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Abstract
Separability is an attractive feature of covariance matrices or matrix variate data,
which can improve and simplify many multivariate procedures. Due to its importance,
testing separability has attracted much attention in the past. The procedures in the
literature are of two types, likelihood ratio test (LRT) and Rao’s score test (RST).
Both are based on the normality assumption or the large-sample asymptotic properties
of the test statistics. In this paper, we develop a new approach that is very different
from existing ones. We propose to reformulate the null hypothesis (the separability
of a covariance matrix of interest) into many sub-hypotheses (the separability of the
sub-matrices of the covariance matrix), which are testable using a permutation based
procedure.We then combine the testing results of sub-hypotheses using the Bonferroni
and two-stage additive procedures. Our permutation based procedures are inherently
distribution free; thus it is robust to non-normality of the data. In addition, unlike
the LRT, they are applicable to situations when the sample size is smaller than the
number of unknown parameters in the covariance matrix. Our numerical study and
data examples show the advantages of our procedures over the existing LRT and RST.

Keywords Bonferroni test · Covariance matrix · Multiple multivariate data ·
Non-normal data · Permutation test · Separability

1 Introduction

Covariance separability is an attractive property of covariance matrices, which can
improve and simplify many multivariate procedures. A separable covariance matrix is
defined by its representation as the Kronecker product of two covariance matrices. The
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most commonmultivariate procedures for a separable covariancematrix are thosewith
the matrix normal distribution or transposable data (Dawid 1981; Gupta and Nagar
1999; Wang and West 2009). For example, Viroli (2010) and Glanz and Carvalho
(2013) consider the mixture model and an EM procedure to estimate it. Yin and Li
(2012) study the sparseGaussian graphicalmodel under thematrix normal assumption.
Allen and Tibshirani (2012) and Tan andWitten (2014) study various inferential issues
on transposable data, where transposability implies both rows and columns of the
matrix data are correlated. Extensions to three-levelmultivariate data are also presented
in the literature (e.g., Roy and Leiva 2008, 2011).

Due to its importance in inferential procedures, testing covariance separability has
received considerable attention from previous researchers. Lu and Zimmerman (2005)
and Mitchell et al. (2006) consider repeatedly measured multivariate data. They, inde-
pendently, study the likelihood ratio (LR) statistic under the normality assumption, and
propose an approximation to its quantiles under the null hypothesis. Fuentes (2006)
studies the separability in spatio-temporal processes. She uses a spectral representa-
tion of the process, and reformulates the test problem to a simple two-way ANOVA
problem. Li et al. (2007) work with stationary spatio-temporal random fields. Using
the asymptotic normality of the estimated covariance functions, they build an unified
framework for various testing problems. Recently, Filipiak et al. (2016, 2017) propose
Rao’s score test (RST) under normality for the repeatedly measured multivariate data,
and use the asymptotic chi-square distribution as its null distribution.

The normality is a common assumption in most of previous works on testing
covariance separability, which is often not true in practice. In this paper, we pro-
pose permutation based testing procedures to resolve this difficulty. More specifically,
we rewrite the null hypothesis on a separable covariance matrix� as an intersection of
many individual sub-hypotheses. The sub-hypotheses are on separability of specially
structured sub-matrices of �, where the LR statistic is invariant to the permutation
of (groups of) variables. Thus, the p value for each sub-hypothesis can be approxi-
mated numerically. The final decision is obtained by combining p values of individual
sub-hypotheses using the Bonferroni and multi-stage additive procedures.

The remainder of this paper is organized as follows. In Sect. 2, we briefly introduce
the LRT under normality assumption byMitchell et al. (2006) and the RST by Filipiak
et al. (2016, 2017). In Sect. 3, we propose permutation based procedures. We then
apply our methods and also two existing procedures (the LRT and RST) to simulated
data, and compare their sizes and powers in Sect. 4.We analyze two real data examples
in Sect. 5. Concluding remarks and discussions are given in Sect. 6.

2 Existing procedures for testing separability

We consider a multivariate random variable Xp×q ,

Xp×q =

⎛
⎜⎜⎜⎝

X11 X12 · · · X1q
X21 X22 · · · X2q
...

...
. . .

...

X p1 X p2 · · · X pq

⎞
⎟⎟⎟⎠ ,
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Permutation based testing on covariance separability 867

and its vectorized variable

vX = (
X11, X12, . . . , X1q , X21, X22, . . . , X p1, X p2, . . . , X pq

)T

which has mean μ = (
μ11, μ12, . . . , μ1q , μ21, μ22, . . . , μp1, μp2, . . . , μpq

)T and
covariance matrix � (a pq × pq matrix). Suppose we have n repeatedly measured
observations (independently and identically distributed copies) of X and vX, which
are X1,X2, . . . ,Xn and vX1, vX2, . . . , vXn , respectively. The goal of this paper is to
test the separability of �, i.e., � = U⊗V for two covariance matrices U = (

ui j , 1 ≤
i, j ≤ p

)
(a p × p matrix) and V = (

vkl , 1 ≤ k, l ≤ q
)
(a q × q matrix) using these

observations.
A popular procedure to test the separability of � is the likelihood ratio (LR) test

under normality. Suppose vX is normal and has the covariancematrix� = U⊗V. The
maximum likelihood estimators (MLEs) of U and V are the solution to the following
equations (Dutilleul 1999),

V̂ = 1

pn

n∑
h=1

(Xh − M̂)TÛ−1(Xh − M̂)

Û = 1

qn

n∑
h=1

(Xh − M̂)V̂−1(Xh − M̂)T,

whereM is the p×qmatrix formed fromμ and M̂ is the sample average ofX1, . . . ,Xn .
The LR statistic is then found to be

lrt = nq log
∣∣Û∣∣ + np log

∣∣V̂∣∣ − n log
∣∣S∣∣, (1)

where S is the sample covariance matrix

S = 1

n

n∑
h=1

(vXh − μ̂)(vXh − μ̂)T

and μ̂ is the vectorized estimator of M̂.
For the null distribution of the LR statistic in (1), Mitchell et al. (2006) propose to

match its first moment to that of a scaled chi-square distribution. They first show that
the null distribution of the LR statistic only depends on p, q, and n, not the specific
form of U and V. Thus, all separable covariance models � = U ⊗ V yield the same
null distribution given p, q, n. For each combination of (p, q, n), they approximate
the null distribution with a scaled chi-square distribution:

lrt ≈ k · χ2(ξ), (2)
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868 S. Park et al.

where ξ = pq(pq + 1)/2 − p(p + 1)/2 − q(q + 1)/2 + 1 is the number of degrees
of freedom of the asymptotic null distribution; and k is determined by matching the
first moment of lrt to that of the k · χ2(ξ), given by

k = (
1
/
ξ
){ − n

(
pq log 2 +

pq∑
j=1

ψ
(
0.5(n − j)

) − pq log n
)

−(
n/(n − 1)

)(
p(p + 1)/2 + q(q + 1)/2 + pq − 1

)}
,

whereψ is the digamma function. They further approximate the critical value (denoted
by lrtα) with that of the approximate scaled chi-square distribution as

lrtα � k · χ2
α(ξ), (3)

where lrtα is the 100 × (1 − α)-th quantile of the null distribution of lrt and χ2
α(ξ) is

that of the chi-square distribution χ2(ξ).
The above approximation by Mitchell et al. (2006) relies on the multivariate nor-

mality assumption in evaluating the expectation of lrt. In particular, they evaluate the
expectation of the generalized variance log |S| under the multivariate normality. As
shown in our numerical study in Sect. 4, if the data are from a non-normal distribution
(in our study, we use a multivariate t-distribution with degrees of freedom 5 and mul-
tivariate version of the chi-square distribution with degrees of freedom 3), the critical
value in (3) is severely biased and accordingly the size of the LRT is much larger than
the aimed level.

As an alternative to the LRT, very recently, Filipiak et al. (2016, 2017) consider
the RST under normality, whose testing statistic is

rst = npq

2
− tr

(
(Û−1 ⊗ V̂−1)ZTP⊥Z

)

+ 1

2n
tr
(
(Û−1 ⊗ V̂−1)ZTP⊥Z(Û−1 ⊗ V̂−1)ZTP⊥Z

)
, (4)

where Z = (
vX1, . . . , vXn

)T is a matrix having n rows by stacking transposed
vXh, h = 1, . . . , n, and P⊥ = In − n−11n1Tn is a projection matrix onto orthogo-
nal complement of the column space of n dimensional vector 1n = (1, . . . , 1)T, and
tr(A) is the trace of the matrix A.

The RST statistic has an advantage in its applicability to a small sized data, where
the required number of samples is smaller (n > max(p, q)) than that of LRT (n >

pq). Also, it is well-known that the RST statistic is asymptotically distributed as
the chi-square distribution with degrees of freedom ξ (defined above) under the null
hypothesis. However, as pointed out in Filipiak et al. (2016, 2017), the finite sample
distribution of (4) is unknown under the null hypothesis and also is quite different
from the asymptotic. The authors numerically approximate its critical values using
Monte Carlo samples from the normal distribution. Nonetheless, like the LRT, the
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Permutation based testing on covariance separability 869

performance of the RST also depends on the normality assumption as shown later in
Fig. 1 and tables in Sect. 4.

3 Permutation based procedures

All procedures to test the covariance separability in the literature, which include
Mitchell et al. (2006) and Filipiak et al. (2016, 2017), strongly depend on the nor-
mality assumption or large sample asymptotic, which is often not true in practice.
In this section, we propose permutation based procedures that are free of any distri-
butional assumption on the data. To do so, we first rewrite the null hypothesis (the
separability of �) into the intersection of many small individual hypotheses on (a
specific form of) sub-matrices of � and test the individual hypotheses via permuta-
tion.

Suppose, as defined earlier, vX is a pq dimensional random vector of

(
X11, X12, . . . , X1q , X21, X22, . . . , X2q , . . . , X p1, X p2, . . . , X pq

)T

with covariance matrix� = (
σst , 1 ≤ s, t ≤ pq

)
(a pq× pq matrix). The covariance

matrix � is defined to be separable, if it can be written as the Kronecker product of
two covariance matrices U = (

ui j , 1 ≤ i, j ≤ p
)
(a p× p matrix) and V = (

vkl , 1 ≤
k, l ≤ q

)
(a q × q matrix):

� = U ⊗ V =
⎛
⎜⎝
u11V · · · u1pV

...
. . .

...

u p1V · · · u ppV

⎞
⎟⎠ (5)

Let

�r
i j =

(
uii ui j
u ji u j j

)
⊗ V =

(
uiiV ui jV
u jiV u j jV

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

uii

⎛
⎜⎝

v11 · · · v1q
...

. . .
...

vq1 · · · vqq

⎞
⎟⎠ ui j

⎛
⎜⎝

v11 · · · v1q
...

. . .
...

vq1 · · · vqq

⎞
⎟⎠

u ji

⎛
⎜⎝

v11 · · · v1q
...

. . .
...

vq1 · · · vqq

⎞
⎟⎠ u j j

⎛
⎜⎝

v11 · · · v1q
...

. . .
...

vq1 · · · vqq

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is the submatrix of � corresponding to the subvector

Xr
i j = (

Xi1, Xi2, . . . , Xiq , X j1, X j2, . . . , X jq
)T

.
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Similarly, we define �c
kl as

�c
kl =

(
vkk vkl
vlk vll

)
⊗ U =

(
Uvkk vklU
Uvlk vllU

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝
u11 · · · u1p
...

. . .
...

u p1 · · · u pp

⎞
⎟⎠ vkk

⎛
⎜⎝
u11 · · · u1p
...

. . .
...

u p1 · · · u pp

⎞
⎟⎠ vkl

⎛
⎜⎝
u11 · · · u1p
...

. . .
...

u p1 · · · u pp

⎞
⎟⎠ vlk

⎛
⎜⎝
u11 · · · u1p
...

. . .
...

u p1 · · · u pp

⎞
⎟⎠ vll

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, the hypothesis “� is separable” is equivalent to “�r
i j and �c

kl are separable for
all 1 ≤ i < j ≤ p and 1 ≤ k < l ≤ q.” We let Hr

0,i j and Hc
0,kl be the separability

hypotheses on �r
i j and �c

kl , respectively, for each choice of (i, j) and (k, l). Below
we propose a permutation based procedure to test the individual hypothesesHr

0,i j and
Hc

0,kl .
We consider the testHr

0,i j which is the hypothesis on the covariance matrix of the
sub-vector

Xr
i j = (

Xi1, Xi2, . . . , Xiq , X j1, X j2, . . . , X jq
)T

.

Here, we assume uii = u j j (say they are equal to 1) and, before implementing the
procedure below for the data, we standardize the data to take this assumption into
account. Under this assumption, Xr

i j has the covariance matrix

�r
i j =

(
V ui jV

u jiV V

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

v11 · · · v1q
...

. . .
...

vq1 · · · vqq

⎞
⎟⎠ ui j

⎛
⎜⎝

v11 · · · v1q
...

. . .
...

vq1 · · · vqq

⎞
⎟⎠

u ji

⎛
⎜⎝

v11 · · · v1q
...

. . .
...

vq1 · · · vqq

⎞
⎟⎠

⎛
⎜⎝

v11 · · · v1q
...

. . .
...

vq1 · · · vqq

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

In addition,

Xr
j i = (

X j1, X j2, . . . , X jq , Xi1, Xi2, . . . , Xiq
)T

has the same covariance matrix with that of Xr
i j . Thus, if the distribution of X is

specified only based on its mean and covariance matrix (for example, the elliptical
distribution in Anderson 2003), the distributions of Xr

i j and X
r
j i are equal if they have

common means. The detail about permutation of multivariate data can be found in Li
et al. (2010, 2012) and Klingenberg et al. (2009).

The above allows us to construct a permutation based testing procedure for the
sub-hypotheses Hr

0,i j and also for Hc
0,kl . To be specific, let Yh, h = 1, 2, . . . , n, be
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Permutation based testing on covariance separability 871

independent copies of (Xr
i j )

T and let the likelihood ratio test (LRT) statistic forHr
0,i j

using Yh’s be T, that is,

T = nq log
∣∣Ûi j

∣∣ + 2n log
∣∣V̂∣∣ − n log

∣∣S[i, j]
∣∣, (7)

where Ûi j and V̂ are the MLE of Ui j = [1, ui j ; u ji , 1], V, and S[i, j] is the sample
covariance matrix obtained fromYh’s. Note that we assume p = 2 for the time being,
so thatYh = (

Yh
1 ,Y

h
2

)
, whereYh

1 = (
Xh
i1, . . . , X

h
iq

)
andYh

2 = (
Xh

j1, . . . , X
h
jq

)
. Sup-

pose π = (
π(h), h = 1, 2, . . . , n

)
is a vector of i.i.d. random numbers having values

0 or 1 with probability 1/2. The permutation of
{
Yh = (

Yh
1 ,Y

h
2

)
, h = 1, 2, . . . , n

}
for π is defined as

{
Yh(π) = (

Yh
1(π),Yh

2(π)
)
, h = 1, 2, . . . , n

}
, where

Yh(π) = (
Yh
1(π),Yh

2(π)
) =

{(
Yh
1 ,Y

h
2

)
if π(h) = 0(

Yh
2 ,Y

h
1

)
if π(h) = 1.

In the sequel, the permuted LR statistic corresponding to π is computed as

T(π) = nq log
∣∣Ûi j (π)

∣∣ + 2n log
∣∣V̂(π)

∣∣ − n log
∣∣S[i, j](π)

∣∣, (8)

where Ûi j (π), V̂(π), and S[i, j](π) are the estimators with the 1× 2q permuted sam-
ples

{
Yh(π) = (

Yh
1(π),Yh

2(π)
)
, h = 1, 2, . . . , n

}
defined above. We approximate

the null distribution of T with the empirical distribution function of the permuted
statistics

{
T(π), π ∈ 	

}
, where 	 is the collection of all possible permutations, and

then evaluate the p value for the hypothesis Hr
0,i j . The above permutation algorithm

is summarized as follows. For the column-wise permutation algorithm, we replace
“rows” with “columns”; and “p” with “q”.

Algorithm 1 “Row”-wise Permutation
Input: {Xh}nh=1 : standardized p × q dimensional data
1: for (i, j) ∈ {

(i, j) : 1 ≤ i < j ≤ p
}
do

2: Yh ← 1 × 2q subvector from i, j-th “rows” of Xh , h = 1, . . . , n
3: LRTobs ← the LR statistic computed with {Yh}nh=1
4: for b = 1, . . . , B do

5: Generate πh
i .i .d∼ Ber(1/2), h = 1, . . . , n

6: LRTb ← the LR statistic from permuted data {Yh(π)}nh=1
7: end for
8: pi j ← B−1 ∑B

b=1 I(LRTb > LRTobs)
9: end for
10: p0 ← min

{(p
2

)
mini< j pi j , 1

}
Output: p0 : the overall p value

Finally, we do the same procedure for each individual hypothesis Hr
0,i j and Hc

0,kl
and obtain their p values pri j and pckl .

Our next step is to combine p values of individual sub-hypotheses to make a final
decision on the separability of �, given the overall significance level α. Here, we
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consider two combining procedures, both based on the Bonferroni correction. The
first procedure, named as “m-perm”, considers only the sub-hypotheses along with
the smaller dimension of the data matrix. If p is smaller than q, we consider the sub-
hypothesesHr

0,i j , i, j = 1, 2, . . . , pwith i < j . The row-wise
(p
2

)
pairs of hypotheses

result in p values {pr12, pr13, . . . , prp−1,p}, and the Bonferroni correction compares all

individual p values pri j with the adjusted significance level α/
(p
2

)
. Equivalently, the

p value is set as
(p
2

)
mini< j pri j . The second procedure, named as “two-s”, is the

combination of the row and column-wise Bonferroni procedures with the idea of
multi-stage additive testing (Sheng and Qiu 2007). Here, we first test the separability
by testing the row-wise sub-hypotheses (here, p < q is assumed) using the Bonferroni
procedure at level γ1. If the separability is not rejected at the first stage, we further
test the column-wise sub-hypotheses using the Bonferroni procedure at level γ2. The
p value of the two stage procedure becomes

(p
2

)
mini< j pri j , if

(p
2

)
mini< j pri j ≤ γ1;

γ1 + (1− γ1)
(q
2

)
mink<l pckl , otherwise. In this paper, we set the significance levels γ1

and γ2 to be equal, i.e., γ = 1 − √
1 − α, following Sheng and Qiu (2007).

Despite the additional efforts on combining p values, the proposed procedures have
at least two advantages over the existingLRTandRST. First, theLRTandRST strongly
depend on the normality assumption, which is often not true in practice. In addition,
even under the normality, the null distributions of the LR statistic and RST statistic are
still not fully characterized, and several approximate formulas are proposed or Monte
Carlo approximation is used in the literature. Unlike the existing procedures, our pro-
cedures are distribution free and can be used with minimal distributional assumptions.
Second, our procedures are applicable to small sized data. For example, the required
sample size for our procedures is n > 2min(p, q), while that of the LRT and RST is
n > pq and n > max(p, q), respectively.

4 A numerical study

We numerically investigate the sizes and powers of the proposed permutation based
procedures and compare their performances to those of the LRT and the RST. Here,
we use the linear model as in Mitchell et al. (2006); that is

X = M + E, (9)

whereM is the p× q matrix corresponding to the mean vector μ; E is the p× q error
matrix, whose (i, j)-th element is ei j , and let

vE = (
e11, e12, . . . , e1q , e21, . . . , e2q , . . . , ep1, . . . , epq

)T
.

We consider three distributions for vE with mean 0 and covariance matrix �; (i) the
multivariate normal distribution, (ii) the multivariate t-distribution with degrees of
freedom 5, and (iii) the “multivariate” chi-square distribution with degrees of freedom
3. Contrary to the first two, the last distribution is asymmetrical, which is generated
by
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Permutation based testing on covariance separability 873

vE = �1/2(vF − μF ),

where each component ofvF independently follows aunivariate chi-square distribution
with degrees of freedom 3, and a mean vector μF of vF is used to center the error at
the mean zero. It is worthwhile to point out that these multivariate distributions can
be characterized only by mean and covariance matrix when degrees of freedom, if
relevant, are fixed, which ensures the applicability of our procedures for testing the
covariance matrix. We also assume thatM is the zero matrix for simplicity. Following
Mitchell et al. (2006), we set p = 4 (the row size), q = 3, 5, 10 (the column size),
and n = 20, 25, 50, 75 (the number of replicated samples). The covariance matrix is
assumed to have the form of

C
[
(i, t + k), ( j, t)

]
:= cov

(
Xi(t+k), X jt

) = σ 2[γ I(i �= j) + I(i = j)
] ρk

i

1 − ρiρ j
,

(10)
where 1 ≤ i, j ≤ 4, 1 ≤ t ≤ t + k ≤ q, and I(A) is an indicator function for the event
A. For instance, the model (10) with p = 4, q = 3 is written by

� =

⎛
⎜⎜⎝

�11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34
�41 �42 �43 �44

⎞
⎟⎟⎠ ,

where each block matrix is defined by

�i j = σ 2 ∗ γ I(i �= j) ∗ 1

1 − ρiρ j
∗

⎛
⎝

1 ρ j ρ2
j

ρi 1 ρ j

ρ2
i ρi 1

⎞
⎠ , (11)

where ∗ indicates elementwise multiplication. In the study below, we set σ = 1, and
γ = 0.7.

We first examine the magnitude of biases of Mitchell et al. (2006)’s approxi-
mation for the LRT and the RST (with the asymptotic chi-square distribution) to
the critical value when the normality is violated. To do it, we generate samples
from the multivariate t-distribution where the covariance is assumed to be sep-
arable ((ρ1, ρ2, ρ3, ρ4) = (0.6, 0.6, 0.6, 0.6)). We fix row and column sizes as
p = 4, q = 3 and compute 10,000 LRT and RST statistics with different sample sizes
n = 20, 25, 50, 75 and degrees of freedom df = 5, 10, 30,∞ (∞ corresponds to the
multivariate normal distribution). To understand the approximation error by Mitchell
et al. (2006) and Filipiak et al. (2016, 2017), we consider the differences between the
empirical 95-th percentile and the approximation by (3) for the LRT and that by the
asymptotic chi-square distribution for the RST. Figure 1 shows that the approximate
critical values by both methods are biased, and the magnitude of the biases increases
as either the number of samples increases (decreases) when the degrees of freedom
are small (large) or the non-normality grows (the degrees of freedom decreases).
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Fig. 1 The difference between the true critical value and its approximation from the multivariate t-
distribution under separability

Next, we compare the empirical sizes and powers of the permutation based pro-
cedures to the LRT based on (3) and RST. To evaluate the empirical sizes and
powers, we consider three hypotheses: (i) null (“N”) hypothesis: (ρ1, ρ2, ρ3, ρ4) =
(0.6, 0.6, 0.6, 0.6), (ii) the first alternative (“A1”) hypothesis: (ρ1, ρ2, ρ3, ρ4) =
(0.6, 0.65, 0.7, 0.75), the second alternative (“A2”) hypothesis: (ρ1, ρ2, ρ3, ρ4) =
(0.9, 0.7, 0.7, 0.45). We generate 500 data sets from the model (9) for each combina-
tion of p,q, and n. In each data set, we use 2000 permuted samples to calculate the
p value. The significance level α is set to 0.05. The empirical sizes and powers are
reported in Table 1.

Table 1 first shows that the proposed permutation based procedures work better
than both the LRT with the approximation in (3) and RST in controlling the size at the
aimed level 0.05. The sizes of both the LRTwith (3) and RST become larger than s0.05
when the underlying distribution has heavier tails (e.g. the t-distribution with smaller
degrees of freedom). In addition, when the data are from an asymmetric distribution
(e.g. the chi-square distribution), the same type of upward bias occurs in the size.

Second, the performance of the m-perm depends on the permutation direction
(either row-wise or column-wise) as well as the true covariance�. In both alternatives
“A1” and “A2”, the covariance matrix of the column-wise selection (for example,Xc

12)
is conjectured to be less separable than that of the row-wise selection (for example,
Xr
12) and, thus, the choice of the column-wise permutation (the cases p > q) shows

more power than the row-wise permutation. Table 2 reports the empirical powers (for
the cases of p = 4 and q = 3) of the Bonferroni procedure (at level α) based on
the row-wise permutation together with those based on the column-wise permutation.
This shows the Bonferroni test for sub-hypotheses along with the row-wise direc-
tion (p-perm) now has lower power than the column-wise permutation (q-perm); the
p-perm often has lower power than both the size-corrected LRT and RST.

Third, the two-s, our second permutation based procedure, considers both row-wise
and column-wise permutations and has higher empirical power than the LRT in all but
one case (normal distribution and with q = 10, r = 75 under A1). Compared to the
RST, it tends to have higher power when (p, q) = (4, 3) and (4, 5), but lower power
when (p, q) = (4, 10) (the case p and q are very unequal). It is interesting to see that
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it has higher empirical power than both the LRT and RST even for some cases with
the data from the normal distribution. We conjecture this is because the sample size
n is relatively small compared to the dimension of the data pq. Here, we remark that
both the theoretical reference distributions of the LRT and RST are not available in
practice.

Finally, we conclude the section with a short report on the computation, which was
done with R ver. 3.4.2 and carried out on a PC with Intel Core i7 3.0 GHz processor.
The average CPU time without parallel computing for the case p = 4, q = 5, n = 50
using 2000 permutation steps is 32.04 seconds with standard deviation 1.89 seconds
based on 100 repetitions.

5 Data examples

5.1 Tooth size data

We now apply our method to testing the covariance separability of the tooth size
data, which were obtained as a part of Korean National Occlusion Study, conducted
from 1997 to 2005 (Wang et al. 2006; Lee et al. 2007). Here, we use the tooth sizes
of 179 young Korean men who passed predefined selection criteria among 15, 836
respondents recorded in this dataset, to test separability in the analysis. The observation
of each subject has a 2 × 14 matrix form, where the first row consists of sizes of 14
teeth in maxilla and the second row consists of those in mandible. We write the size
matrix of the h-th subject as

Xh =
(
XX
h1, · · · , XX

h7, X
X
h8, · · · , XX

h14

XN
h2, · · · , XN

h7, X
N
h8, · · · , XN

h14

)

where “X” in the upper-script is short formaxilla and “N” formandible. In this section,
we are interested in testing the covariancematrix ofX (its vectorized version), say�, is
separable as the Kronecker product of U2×2 (the common covariance matrix between
sizes of the upper and lower teeth at the same location) and V14×14 (the covariance
matrix among sizes of the teeth within maxillar (or mandible)). In short, we test the
hypothesis H0 : � = U2×2 ⊗ V14×14.

Before testing the hypothesis on separability, we check the normality assumption
which existing procedures rely on. We apply three popular testing procedures for the
normality which are available from “MVN” R package by Korkmaz et al. (2014); they
are Mardia’s (1970), Henze–Zirkler’s (1990), and Royston’s test (Shapiro and Wilk
1964; Royston 1983, 1992). All of the results clearly indicate non-normality of tooth
sizes (p value = 0), and univariate Q–Q plots (Fig. 2) confirm it again, especially with
“X4R” and “N2R”.

To test the separability, we use the centered data by subtracting themean vector. The
cross-covariance matrix between maxillary and mandible regions is estimated from
the unstructured sample covariance matrix S and the maximum likelihood estimator
under separability Û ⊗ V̂, respectively, as:
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Fig. 2 Univariate Q–Q plots for men’s right-side tooth sizes that are centered. The vertical, horizontal axes
represent sample, theoretical quantiles, respectively

S[1 : 7, 15 : 21] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.082 0.106 0.085 0.067 0.058 0.083 0.107
0.075 0.104 0.102 0.087 0.091 0.067 0.107
0.050 0.088 0.124 0.103 0.097 0.092 0.113
0.046 0.069 0.086 0.115 0.106 0.104 0.115
0.047 0.060 0.061 0.107 0.118 0.116 0.122
0.061 0.067 0.072 0.106 0.126 0.202 0.180
0.061 0.069 0.089 0.129 0.125 0.197 0.269

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

(Û ⊗ V̂)[1 : 7, 15 : 21] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.033 0.017 0.015 0.011 0.010 0.013 0.014
0.017 0.042 0.017 0.016 0.012 0.012 0.017
0.015 0.017 0.033 0.018 0.015 0.014 0.017
0.011 0.016 0.018 0.034 0.022 0.018 0.023
0.010 0.012 0.015 0.022 0.034 0.023 0.028
0.013 0.012 0.014 0.018 0.023 0.082 0.038
0.014 0.017 0.017 0.023 0.028 0.038 0.090

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

whereM[a : b, c : d] denotes a submatrix ofM from a-th row to b-th row and from c-
th column to d-th column, producing a (b−a+1)×(d−c+1)matrix. From the above,
we find a significant difference between S[1 : 7, 15 : 21] and (Û⊗ V̂)[1 : 7, 15 : 21].
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We approximate the p value using the procedure in Sect. 3, which is approximated to
0.025 by the two-s procedure. Here, the number of permuted data sets to approximate
the p value is set as 10,000. On the other hand, the LRT statistic in (1) is evaluated as
921.91, and the critical value under normality approximated by Mitchell et al. (2006)
is 368.26 at the significant level α = 0.01. The RST statistic is evaluated as 741.45
with the asymptotic critical value χ2

.01(299) = 358.81 and empirical critical value
358.27 at α = 0.01.

5.2 Corpus callosum thickness

Our second example is about two-year longitudinal MRI scans from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). According to Lee et al. (2016), the corpus
callosum (CC) thickness profile is calculated based on CC segmentation at equally
spaced intervals. To be specific, the CC thicknesses of 135 subjects are measured
at 99 points for each year. The separability hypothesis to be tested is H0 : � =
U2×2 ⊗ V99×99, where we expect U and V to explain the covariance structure in
CC thickness of the repeated measurements and the measurements within a subject,
respectively.

The LRT based on the normality is not applicable to this dataset for two reasons.
First, the multivariate normal tests provided by the MVN R-package reveal that the
data do not satisfy the multivariate normality. This can also be observed from Fig. 3, in
which each shown variable has a heavy right tail. Second, the sample size (n = 135) is
less than the number of measure points (pq = 99×2 = 198), making the LR statistic
undefined.

We apply the proposed permutation procedures to the data. More precisely, we
apply the permutation test to the sub-hypotheses of all

(99
2

)
column-wise pairs. The

permutation test for each sub-hypothesis is for the bivariate paired data with the size
of 135 × 4; for example, if the column pair (k, l) is chosen, the bivariate paired data
are

{(
X1
hk, X

1
hl , X

2
hk, X

2
hl

)
, h = 1, 2, . . . , 135

}
. We use 100, 000 random permuta-

tions to evaluate the p value of each sub-hypothesis, and the Bonferroni adjusted
p value is given by

(99
2

)
mink<l pckl , where pckl is the p value for the sub-hypothesis

Hc
kl for the (k, l)-th column pair. The p value evaluated is less than 0.0001. The RST

statistic is evaluated as 16, 346.75 with the asymptotic and empirical critical value as
χ2

.01(14749) = 15, 151.49 and 15, 095.09, respectively.

6 Discussion

In this paper, we propose permutation based procedures to test the separability of
covariance matrices. The procedure divides the null hypothesis on a separable covari-
ance matrix into many sub-hypotheses, which are testable via a permutation method.
Compared to the existing LRT and RST under normality, the proposed procedures are
distribution free and robust to non-normality of the data. In addition, it is applicable
to small sized data, whose size is smaller than dimension of the covariance matrix
under test. The numerical study and data examples show that the proposed permuta-
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Fig. 3 Univariate Q–Q plots for MRI data, where each columns are centered

tion procedures are more powerful when the data are non-normal and the dimension
is high.

Theory on permutation procedures has been well developed for linear permutation
test statistics (Strasser andWeber 1999; Finos and Salmaso 2005; Pesarin and Salmaso
2010; Bertoluzzo et al. 2013) and its computational tool is publicly available (the R
package “coin” by Hothorn et al. 2017). In our procedure, permutation is applied to
testing the sub-hypotheses Hr

0,i j and Hc
0,kl for each choice of (i, j) and (k, l); the

sub-hypotheses are on the separability of�r
i j s and �c

kls. Here, we use the LR statistic,
one of a few known statistics for testing covariance separability. The LR statistic is
non-linear and, thus the CRAN package and the asymptotic results of Strasser and
Weber (1999) can not be directly applied to it. However, we conjecture that, for an
appropriately chosen permutation test statistic, we may encapsulate our problem into
the existing conditional inference framework and achieve the proven optimality.

Our procedures in this paper use theBonferroni rule to combinepvalues from testing
of many sub-hypotheses. In our problem, the p values of individual sub-hypotheses
are conjectured to be strongly dependent to each other by its nature. For this reason,
we adopt the Bonferroni rule to ensure the size of the combined test to be less than
the aimed level despite of its conservativeness. In addition, the additional numerical
study not reported here shows that the well-known Fisher’s omnibus and Lipták’s rules
(under the assumption of independent p values) are severely biased in their sizes for
non-normal data. The same reasoning would be applied to the direct aggregation of
individual LR statistics. We could not specify the null distribution of the aggregated
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statistic due to the dependency among individual statistics. We thus have difficulty in
proceeding with this.

We finally conclude the paper with the remark that the procedure of this paper can
easily be applied to testing more complexly structured covariance matrix. Suppose we
consider repeatedly measured spatial data (on the lattice system) or image data. The
observation of a single subject has the form of a three-way arrayXi jk , i = 1, 2, . . . , a,
j = 1, 2, . . . , b, and k = 1, 2, . . . , c (with the dimension of a×b×c), and its separable
covariance matrix has the form of � = A⊗B⊗C (here, A, B, and C are a×a, b×b,
and c× c covariance matrix, respectively). To test the hypothesis � = A⊗B⊗C, we
read the data as a matrix form as Ys,k = X[i j]k with s = 1, 2, . . . , ab, k = 1, 2, . . . c,

and test the sub-hypothesis H0,{[12],3} : � = U1 ⊗ C
(

= (
A ⊗ B

) ⊗ C
)
at the level

α1. We repeat the same procedure for the other two sub-hypotheses H0,{1,[23]} : � =
A ⊗ U2

(
= A ⊗ (

B ⊗ C
))

and H0,{2,[13]} : � = B ⊗ U3

(
= B ⊗ (

A ⊗ C
))

at the

level α2 and α3, respectively. Finally, we combine the results of three sub-hypotheses
with the Bonferroni or multi-stage additive procedure discussed in Sect. 3.
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