conditional 
approach (using the full model) is often preferred and used but relies upon the ease 
of use and availability of the computational approach in practice.

5  Conclusion

We have outlined and assessed the performance of a MSNFA model within a Bayes-
ian framework. Various properties of the SNFA family are well defined and estima-
tion of the parameters is relatively straightforward in a Bayesian framework with 
all of the Gibbs sampling updates available in closed form. Assessments of the 

Table 3  Results for AIS data (missing data)

The best values are indicated in bold
Presented are the mean estimates with standard deviation in brackets. The annotations UC and CO 
denote the results for the unconditional (mean imputation) and conditional (full model) models respec-
tively

Model Missing 
(%)

Loglike (max) EAIC EBIC DIC2 ARI MSE

MSNFA-
UC

5 − 1935.0 (28.1) 4253.1 
(55.04)

4733.1 
(55.05)

4056.8 
(56.8)

0.68 (0.22) 0.47 (0.07)

30 − 1767.3 (27.9) 3885.8 
(55.6)

4365.5 
(55.6)

3656.9 
(57.0)

0.24 (0.22) 0.69 (0.06)

MSNFA-
CO

5 − 1568.2 (33.4) 3520.9 
(69.4)

4000.7 
(69.4)

3325.6 
(80.0)

0.83 (0.08) 0.23 (0.10)

30 − 1348.6 (34.2) 3055.5 
(70.5)

3535.2 
(70.4)

2833.9 
(74.0)

0.79 (0.09) 0.32 (0.04)
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performance of the proposed model on simulated and real data suggest that this dis-
tribution provides a considerable degree of flexibility in modeling data of varying 
directional shape. Various extensions to the MSNFA model are possible, including 
the use of this distribution in the more general setting of a structural equation model 
and extending existing models where sparse covariance structures are necessary for 
particular settings/applications. Similar to the work by Suarez and Ghosal (2016) 
more informative priors (known apriori or empirically derived) could be placed on 
the variance of the error term [diagonal matrix D in (4b)] in noisy or error prone set-
tings to improve estimates. Such an extension is relatively easy to implement using 
the computational approach outlined. Further extensions relating to the incorpora-
tion of covariates, either as part of the missing data process or separately, also follow 
in a relatively straightforward way from the proposed model and software available 
(e.g. NIMBLE). Further extensions can also be made to incorporate unrestricted 
skew distributional forms (Maleki et al. 2018b) and asymmetric two-piece distribu-
tions belonging to the mixture distributions introduced by Maleki and Mahmoudi 
(2017) and Hoseinzadeh et al. (2018).
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