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Abstract

We compared four propensity score (PS) methods using simulations: maximum like-
lihood (ML), generalized boosting models (GBM), covariate balancing propensity
scores (CBPS), and generalized additive models (GAM). Although these methods
have been shown to perform better than the ML in estimating causal treatment effects,
no comparison has been conducted in terms of type I error and power, and the impact
of treatment exposure prevalence on PS methods has not been studied. In order to fill
these gaps, we considered four simulation scenarios differing by the complexity of a
propensity score model and a range of exposure prevalence. Propensity score weights
were estimated using the ML, CBPS and GAM of logistic regression and the GBM. We
used these propensity weights to estimate the average treatment effect among treated
on a binary outcome. Simulations showed that (1) the CBPS was generally superior
across the four scenarios studied in terms of type I error, power and mean squared
error; (2) the GBM and the GAM were less biased than the CBPS and the ML under
complex models; (3) the ML performed well when treatment exposure is rare.

Keywords Covariate balancing - Simulation - Weighting

1 Introduction

Propensity score (PS) methods are used to estimate an average causal treatment effect
(ATE) or an average treatment effect for the treated (ATT) in observational studies
(Austin 2011; Brookhart et al. 2013). Typically, the ATE or ATT is estimated via
inverse-probability-of-treatment-weighting IPTW), which gives unbiased estimators
under the no unmeasured confounder assumption and a correct specification of a PS
model (Rosenbaum and Rubin 1983). With IPTW, researchers can avoid the challenges
of specifying an outcome model correctly, which may be more difficult than correctly
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specifying a PS model (Brookhart et al. 2013). Therefore, the performance of IPTW
estimator depends on how well a PS model is estimated.

An essential criterion to evaluate PS models is covariate balance, that is typically
measured by averages of mean differences in covariates across treatment groups. There
are several approaches that have been developed, which target maximizing covariate
balance in PS estimation. The first approach is to use machine learning algorithms, such
as generalized boosting models (GBM) used by McCaffrey et al. (2004), which requires
selecting tuning parameters that optimize covariate balance. This GBM method closely
follows Friedman’s gradient boosting machine (Friedman 2001). Through a simula-
tion study, Lee et al. (2010) showed that among several tree-based methods, the GBM
approach performed well and outperformed logistic regression when the true PS model
includes nonlinear or nonadditive effects of covariates. This approach, however, can
suffer from computational burdens in finding optimal tuning parameters when the
number of covariates is huge. Imai and Ratkovic (2014) developed a covariate bal-
ance propensity score (CBPS) methodology, which solves estimating equations that
optimize covariate balance. The CBPS does not require specifying tuning parameters
as the GBM method. Pirracchio and Carone (2016) applied the covariate balancing
principle of Imai and Ratkovic (2014) to an ensemble learner, which is called the Super
Learner (a weighted linear combination of several candidate learners) and showed that
bias is improved compared to the standard Super Learner and the CBPS. However,
the computation for Super Learner is very demanding because it involves V-cross
validation to obtain the optimal weights.

Two studies, Wyss et al. (2014) and Setodji et al. (2017), evaluated the GBM and
the CBPS mainly in terms of bias and mean squared error using the same simulation
scenarios with varying linearity and additivity. From an inferential point of view, how-
ever, type I error and power or bias-adjusted power are also important measures that
need to be considered. As in Wyss et al. (2014) and Setodji et al. (2017), we compared
these two promising PS methods, the GBM and the CBPS, with the maximum like-
lihood (ML) of logistic regression, which is a default method in practice. Our study
is more extensive than Wyss et al. (2014) and distinct from Setodji et al. (2017) in
that we evaluated the same measures used in Wyss et al. (2014) and Setodji et al.
(2017) at various treatment effect sizes, and also compared type I error, power and
95% confidence intervals, and studied the effect of exposure prevalence along with
PS model complexity on the performance of the methods.

We also compared these with generalized additive models (GAM) (Hastie and Tib-
shirani 1990). The GAM is designed to improve the prediction performance of logistic
regression when covariate effects are nonlinear and has been shown to be better than
the ML (Woo et al. 2008). Even though the GAM does not seek to optimize covariate
balance directly as the GBM (McCaffrey et al. 2004) and the CBPS (Imai and Ratkovic
2014), it would improve covariate balance over the ML by improving prediction accu-
racy. We would be able to classify these PS methods into three categories as the
alternatives of the ML: a method that pursues the optimal covariate balance (CBPS), a
method that pursues optimal prediction (GAM), and a method that primarily pursues
optimal prediction, while maintaining good covariate balance (GBM).
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2 Methods
2.1 Simulation setup

We followed the simulation design of Setoguchi et al. (2008). This simulation design
was used by several articles in PS literature (Lee et al. 2010; Wyss et al. 2014; Pir-
racchio et al. 2015). First of all, ten covariates X’ = (X1, ..., X19) were generated:
X1, ..., X4 were confounders, Xs, ..., X7 were correlated with only the exposure,
and Xg, ..., X0 were risk factors for the outcome without any associations with
the exposure. Six covariates (X1, X3, X5, X¢, X3, X9) were binary, and the rest were
continuous. Details about the generation of the covariates and the figure depicting the
covariate relationships are in Setoguchi et al. (2008), Lee et al. (2010) and Wyss et al.
(2014) respectively. For readers, we presented the figure for the simulation structure
(Fig. 1), adapted from Wyss et al. (2014). The binary exposure Z was generated using
a logistic regression model as a function of X. In the sequel, the binary outcome Y
was generated using a logistic regression model as a function of Z and X.

To compare the performance of different PS methods under various situations,
we considered four scenarios varying the complexity of the true PS model and the
prevalence of treatment exposure (Table 1).

(A) Additive and linear PS model with moderate exposure prevalence.

(B) Additive and linear PS model with low exposure prevalence.

(C) Nonadditive and nonlinear PS model with moderate exposure prevalence.
(D) Nonadditive and nonlinear PS model with low exposure prevalence.

An additive and linear logistic regression model is

exp(Bo + X'B)

Pz =1% =7 +exp(Bo + X'B)

ey

0.2

/ X1
% ~
X6 >
X7
Fig. 1 Data simulation structure, adapted from Wyss et al. (2014), showing causal and associational rela-
tionships between variables. There are 4 confounders (X1, X2, X3 and X4), 3 exposure predictors (X5, X¢
and X7), and 3 outcome predictors (Xg, X9 and X¢). The arrows represent causal effects, and the arcs

represent associational effects. The treatment causal effect (A — Y) is controlled by an odds ratio. The
number above each arc represents the correlation coefficient between the covariates

A
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Table 1 Description of four scenarios for data simulation

Prevalence of exposure to treatment Model complexity for PS

Additive and linear Non-additive and non-linear
Moderate A C
Low B D

In scenario A, model (1) was used to generate the treatment variable with By = 0
and

B = (0.8, -0.25,0.6, —0.4, —0.8, —0.5, 0.7, 0, 0, 0).

The average exposure prevalence was about 0.5. In scenario B, By was set to be —2,
and it gave the average exposure prevalence of about 0.15. In scenario C, a PS model
with nonadditivity and nonlinearlity was used:

exp(yo + W'y)

P(Z=1|X)= ,
( % 1 +exp(yo + W'y)

@)

where 9 = 0 and W contains main effect terms, square terms of the continuous
covariates and all pairwise interactions of X1, ..., X7. We used the same regression
parameter values for y as in the scenario, used by Setoguchi et al. (2008), with a
PS model with moderate nonadditivity and nonlinearlity. We did not consider the
scenarios with mild nonadditivity or nonlinearlity to simplify the simulation design
and to observe clear differences between the methods. In scenario D, model (2) was
used, but yp was set to be —2, which yielded the low average exposure prevalence.
As for the outcome, an additive and linear logistic regression model was considered:

exp(0Z + ap + X'a)
1 4+exp(0@Z +ap+ X'a)’

P(Y=1|Z,X) =

where oog = —3 and
o = (0.3, -0.36, —0.73, —0.2, 0, 0, 0, 0.71, —0.19, 0.26, —0.4).

The parameter of interest is 6, whose exponentiated value represents the treatment
effect in an odds ratio scale. To evaluate power, 1/exp(f) varied from O to 3, and
thus the treatment reduces the risk of the outcome if 6 is non-zero. This outcome
model was used to generate the outcome for all scenarios. From our simulations with
the sample sizes of 1000 and 2000 under the same simulation models used in prior
research (Setoguchi et al. 2008; Lee et al. 2010), we noted that the relative performance
of PS methods was fairly similar across different sample sizes under each scenario.
Thus, without loss of generality, we have presented results only based on a sample size
of 2000, which is a typical choice for epidemiological studies (Setoguchi et al. 2008),
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and the common sample size used in Setoguchi et al. (2008) and Lee et al. (2010). For
each scenario, we have generated 1000 data sets.

2.2 Propensity score methods

Let X be a p-dimensional covariate vector and (X ) be a working PS model with a
regression parameter 8. The popular choice of g (X) is a logistic regression model as
in Eq. (1). The maximum likelihood estimator for § is obtained by solving the score
equation:

3

E |:ZJ:[/3(X) B 1- Z)r'r,g(X)] _0
mg(X) 1 —mp(X) ’
where E denotes sample average, and 7g(X) = 0mg(X)/ 0B’. Therefore, the score

function seeks to balance the averages of 774 (X) between treated and untreated groups.
With a logistic regression model of 7g(X), Eq. (3) reduces to

E[{Z —mp(X)}X] =0,

and thus the score funcion seeks to minimize prediction error.
The CBPS method considers solving a covariate balance estimating function. For
the ATE,

zZX (1-2)X
E — =0,
|:7'[/3(X) 1—7'[/3(X)j|

where X = f(X) is an M-dimensional vector-valued function of X for M > p.
Solving this equation guarantees that the sample means of X in the treatment and
control groups match with the overall sample mean of X if the working PS is correctly
specified. For covariate balancing, a standard choice is X = X, which gives the just-
identified CBPS model (Imai and Ratkovic 2014). The second moment of X or 775 (X)
can be added to X and this gives the over-identified CBPS model.
If the ATT is of interest, the CBPS method is implemented by solving
. [z % M} _o.
1 —mg(X)

Solving this equation ensures that the sample mean of X for the control matches with
that for the treated. The CBPS can be implemented using an R package called CBPS.

The GBM models a nonlinear function as a sum of trees. The GBM was effectively
used for the PS analysis in McCaffrey et al. (2004), where the number of iterations were
chosen to minimize the average standardized absolute mean difference (ASAM) in the
covariates. This GBM algorithm that optimizes covariate balance can be implemented
by the twang package, where other measures for covariate balance are available includ-
ing the maximum standardized absolute mean difference. The rwang package uses the
gbm package (Ridgeway 2017) to run the GBM and an R’s optimize function to find
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the number of iterations maximizing covariate balance. Important parameters for the
GBM include an amount of shrinkage, the number of iterations, the depth of covariate
interactions and a stopping rule. The small size of shrinkage gives improved prediction
performance, but it requires many more iterations for the model to converge. We used
a shrinkage parameter of 0.01 with 10,000 iterations, a 2-way interaction depth and
ASAM as a stopping rule.

The GAM was also considered for comparison. The GAM is more flexible than the
logistic regression model

exp{ck +g1(X1) +--- +gp(Xp)}
1 +exp{c + g1 (X)) + -+ gp(Xp}

P(Z=1|X) =

where each g;(X;) is some smooth function of X ;. The gam package (Hastie 2016)
provides local regression and smoothing splines to model g;(X ;). The backfitting
algorithm is used to estimate the parameters generated by the local regression or
smoothing splines (Hastie and Tibshirani 1990). We modeled the continuous covariates
with the smoothing splines with a degree of freedom 4.

In summary, we compared the ML of the logistic regression with main effects,
the just-identified CBPS of the logistic regression model with main effects, the GBM
with 2-way interactions and the GAM of the logistic regression with the smoothing
splines. In the scenario of linearity and additivity (scenarios A and B), there is no
model-misspecification for the ML and the CBPS, but over-parametrization for the
GAM. In the scenario of non-linearity and non-additivity (scenarios C and D), there
is model-misspecification for the ML, CBPS and GAM. It is hard to describe model-
misspecification and overfitting for the GBM because it is a complex data mining
technique using many trees.

2.3 Performance metrics

We used IPTW to estimate the ATT using the estimated PS. The ATT is a parameter
of interest in observational studies, where access to a treatment is limited (Austin
2011). As in Lee et al. (2010), to obtain the ATT estimates and correct standard error
estimates, we used the R package survey (Lumley 2017) with a weighting scheme that
assigns 1 to the treated subjects and 75 (X)/{1 — mg(X)} to the untreated subjects.
The following measures were used to evaluate the performance of the PS methods.

Power The percentage of rejecting the null hypothesis of no treatment effect among
1000 data sets. Let 6; be an estimate for 6 from a jth data set and ¢; be a t-statistic for
6 ; calculated by the survey package. With the true parameter value 6, power is defined
as

1000
I(|t;| > cl0),

1000 “4
j=1

@ Springer



Power comparison for propensity score methods 749

where 1 (A|6) gives 1 if A is true with 6 as a true treatment effect and O otherwise and
c is a critical value, say 1.96, for a level of 0.05 test. The power at & = 0 gives a type
I error rate.

Bias-adjusted power If there is a large bias in an estimate of treatment effect, both
type I error rate and power will be inflated. In this case, comparing methods is not
reliable because each method can have a different size of type I error rate. For reliable
power comparison, it would be desirable to force all PS methods to have a nominal
type I error rate, say 0.05. This can be achieved by adjusting a critical value, c, to
make sure that all methods have a nominal type I error rate. Thus, we estimated an
empirical critical value such that a type I error rate becomes 0.05. For each method
and scenario, using the data sets with = 0, we found c¢* satisfying

1000

— N I(ti] > ¢*16 = 0) = 0.
1000 2= (It > ¢*16 = 0) = 0.05,

where ¢* is the empirical critical value. Bias-adjusted power is then defined as

1000

— I(|t; *19).
1000 2 (] > ¢716)

Absolute bias To reduce the effect of outliers, bias was estimated by the median of
|6; — 6.

Root mean squared error (RMSE) To reduce the effect of outliers, the mean squared
error was estimated by the sum of the square of the absolute bias and the square of the
scaled median absolute deviation of 6 j, assuming an asymptotic normal distribution
for é j-

Average standardized absolute mean difference (ASAM) A measure of covariate bal-
ance. For a particular covariate, we estimated it by the standardized difference of the
mean in the treatment group and weighted mean in the control group by the standard
deviation in the treatment group. Then, these standardized differences were averaged
across all covariates. ASAM values of greater than 10% are considered to be of concern
(Austin 2009).

Coverage rate The percentage on how many 95% confidence intervals include the true
parameter value over 1000 simulated data sets.

Relationships of covariate balance with performance measures It has been noted that
the c-statistic is not a good indicator of the potential for confounding adjustment
by propensity scores (Westreich et al. 2011; Wyss et al. 2014). Thus, we focused
on the relationships of the performance measures with covariate balance (ASAM).
We aggregated all results and plotted the type I error rate, bias-adjusted power,
absolute bias, RMSE, 95% confidence interval coverage rate against the ASAM in
Figs. 8 and 9.
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3 Results

We summarized simulation results based on 1000 data sets under scenarios A-D
using the power, bias-adjusted power, absolute bias, root mean squared error, average
standardized absolute mean difference and 95% confidence interval coverage rate. We
considered effect sizes ranging from 1/e’ = 1-3. The performance of the methods
with these performance measures across the effect sizes were described in Figs. 2, 3,
4,5 and 6. We also tabulated the results for three effect sizes (1/¢’ = 1, 2 and 3) in
Table 2. Since the ASAM does not depend on effect sizes, we separately presented
the averages of the ASAM values over 1000 data sets for four scenarios, in Table 3.

Type I error and power In the scenario of linearity and additivity (scenarios A and
B), the four methods had almost the same power curves and kept a nominal type I
error rate of 0.05 at a null value of & = 0 (Fig. 2 and Table 2). When the exposure
prevalance decreased (scenario B), the power reduced for all methods. In the scenario
of non-linearity and non-additivity, and moderate exposure prevalence (scenario C),
the type I error rate of the ML highly inflated to be 0.088, and those of the other
methods were inflated in relatively small amounts: CBPS = 0.063, GBM = 0.068
and GAM = 0.062 (Table 2), and among these three methods the CBPS yielded
the greatest power. When the exposure prevalence reduced (scenario D), the type I
error rate of the ML was 0.066, the rest kept a nominal type I error: CBPS = 0.044,

Moderate prevalence Low prevalence

lepow ajdwig

Method
—— ML
-4- CBPS

-®- GBM
-+ GAM

|opow xajdwo)

0.00

10 15 20 25 30 10 15 20 25 30
Effect size
Fig.2 Power curves obtained from four PS methods under four scenarios. The x-axis indicates 1/ ¥, where

6 moves from O to log(1/3). The horizontal dotted line indicates for the type I error rate to be 0.05. From
left to right, and from top to bottom, scenarios A—D
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Moderate prevalence Low prevalence

lepow ajdwig

0.25-
Method

—— ML

-+- CBPS
1.00
-=- GBM
—+ GAM

Adjusted power

0.75+

epow xa|dwo)

W‘O 1‘5 2‘0 2‘5 B‘D 1‘0 1‘5 2‘0 2‘5 3‘0
Effect size

Fig.3 Bias-adjusted power curves obtained from four PS methods under four scenarios. The x-axis indicates
1 /e9, where 6 moves from 0 to log(1/3). The horizontal dotted line indicates for the power to be 0.05.
From left to right, and from top to bottom, scenarios A-D

GBM = 0.051 and GAM = 0.053 (Table 2), and among these three methods the
CBPS was the most powerful.

Bias-adjusted power The power comparison with Fig. 2 had a problem in that the
inflation of the type I error of the ML was nonignorable under the scenarios of non-
linearity and non-additivity (scenarios C and D) due to its large bias (see Table 2).
Comparison using the bias-adjusted power would be more reasonable because all
methods were forced to have a nominal type I error under all scenarios (Fig. 3). As a
result, the power curves of the ML under scenarios C and D went down toward those
of the CBPS so that the two power curves almost overlapped. The ML and the CBPS
had the greater bias-adjusted power than the GBM and the GAM under the complex
models (scenarios C and D).

Absolute bias In the scenario of linearity and additivity (scenarios A and B), the GBM
yielded the largest bias, and the other methods had the similar bias (Fig. 4). In the
scenario of non-linearity and non-additivity (scenarios C and D), the ML yielded huge
bias compared to the other methods, the GBM tended to yield smaller bias than the
CBPS when exposure prevalence is low, and GAM yielded the smallest bias.

Root mean squared error The GBM tended to have the smallest RMSE in the simple
PS settings (scenarios A and B), but there was no big difference in the RMSE among
the methods (Fig. 5). In the scenario of complex PS and moderate exposure prevalence
(scenario C), the CBPS and GBM exhibited the lower RMSE than the ML and GAM.
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Moderate prevalence Low prevalence
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Method
—— ML
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-=- GBM
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Effect size

Fig.4 Absolute bias curves obtained from four PS methods under four scenarios. The x-axis indicates 1/ e,
where 6 moves from 0 to log(1/3). From left to right, and from top to bottom, scenarios A—D

When the exposure prevalence reduced (scenario D), however, the ML yielded the
smaller RMSE than both the GBM and GAM.

Average standardized absolute mean difference The distributions of the ASAM for
all methods were presented in Fig. 6. It was clearly shown that the CBPS method
produced the best covariate balance under all scenarios. As shown by Lee et al. (2010)
and Wyss et al. (2014), compared to the ML, the GBM yielded the higher ASAM in
the scenario of simple PS (scenarios A and B), but, the lower ASAM in the scenario of
complex PS with moderate exposure prevalence (scenario C). As exposure prevalence
got lower (scenario D), however, the ML had better covariate balance than the GBM
and GAM.

We have checked if the tunning parameter (number of trees) for the GBM was
selected in a reasonable way within 10,000 iterations. Figure 7 shows that for one
simulated data set with a shrinkage parameter of 0.01 that we used, under each sce-
nario, the minimum value of the ASAM was achieved and a plateau happened after
some iterations within 10,000 iterations. Thus, our parameter set-up for the GBM was
considered to be appropriate enough to give valid ATT estimates under the simulations.

Coverage rate All methods produced the valid CR close to 0.95 (range = 0.93-0.96)
except when the ML was applied to the complex PS model with moderate exposure
prevalence (scenario C), but the CR values were not far from 0.95 (range = 0.91-
0.94). Our results for the CR were quite different from those of Lee et al. (2010) and
Pirracchio et al. (2015) showing that the coverage rates of the 95% confidence intervals
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Moderate prevalence Low prevalence
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Fig. 5 Root mean squared error curves obtained from four PS methods under four scenarios. The x-axis
indicates 1 /e9, where 6 moves from 0 to log(1/3). From left to right, and from top to bottom, scenarios
A-D

for weighting estimators with logistic PS models were far below 0.95 when the true
PS models were nonlinear and nonadditive. This difference may be partly from that
our study looked at the treatment effect on a binary outcome while the two studies
were conducted with continuous outcomes.

Relationships of covariate balance with performance measures In Fig. 8, we plotted
the ASAM against the type I error rate, and bias-adjusted power. The plot for the type
I error rate only considered the case when the effect size is 1 (& = 0). Conversely,
the plot for the bias-adjusted power excluded the case of & = 0 because all methods
by definition had type I error rates of 0.05 at the null treatment effect. The left-panel
showed that covariate balance was almost linearly associated with the type I error rate:
an increasing ASAM was associated with an increasing type I error rate. The right-
panel, however, showed that there is no clear relationship between covariate balance
and the bias-adjusted power.

In Fig. 9, we plotted the ASAM against the absolute bias, RMSE and CR. There
were linear relationships of the ASAM with the absolute bias, and with the CR: an
increasing ASAM was associated with an increasing bias, and with a decreasing CR.
There was no clear linear relationship between the ASAM and the MSE.

Bias-adjusted power and RMSE as functions of bias In Figs. 10 and 11, we plotted the
bias-adjusted power and RMSE against the absolute bias at fixed effect sizes: e ¥ = 2
for Fig. 10 and ¢~ = 3 for Fig. 11. Each point in figures represents the number
summarized over 1000 simulations. These plots may allow one to figure out which
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Moderate prevalence Low prevalence

0.10

1= _ i T

0.00

lepow ajdwis

0.25

ASAM

0.20

:%+$%%+%;

CBPS GBM GAM

jopow xeidwion

ML cBPS GBM
Method

Fig. 6 Distributions of average standardized absolute mean differences (ASAM) over 1000 simulated data
sets in the covariates under four scenarios. From left to right, and from top to bottom, scenarios A—D

PS methods have higher power or lower RMSEs when the biases are same or similar.
The GAM had the smallest bias, but its power and RMSE were not good compared to
the others. Around the bias of 0.03, the CBPS yielded the highest power and lowest
RMSE. The ML tended to yield high powers, but with large biases.

4 Conclusion and discussion
4.1 Summary of major findings

In summary, the ML and the CBPS are recommended for simple models with larger
power and correct type I error rates. The ML should not be used for complex models
except when exposure prevalence is low. The CBPS would be recommended also for
complex models, but with a very large sample size, the GBM and the GAM would be
recommended because of small bias. Below is the summary for each scenario.

(A) Additivity + Linearity + Moderate prevalence: All methods performed similarly,
but the ML and the CBPS were the least biased and GBM was the most biased.

(B) Additivity 4 Linearity 4+ Low prevalence: All methods performed similarly, but
the ML and the CBPS was tended to be the least biased and GBM was the most
biased.

(C) Nonadditivity 4+ Nonlinearity + Moderate prevalence: The CBPS was the most
powerful with a little bit inflated type I error. The GAM was the least biased, but
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Table 3 The average of the

ASAM values over 1000 data Method Scenario

sets A B C D
ML 0.029 0.017 0.078 0.032
CBPS 0.000 0.000 0.000 0.000
GBM 0.045 0.049 0.045 0.043
GAM 0.028 0.017 0.053 0.041

Moderate prevalence Low prevalence

0.2+

Jepow ajdwis

0.1+
.

ASAM

0.2

Jopow xe|dwog

0.1+

0 2500 5000 7500 10000 0 2500 5000 7500 10000
Iteration (Number of trees)

Fig. 7 ASAM curves from the GBM as functions of the number of iterations for one simulated data set
under four scenarios. From left to right, and from top to bottom, scenarios A-D

showed large variability so that its RMSE tended to be the biggest. The GBM was
biased similarly to the CBPS, but its RMSE was greater than that of the CBPS,
but smaller than that of the ML. The ML yielded a non-ignorable inflated type I
error because of its large bias, which yielded the greatest RMSE.

(D) Nonadditivity + Nonlinearity + Low prevalence: All methods showed valid type I
error rates. The ML and CBPS showed the greatest power and the smallest RMSE.
The GAM was the least biased, but showed the greatest RMSE. The GBM was
less biased, but yielded the greater RMSE than the ML and the CBPS.

4.2 Discussion of major findings

In general, the CBPS was robust to the change in the true PS model specification
in terms of a correct type I error, higher power and adjusted power, and a greater
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Fig. 8 Relationships of covariate balance [average standardized absolute mean difference (ASAM)] with
the type I error rate in the left panel, and with the bias-adjusted power in the right panel. The plot for the
type I error rate only considered the case when the effect size is 1 (§ = 0). The plot for the bias-adjusted
power only considered the case when the treatment effect is not null (6 # 0). The blue curve was obtained
from the generalized additive model fit to each panel

accuracy (RMSE) compared to the other methods. Previous studies (Westreich et al.
2011; Wyss et al. 2014) have revealed that rather than prediction accuracy such as the
c-statistic, covariate balance is more relevant to the accuracy of the treatment effect
estimates. Unlike the other methods, the CBPS estimates the model using an estimating
equation that minimizes covariate imbalance directly. As a result, it exhibited superior
performance in covariate balance in our simulations (Fig. 6) and other studies (Imai
and Ratkovic 2014; Wyss et al. 2014; Setodji et al. 2017) in terms of the ASAM, and
this might lead to the robust performance in terms of type I error, power and accuracy
as pointed out by Wyss et al. (2014).

Our bias-corrected power analysis showed that the ML and the CBPS exhibited
greater power than the GBM and the GAM in the scenario of nonadditivity and non-
linearity, but the CBPS kept close to a nominal type I error while the ML yielded a
severe inflation of type I error rate under moderate exposure prevalence. Therefore,
testing a treatment effect based on the ML may not be valid if a model-misspecification
exits with moderate exposure prevalence.

In the scenario of nonadditivity and nonlinearity, the GAM showed smaller bias
compared to the others. Since the GAM uses flexible methods such as the smoothing
splines to model continuous covariates, in theory, it can capture nonlinear effects of
continuous covariates in a PS model. Our simulations, however, showed that the GAM
was also robust to the existence of nonadditivity. One disadvantage of the GAM was
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Fig. 11 The bias-adjusted power and RMSE as functions of the absolute bias at an effect size of e =3

that it was relatively unstable and yielded large RMSE. Larger sample sizes may
improve the instability of the GAM.

In our study, along with model complexity for PS, exposure prevalence also was
found to be an important factor affecting the performance of methods. For example,
in the scenario of nonadditivity and nonlinearity, as exposure prevalence reduced, the
covariate imbalance, bias and RMSE of the ML substantially reduced. As a result,
the ATT estimate from the ML had its type I error rate reduced close to a nominal
one. The ATT estimates from the other methods yielded correct type I error rates in
the same situation. This phenomenon might be similar to that a nonlinear model can
be approximated by a linear model when outcome prevalence is low. Although Wyss
et al. (2014) did not explicitly evaluate exposure prevalence in their simulations, they
actually considered a real example where the exposure to one treatment is very rare
with 2%. Their empirical study showed that the ML and the CBPS had better covariate
balance than the two kinds of the GBM, which is consistent with our result.

We have evaluated the relationships of diverse performance measures with covariate
balance. The type I error, absolute bias, and CR has strong linear relationships with
the ASAM. The bias-adjusted power had no clear relationship with the ASAM, but
it depended more on the PS estimation methods: parsimonious methods such as the
ML and the CBPS had greater bias-adjusted power than non-parsimonious methods
such as the GBM and the GAM. Our study did not show a clear linear relationship
between the ASAM and the MSE as shown by Wyss et al. (2014), which considered
both logistic and probit regression models to generate treatment assignment. When the
logistic regression model was used, the range of the ASAM in the study of Wyss et al.
(2014) and our study overlaps (0-0.10). When the probit regression model was used,
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however, the ASAM went up to 0.2 in the study of Wyss et al. (2014), and thus this
simulation setting generated more complex model mis-specification. Thus, it might
be possible to see a linear relationship between the RMSE and the ASAM if we had
considered more complex treatment assignment models.

We have not considered variable selection methods, however, they should be con-
sidered to improve the estimation of treatment effects using PS especially when data
is high-dimensional. Variable selection for causal inference, however, requires cau-
tion because omission of confounders or risk factors only associated with an outcome
variable results in biased or inefficient estimates and including covariates only associ-
ated with a treatment variable, so called instrumental variables, reduces the efficiency
of estimates (Brookhart et al. 2006). Several methods have been developed to avoid
these errors, which include outcome-adaptive lasso (Shortreed and Ertefaie 2017)
and group-lasso for doubly robust estimation (Koch et al. 2017). Simulation studies
might be needed to assess and understand the relative performance of various variable
selection methods.

We have compared various PS methods in terms of weighting, which is a convenient
way to obtain the ATE or ATT. When there are outlying weights, however, weighting
estimators are unstable (Lee et al. 2011). More works should be done for the compar-
ison of PS methods using other important alternative tools such as sub-classification,
regression adjustment and matching. Specially, the performance of the CBPS might
be of interest in the setting of sub-classification, because the CBPS does not guarantee
covariate balance within the strata.

Even though, our simulations showed that the CBPS performed favorably, it may be
hard to argue that the CBPS is uniformly better than other methods such as the GBM
because our study does not cover all factors such as the complexity of an outcome
model. It has been recently shown that along with the relationships between treatment
and covariates, those between outcome and covariates affect the performance of PS
methods (Setodji et al. 2017). Prior knowledge or statistical tests for the relationships
of outcome and covariates can be helpful to determine which methods should be used
among the CBPS and the GBM.
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