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Abstract
This paper proposes a new Bayesian approach to estimate the Gini coefficient from
the grouped data on the Lorenz curve. The proposed approach assumes a hypothetical
income distribution and estimates the parameter by directly working on the likelihood
function implied by the Lorenz curve of the income distribution from the grouped data.
It inherits the advantages of two existing approaches through which the Gini coeffi-
cient can be estimated more accurately and a straightforward interpretation about the
underlying income distribution is provided. Since the likelihood function is implicitly
defined, the approximate Bayesian computational approach based on the sequential
Monte Carlo method is adopted. The usefulness of the proposed approach is illustrated
through the simulation study and the Japanese income data.

Keywords Generalised beta distribution · Gini coefficient · Income distribution ·
Sequential Monte Carlo

1 Introduction

The Gini coefficient plays a fundamental role in measuring inequality and can be a
basis of political decision-making. Although it is ideal to utilise individual household
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data to estimate theGini coefficient accurately (see, e.g., Hasegawa andKozumi 2003),
availability of individual data is usually severely limited because of the difficulty in
data collection and management and confidentiality of, say, individual income data,
the former being particularly true in developing countries. Instead, grouped data,
which provide the summary of income and number of individuals or households for
several income classes, are widely available. Estimating the Gini coefficient based on
grouped data has drawn substantial attention from both the theoretical and empirical
perspectives. See, for example, Chotikapanich (2008) for an overview.

There are mainly two approaches to estimate the Gini coefficient from grouped data
in the parametric framework (Ryu and Slottje 1999). One is to assume a hypothetical
statistical distribution for income and estimate the parameters of the income distri-
bution from the grouped level income data. The Gini coefficient is then calculated
from the parameter estimates. An income distribution that provides good fit to the
data can be chosen from the wide range of statistical distributions (McDonald and
Xu 1995; Kleiber and Kotz 2003) The advantage of this approach is that it provides
a straightforward interpretation about the underlying income distribution because the
moments can be computed and the shape of the distribution can be visualised through
the parameter estimates. In this approach, the likelihood function can be constructed
based on the multinomial distribution, since the data can be regarded as an realisa-
tion from the multinomial trials with the probabilities derived from the hypothetical
income distribution and the number of households in the income groups (McDonald
1984). The likelihood function can also be constructed by regarding the thresholds for
the income groups as the selected order statistics (Nishino and Kakamu 2011).

The other approach is to fit a specific functional form directly to the data on the
Lorenz curve that include the cumulative population shares and cumulative income
shares, instead of using the level income data, and estimate the parameters of the
function. Since such a functional form for the Lorenz curve is designed so that the
inequality measures can be easily derived, the Gini coefficient is immediately calcu-
lated once the parameter estimates are obtained. A notable advantage of this approach
is that a large list of functional forms is available (see, e.g., Kakwani and Podder
1973; Basmann et al. 1990; Ortega et al. 1991; Rasche et al. 1980; Villaseñor and
Arnold 1989; Chotikapanich 1993; Sarabia et al. 1999) in addition to the ones that are
derived from the well-known income models such as the lognormal, Singh–Maddala,
and Dagum distributions. Also, this approach is known to provide a more accurate
estimate of the Gini coefficient than the first approach, because the Lorenz curve is
estimated on the bounded interval [0, 1] (Ryu and Slottje 1996). However, while the
implied probability density function exists provided some conditions are satisfied (Iri-
tani and Kuga 1983; Sarabia 2008), the interpretation as an income distribution is less
intuitive as the support of the probability density function of the implied distribution
is limited to some interval. Moreover, the current practice for parametric Lorenz curve
estimation lacks a solid statistical foundation compared with the hypothetical statisti-
cal distribution estimation despite the fact that the discussion on the Lorenz curve has
a long history since the seminal work by Lorenz (1905).

Given this context, the aim of the present paper is to estimate the Gini coefficient
assuming a hypothetical statistical distribution from the grouped data on the Lorenz
curve in a general framework. For some flexible hypothetical distributions, such as
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the generalised beta distribution and mixture of parametric distributions, an analytical
form of the Lorenz curve is not available and the evaluation of the Lorenz curve can be
computationally expensive and unstable. Therefore, a new estimation procedure for the
casewhere the Lorenz curve is not explicitly available is required.Moreover, it is worth
noting that the present study is motivated by the approach proposed by Chotikapanich
and Griffiths (2002, 2005). More recently, Hajargsht and Griffiths (2015) proposed a
generalised method-of-moment approach for the Lorenz curves in a similar setting. In
Chotikapanich and Griffiths (2002, 2005), the expectations of the income shares for
the groups are assumed to be equal to the differences in the values of the Lorenz curve
for the two consecutive groups. Then, they adopted the likelihood function based on
the Dirichlet distribution and proposed the maximum likelihood estimator and Bayes
estimator by using the Markov chain Monte Carlo (MCMC) method. Although their
pseudo Dirichlet likelihood approach may be convenient, the parameter estimates and
the resulting Gini estimate can be highly sensitive with respective to the additional
tuning parameter, which is required to construct theDirichlet likelihood and the data do
not contain information about. In the Bayesian framework, the posterior distributions
of the parameters andGini coefficient are sensitivewith respect to the prior distribution
of this parameter. Furthermore, the evaluation of the likelihood function requires the
evaluation of the Lorenz curve for each group. The applicability of this approach is
limited to the caseswhere evaluation of the Lorenz curve derived from the hypothetical
distribution is feasible and substantial prior information for the tuning parameter is
available.

Motivated by the above issues, in this paper, we attempt to work on the likelihood
function implicitly defined from the grouped data on the Lorenz curve of the hypo-
thetical income distribution, instead of utilising the Dirichlet likelihood. We employ
the approximate Bayesian computation (ABC) method that avoids the direct evalua-
tion of the likelihood function and simulates data from the model given a candidate
parameter value. If the simulated and observed data are similar, the candidate param-
eter value is a good candidate to have generated the observed data. Then, it can be
regarded as a sample from the posterior distribution. The ABC method has a wide
variety of fields of application including population genetics, population biology, sig-
nal processing, epidemiology, and economics. See, for example, Csilléry et al. (2010),
Sisson and Fan (2011), and Marin et al. (2012) for an overview of the ABC methods.
The application of the ABC method requires an ability to simulate datasets from the
probability model and is well-suited to the present context, because datasets can be
easily generated from the frequently used hypothetical income distributions. Since it
is difficult to devise an efficient proposal distribution for an MCMC algorithm in the
ABC setting, we adopt the sequential Monte Carlo (SMC) algorithm with adaptive
weights proposed by Bonassi andWest (2015), which is computationally efficient and
easy to implement.

The advantage of the proposed approach is threefold. Firstly, the proposed approach
inherits the advantage of the two existing approaches. A straightforward interpretation
about the hypothetical income distribution can be obtained from the parameter esti-
mates. Furthermore, since the parameters are estimated from the data on the Lorenz
curve, the Gini coefficient can be estimated more accurately than estimating it from
the grouped level income data. Secondly, we work on the likelihood function implied
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from the Lorenz curve, the proposed approach does not require the tuning parameter
on which the data do not contain information unlike the Dirichlet approach in Chotika-
panich and Griffiths (2002, 2005). Finally, since the ABC method only requires an
ability to simulate data from theprobabilisticmodel,which is the case for the frequently
used hypothetical income distributions, the proposed approach does not require an
analytical form of the Lorenz curve unlike the Dirichlet approach.

The rest of this paper is organised as follows. Section 2 briefly reviews the esti-
mation methods for the Lorenz curve from grouped data and proposes our estimation
method based on ABC. We focus on the parametric framework and adopt the five-
parameter generalised beta distribution as a flexible hypothetical income distribution.
Section 3 illustrates the proposed method by using the simulated data and compares
the performance with the existing methods. The application of the proposed method
to the real data from the Family Income and Expenditure Survey in Japan is also
presented. Finally, Sect. 4 concludes and some remaining issues are discussed.

2 Method

2.1 Estimating Gini coefficient from Lorenz curve based on grouped data

Suppose that the population is divided into k groups. Let us denote the observed cumu-
lative shares of households and income by p = (p0 = 0, p1, . . . , pk−1, pk = 1) and
y = (y0 = 0, y1, . . . , yk−1, yk = 1), respectively, which are usually constructed from
a survey on n individual households. Even if the cumulative shares of households and
cumulative shares of income are not directly available, p and y can be calculated from
the income classes and class incomemeans reported in the grouped data. Let us denote
the cumulative distribution function and probability density function of the hypotheti-
cal income distribution with the parameter θ by H(·|θ) and h(·|θ), respectively. Then,
the Lorenz curve denoted by L(y|θ) is defined by

L(y|θ) = 1

μ

∫ y

0
H−1(z|θ)dz, y ∈ [0, 1],

where μ is the mean of the distribution and H−1(z|θ) = inf {x : H(x |θ) ≥ z}. Once
the parameter estimate for θ is obtained, the Gini coefficient can be estimated by using

G = −1 + 2

μ

∫ ∞

0
xH(x |θ)h(x |θ)dx, (1)

= 1 − 2
∫ 1

0
L(z|θ)dz, (2)

There are several methods to estimate the parameters of the Lorenz curves, for
example, the least squares (Kakwani and Podder 1973) or generalised least squares
(Kakwani and Podder 1976). More recently, Chotikapanich and Griffiths (2002) pro-
posed a maximum likelihood estimator based on the likelihood from the Dirichlet
distribution given by
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fDIR(q|θ , λ) = �(λ)

k∏
j=1

q
λ(L(p j |θ)−L(p j−1|θ))−1
j

�(λ(L(p j |θ) − L(p j−1|θ)))
, (3)

where q = (q1, . . . , qk), q j = y j − y j−1 is the income share for the j th group,
�(·) is the gamma function, and λ is the additional parameter of the Dirichlet like-
lihood. This likelihood function is motivated by the assumption given by E[q j ] =
L(p j |θ) − L(p j−1|θ). The variance and covariance of the income shares implied
from this likelihood are given by

Var(q j ) = E[q j ](1 − E[q j ])
λ + 1

, Cov(qi , q j ) = − E[qi ]E[q j ]
λ + 1

,

where λ acts as a precision parameter. A Larger value of λ suggests that the variation of
the income share around the Lorenz curve is small. Based on this likelihood function,
Chotikapanich and Griffiths (2005) considered an MCMC method in the Bayesian
framework by specifying the prior distributions of θ and λ.

Although their Dirichlet likelihood approach may appear convenient, it has the
following problems. The parameter estimates and the resulting Gini estimate can be
highly sensitive with respective to the choice of the value or prior distribution of λ,
since data do not contain information on this parameter. The sensitivity is profound
especially when the number of groups is small. Furthermore, the evaluation of the like-
lihood function requires the evaluation of L(yi |θ) for i = 1, . . . , k. Except for some
simple standard distributions, such as the lognormal, Singh–Maddala, and Dagum,
some flexible classes of hypothetical income distributions do not admit an analytical
form of the Lorenz curve or the evaluation of the Lorenz curve is computationally
expensive and unstable. Therefore, the inference based on the Dirichlet approach can
be unreliable and its applicability would be limited.

2.2 Hypothetical income distribution: generalised beta distribution

In order to estimate the Lorenz curve and the related inequality measures accu-
rately, a flexible class of hypothetical distributions is required. This paper adopts
the five-parameter generalised beta (GB) distribution denoted by GB(a, b, c, p, q) as
an interesting and important income distribution. This distribution was by proposed by
McDonald and Xu (1995) and is the most flexible distribution of the family of beta-
type distributions. The probability density function of the GB distribution is given
by

hGB(x |θ) =
|a|xap−1

[
1 − (1 − c)

( x
b

)a]q−1

bapB(p, q)
[
1 + c

( x
b

)a]p+q , 0 < xa <
ba

1 − c
, (4)

where θ = (a, b, c, p, q)′, a ∈ R, b > 0, c ∈ [0, 1], p > 0, q > 0, and B(p, q) is the
beta function.Using the incomplete beta function Bx (p, q), the cumulative distribution
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function is given by HGB(x |θ) = Bz(p, q)/B(p, q) with z = (x/b)a/(1+ c(x/b)a).
The GB distribution includes a number of special cases. For example, when c = 0
and c = 1, the GB distribution reduces to the generalised beta distribution of the first
and second kind (GB1 and GB2) (McDonald 1984), respectively. Moreover, when
(c, p) = (1, 1) and (c, q) = (1, 1), the distribution reduces to the Singh–Maddala
(SM) distribution (Singh and Maddala 1976) and Dagum (DA) distribution (Dagum
1977), which are known to perform well in many empirical applications. Detailed
relationships among the class of distributions are summarised in McDonald and Xu
(1995).

The hypothetical GB distribution can also be directly estimated from the grouped
level income data by using the MCMC or maximum likelihood method (Kakamu
and Nishino 2018). However, an explicit formula of the Lorenz curve for the GB
distribution is not available (McDonald and Ransom 2008). This is also the case
for the GB2 distribution, but the result on the Lorenz ordering for GB2 is known
(Sarabia et al. 2002). Hence, the likelihood based on the Dirichlet distribution (3) is
not explicitly available and the evaluation of the likelihood can be computationally
expensive and unstable. The Gini coefficients for the GB and GB2 distributions are
also not analytically available. In this paper, given the values for the parameters, the
Gini coefficient is computed based on the equality given in McDonald and Ransom
(2008):

G = 1 −
∫ b/(1−c)1/a

0 (1 − HGB(t |θ))2dt∫ b/(1−c)1/a

0 1 − HGB(t |θ)dt
, (5)

where the integrals are evaluated numerically. Figure 1 compares the Gini coefficient
for GB under various parameter values with its special cases. Since c is a distinctive
parameter forGB, it is allowed to vary in all panels. The special cases ofGBcorrespond
to the coloured vertical dashed lines or symbols shown in each panel. The figure shows
that GB can span a wide range of values of the Gini coefficient.

Note that the random variable X ∼ GB(a, b, c, p, q) can be easily generated by
using

X = b

(
Z

1 − cZ

) 1
a

, Z ∼ Be(p, q), (6)

where Be(p, q) is the beta distribution with parameters p and q (Kakamu and Nishino
2018). Therefore, the proposed ABC method described in the following would be a
convenient approach to estimating the hypothetical GB distribution from the Lorenz
curve based on the grouped data.

2.3 Approximate Bayesian computation for Lorenz curve

Wework on the likelihood function implied from the Lorenz curve of the hypothetical
income distribution. This likelihood function is constructed through the statistics of
the individual household incomes and is not explicitly available. Thus, the standard
MCMCmethods cannot be directly applied, because these methods require evaluating
the likelihood function and prior density. The approximate Bayesian computation
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Fig. 1 Contour plot of the Gini coefficient of GB under various parameter values. The blue, red, purple
and green dashed lines or symbols indicate the Gini coefficient corresponding to DA, SM, GB1 and GB2,
respectively (colour figure online)

(ABC) methods avoid direct evaluation of the likelihood function and simulate data
from the model, given a candidate parameter value. If the simulated and observed
data are similar, the candidate parameter value is a good candidate to generate the
observed data. Then, it can be regarded as a sample from the posterior distribution
(Sisson and Fan 2011). The posterior distribution can be approximated by weighting
the intractable likelihood function. Therefore, ABC is a convenient approach when
the likelihood function is not explicitly available or computationally prohibitive to
evaluate, because it requires only the ability to simulate data from the probability
model.

Let π(θ) denote the prior density of the parameter θ , f (y|θ) be the likelihood
function of the observed data y, andπ(θ |y) ∝ f (y|θ)π(θ) be the posterior distribution
of θ . Here, f (y|θ) corresponds to the likelihood function that is implicitly defined from
the Lorenz curve. ABC methods augment the posterior from π(θ |y) to

πε(θ, x|y) ∝ π(θ) f (x|θ)IAε,y(x),

where ε > 0 is a tolerance level, IB(·) is the indicator function of the set B, and x is
the simulated data. The set Aε,y is defined as Aε,y = {x : ρ(x, y) < ε}, where ρ(·, ·)
is a distance function. The value of ε and form of ρ are chosen by the user and can
affect the performance of ABC. The marginal distribution
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πε(θ |y) ∝
∫

π(θ) f (x|θ)IAε,y(x)dx

provides an approximation to π(θ |y) for sufficiently small ε.
Various ABC algorithms to sample from the approximate posterior distribution

based on, for example, rejection sampling (Beaumont et al. 2002), MCMC (Marjoram
et al. 2003; Fearnhead and Prangle 2012), and the sequential Monte Carlo (SMC)
method (Sisson et al. 2007, 2009; Beaumont et al. 2009; Toni et al. 2009) have been
proposed. Furthermore, a number of extensions of the SMC algorithm has been con-
sidered by, for example, Del Moral et al. (2012), Lenormand et al. (2013), Filippi et al.
(2013), Silk et al. (2013), and Bonassi andWest (2015).We employ the SMC approach
because it is difficult to construct an efficient proposal distribution for MCMC in the
present context and the SMC with adaptive weights proposed by Bonassi and West
(2015), among others, is adopted because of its computational efficiency and ease of
implementation.

The SMC algorithm proceeds by sampling from a series of intermediate distribu-
tions with the user-specified decreasing tolerance levels,πεt (θ , x|y)with εt < εt−1 for
t = 0, . . . , T and εT . A large number of particles, denoted by (θ i , xi ), i = 1, . . . , N ,
is propagated by using importance sampling and resampling until the target tolerance
level εT is reached. Bonassi andWest (2015) proposed to approximate the intermediate
distribution at each step by kernel smoothing with the joint kernel Kt (θ , x|θ̃ , x̃). They
employed the product kernel such that Kt (θ , x|θ̃ , x̃) = Kθ ,t (θ |θ̃)Kx,t (x|x̃). Note that
Kx,t (x|x̃) is uniform over Aεt ,y in the standard SMC of Sisson et al. (2007, 2009),
Beaumont et al. (2009), and Toni et al. (2009). Algorithm 1 describes the method of
Bonassi and West (2015). Introducing a kernel function for x makes the perturbation
step of the algorithm such that particles for which the simulated x is close to y are
chosen more likely. Bonassi and West (2015) showed that the proposal distribution
of their algorithm has higher prior predictive density over the acceptance region for
the next step—and hence, higher acceptance probability—than that of the standard
SMC algorithm. Finally, the posterior distribution of θ at step t of the algorithm is
approximated by

πεt (θ |y) ∝
∫ ∫

π(θ̃) f (x̃|θ̃)Kθ ,t (θ |θ̃)Kx,t (y|x̃)IAεt ,y
(x)dx̃dθ̃ .

To estimate the hypothetical income distribution from the Lorenz curve based on the
group data by usingABC,we use the cumulative income shares in percentage. InAlgo-
rithm 1, we set ρ(x, y) = 100max j |x j − y j |, which was also employed in McVinish
(2012), because this choice of the tolerance schedule and level of approximation is
intuitive. To simulate x, n observations, (z1, . . . , zn), that independently and identi-
cally follow the hypothetical income distribution with the density function h(·|θ) are
generated. Then, they are sorted in the ascending order, denoted by (z(1), . . . , z(n)), and
the cumulative income shares are computed using x j = ∑n j

i=1 z(i)/
∑n

i=1 z(i), where
n j = �np j	 is the number of households in the j th income class for j = 1, . . . , k−1.
For the GB distribution and its special cases, the simulated data are generated from
GB(a, 1, c, p, q) by using (6), as the Lorenz curve is location-free.
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Algorithm 1 SMC with adaptive weights

1: Initialise tolerance levels ε0 > ε1 > · · · > εT and set t = 0.

2: for i = 1 to N do
3: repeat
4: Simulate θ

(0)
i from π(θ) and x∗

i from f (x|θ (0)
i ).

5: until ρ(x∗
i , y) < ε0

6: Set x(0)
i = x∗

i and wi = 1/N for i = 1, . . . , N .

7: end for

8: for t = 1 to T do
9: Compute the weights v

(t−1)
i ∝ w

(t−1)
i Ky,t (y|x(t−1)

i ) for i = 1, . . . , N .
10: for i = 1 to N do
11: repeat
12: Choose θ∗

i from θ
(t−1)
i ’s based on the weights v

(t−1)
j .

13: Draw θ
(t)
i from Kθ ,t (θ

(t)
i |θ∗

i ) and simulate x(t)
i from f (x|θ (t)

i ).

14: until ρ(x(t)
i , y) < εt

15: Compute the new weights as w
(t)
i ∝ π(θ

(t)
i )∑N

j=1 v
(t−1)
j Kθ,t (θ

(t)
i |θ (t−1)

j )
.

16: end for

17: end for

As in Bonassi andWest (2015), the product of normal kernels is used for θ . Follow-
ing the rule of thumb for the product of normal kernels, the bandwidth is determined
based on us = σ̂s N−1/(d+4), where N is the number of particles, d is the total dimen-
sion of the parameter and data, and σ̂s is the standard deviation for s ∈ {θ , x} (Scott
and Sain 2005; Bonassi and West 2015). When the number of groups is large, such as
k = 10 in decile data, the performance and computing time of ABC may be affected
(see, e.g., Prangle 2015), as Algorithm 1 compares two nine-dimensional vectors. To
reduce the dimensionality, we can also use summary statistics that consist of a subset of
the elements of the cumulative incomes. For example, when k = 10, we can replace y
and x in Algorithm 1 with S(y) = (y1, y3, y5, y7, y9) and S(x) = (x1, x3, x5, x7, x9),
respectively. Note that if we take S(x) = (x2, x4, x6, x8), it is identical to the simulated
data in the case of k = 5. The use of the summary statistics in the case of k = 10 is
also examined in Sect. 3.

3 Numerical examples

3.1 Simulated data 1

A series of simulation studies is conducted to illustrate the proposed approach, which
is denoted by ABC hereafter. First, the individual household income follows the
Dagum (DA) and Singh–Maddala (SM) distributions, denoted by DA(a, b, p) =
GB(a, b, 1, p, 1) and SM(a, b, q) = GB(a, b, 1, 1, q), respectively. For ABC, the
parameters to be estimated are given by θABC = (a, p) and (a, q) for DA and SM,
respectively. The performance of ABC is compared with that of the two existing meth-
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ods. The first method is based on the Dirichlet likelihood given by (3), denoted by
DIR hereafter. Note that both distributions allow the explicit forms of the Lorenz
curve. The parameters θDIR = (a, p, λ) and (a, q, λ) are estimated by using the
Metropolis–Hastings (MH) algorithm. The other method, proposed by Kakamu and
Nishino (2018), estimates the hypothetical income distribution from the grouped level
income. In this approach, the thresholds for the incomeclasses,v = (v1, . . . , vk−1), are
regarded as the selected order statistics (SOS) from the order statistics of the n obser-
vations of the level income, (w(1), . . . , w(n)), where v j = w(n j ) for j = 1, . . . , k − 1
and n j is defined in Sect. 2.3. The likelihood function is given by

fSOS(v|θSOS) = n! [H(v1|θSOS)]n1−1

(n1 − 1)!

×
⎡
⎣k−1∏

j=2

[H(v j |θSOS) − H(v j−1|θSOS)]n j−n j−1−1

(n j − n j−1 − 1)!

⎤
⎦

× [1 − H(vk−1|θSOS)]n−nk−1

(n − nk−1)!

⎡
⎣ k∏

j=1

h(v j |θSOS)
⎤
⎦ ,

where θSOS = (a, b, p) and (a, b, q) are estimated from the data in this approach.
While this likelihood is similar to the multinomial likelihood, it provides a more
accurate representation for the grouped data (David and Nagaraja 2003). The posterior
inference is based on the MH algorithm. This approach is denoted by SOS hereafter.

To create the data for this simulation study, n = 10,000 observations are gen-
erated from DA(a, 1, p) and SM(a, 1, q). Then, the data are sorted in ascending
order and are grouped into k groups of equal size to calculate the cumulative
income and household shares. The data are replicated 100 times. For the Dagum
distribution, the following four settings for the true parameter values and corre-
sponding Gini coefficients are considered: (i) (a, p,G) = (3.8, 1.3, 0.2482), (ii)
(a, p,G) = (3.0, 1.5, 0.3087), (iii) (a, p,G) = (2.5, 2.5, 0.3518), (iv) (a, p,G) =
(2.3, 1.5, 0.4077). For the Singh–Maddala distribution, the following four settings
are considered: (i) (a, q,G) = (3.5, 1.5, 0.2429), (ii) (a, q,G) = (2.3, 3.0, 0.3041),
(iii) (a, q,G) = (2.0, 2.5, 0.3567), (iv) (a, q,G) = (1.6, 3.5, 0.4052). For the num-
ber of groups, we consider k = 5 and 10. These choices respectively correspond to
quintile and decile data, which are the most commonly available in practice. In the
case of k = 10, we also implement Algorithm 1 with S(y) = (y1, y3, y5, y7, y9) and
S(x) = (x1, x3, x5, x7, x9) suggested in Sect. 2.3.

For ABC, we used 3000 particles with the schedule of tolerance levels given
by {εt } = {0.1, 0.01, 0.002}. Algorithm 1 is implemented by using Ox Profes-
sional version 7.10 (Doornik 2013) with six parallel threads for the lines between
10 and 16. We assume that a, b, p, and q independently follow G(3, 1) to reflect
the results in the existing literature on the GB distributions (e.g., McDonald and
Ransom 2008). For DIR, the following prior distributions of λ with the differ-
ent prior means and same prior variances are considered: G(10, 1), G(1, 0.5), and
G(1, 1). For SOS and DIR, the MCMC algorithms are run for 40,000 iterations
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Fig. 2 Log average numbers of rejections per particle for DA and SM: k = 5 (black), k = 10 (red), k = 10
with summary (blue) (colour figure online)

including the 10,000 initial burn-in period. To reduce the undesired autocorrela-
tion among the MCMC samples, every 10th draw is retained for posterior infer-
ence.

Figure 2 presents the log average numbers of rejections per particle for each step of
Algorithm 1 for DA and SM. A large number of rejections implies longer computing
time because the lines between 11 and 14 of Algorithm 1 are repeated for an increased
number of times. The figure shows that the computing time of the algorithm increases
as the number of groups increases in all cases. Two nine-dimensional vectors are
compared when k = 10, leading to large numbers of rejections, but the computing
time can be decreased by using the summary statistics. In addition, the figure shows that
the computing time may depend on the true Gini coefficient. The average number of
rejections tend to increase as the Gini coefficient increases in the case of DAwhile this
tendency is less clear in the case of SM. Figures 3 and 4 present the typical trajectories
of Algorithm 1 for k = 5 for DA and SM, respectively. In the figures, the red horizontal
dashed lines represent the true parameter values and the grey curves represent the
2.5% and 97.5% quantiles at each step. The figures show that the learning about the
parameters and corresponding Gini coefficients occurs as the algorithm proceeds and
the posterior distributions are concentrated around the true values under the target
tolerance level.

Now, the performance of the three methods is compared. Table 1 presents the aver-
ages of the posterior means of the parameters and Gini coefficient and root mean
squared errors (RMSE) for DA and SM over the 100 replicates. Overall, ABC appears
to work well. In the case of k = 5, ABC resulted in the smallest RMSE for the
Gini coefficients for both DA and SM. In the case of k = 10, ABC and SOS pro-
duced the comparable result for DA and ABC and Dirichlet produced almost identical
performance for SM in terms of the RMSE for the Gini coefficient. As the avail-
able information increases from k = 5 to k = 10, the performance of ABC seems
to improve slightly, but the degree of improvement is small. On the other hand, we
observe a clear improvement in the performance of SOS and Dirichlet as the number
of groups increases.
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Fig. 3 Typical trajectories of Algorithm 1 for DA (k = 5) with the 2.5% and 97.5% quantiles (grey solid
lines) and true parameter values (red dashed lines) (colour figure online)

The table also shows that the parameter and Gini estimates for DIR in the case of
k = 5 can be sensitive with respect to the prior specification for λ. More specifically,
the smaller the prior means, the larger RMSE for the parameters and Gini coefficient
are resulted. The influence of the prior distribution for λ appears to vanish in the case of
k = 10. We also considered the two alternative prior specifications for the parameters,
namely, G(1.5, 0.5) and G(6, 2). They have the same prior means as the default prior,
but the prior variance is two times inflated in the first alternative prior and it is two times
deflated in the second alternative prior. The results are presented in the supplementary
material, where it is reported that ABC and SOS are fairly robust with respect to the
choice of prior distribution for the parameters other than λ, but the results for DIR can
be influenced by the prior specification especially when G(0.1, 0.1) is used for λ in
the case of k = 5.

3.2 Simulated data 2

To study the potential of the proposed approach, the more flexible alternatives to the
Dagum and Singh–Maddala distributions, namely the generalised beta distribution
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Fig. 4 Typical trajectories of Algorithm 1 for SM (k = 5) with the 2.5% and 97.5% quantiles (grey solid
lines) and true parameter values (red dashed lines) (colour figure online)

of the second kind (GB2) denoted by GB2(a, b, p, q) = GB(a, b, 1, p, q), and the
five-parameter GBdistribution, are additionally considered. ForGB2, the data are gen-
erated from GB2(a, 1, p, q) based on the following four settings: (i) (a, p, q,G) =
(2.5, 2.3, 1.7, 0.2572), (ii) (a, p, q,G) = (2.1, 1.8, 2.0, 0.3037), (iii) (a, p, q,G) =
(1.8, 3.0, 1.5, 0.3536), (iv) (a, p, q,G) = (1.5, 2.5, 1.8, 0.4064). For GB, the fol-
lowing five settings covering various values of the parameters and Gini coefficient are
considered: (i) (a, c, p, q,G) = (2.0, 0.95, 3.0, 2.0, 0.2456), (ii) (a, c, p, q,G) =
(1.2, 0.4, 1.7, 2.5, 0.3062), (iii) (a, c, p, q,G) = (1.5, 0.9, 1.7, 1.7, 0.3589), (iv)
(a, c, p, q,G) = (1.2, 0.1, 1.3, 3.5, 0.3397), (v) (a, c, p, q,G) = (1.5, 0.99, 1.2,
3.0, 0.4105). The data are replicated 50 times. We implement only ABC and SOS,
because analytical forms of theLorenz curves forGBandGB2 are not known (McDon-
ald and Ransom 2008).

In addition to theprior distributions fora,b, p,q specified inSect. 3.1, c ∼ U(0, 1) is
assumed for GB. TheMCMC algorithm for SOS is run for 70,000 iterations including
the 10,000 initial burn-in period and every 20th draw is retained for posterior inference.
For ABC, the same setting for Algorithm 1 as in Sect. 3.1 is used.
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Fig. 5 Log average number of rejections per particle for GB2 and GB: k = 5 (black), k = 10 (red), k = 10
with summary (blue) (colour figure online)

Figure 5 presents the log average numbers of rejections per particle for each step of
Algorithm 1 for GB and GB2. The figure shows that the overall numbers of rejections
are larger for GB and GB2 than for DA and SM leading to the increased computing
time, since it is required to estimate more parameters for GB and GB2. The average
number of rejections tends to increase when the true Gini coefficient increases. In
addition, using the summary statistics in the case of k = 10 results in the shorter
computing time.

Figures 6 and 7 present the typical trajectories of Algorithm 1 for k = 5 for GB2
and GB, respectively. The red horizontal dashed lines represent the true parameter
values and the grey curves represent the 2.5% and 97.5% quantiles. In contrast to
the cases of DA and SM, the figures show that not all parameters are simultaneously
identified from the data under the present simulation setting. This could be because
the information contained in the data is limited. For example, in Setting (i) for GB2,
Fig. 6 shows that the learning about a and q occurs and the posterior distributions
concentrate as the algorithm proceeds, but little learning about p occurs. Similarly,
for GB, Fig. 7 shows we can only learn about a and c in Setting (i) and about a and
p in Setting (iv). Which parameters we can learn seems to depend on the simulation
setting. Nonetheless, the figures also show that in all cases the learning about the Gini
coefficient does occur as the algorithm proceeds and the posterior distributions under
the target tolerance are concentrated around the true values.

Table 2 presents the averages of the posterior means and RMSE for the parameters
and the Gini coefficient for GB2 and GB under the two methods. In all cases, ABC
estimated the Gini coefficient well and produced the smaller RMSE for the Gini
coefficient than SOS. For both methods, the performance improves as the number
of groups increases, but the degree of improvement for ABC is small compared to
SOS, as in the cases of DA and SM. The large RMSE for the parameters in the table
corresponds to the cases where the parameters are not well identified from the data
as indicated by Figs. 6 and 7. The large RMSE for SOS could be also due to the
poor mixing and convergence failure of the MCMC algorithm, as the convergence
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Fig. 6 Typical trajectories of Algorithm 1 for GB2 (k = 5) with the 2.5% and 97.5% quantiles (grey solid
lines) and true parameter values (grey dashed lines)

of MCMC in the context of grouped data is typically difficult to ensure (Kakamu
2016). The supplementary material provides the results under the two alternative prior
specifications, G(1.5, 0.5) and G(6.2), for a, p, and q. The Gini estimate for the
proposed ABC method is robust with respect to the prior specification, while that for
SOS exhibits prior sensitivity especially for the quintile data. For both methods, the
estimates for the parameters that are difficult to identify from the data are influenced
by the prior specification.

3.3 Real data: Family Income and Expenditure Survey in Japan

The proposed method is now applied to estimate the Gini coefficient of the data from
the Family Income and Expenditure Survey (FIES) in 2012 prepared by Ministry of
InternalAffairs andCommunications of Japan. TheFIESdata are based on n = 10,000
households and are available in the forms of quintile and decile data. The datasets are
available in the supplementary material. For the hypothetical income distributions,
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Fig. 7 Typical trajectories of Algorithm 1 for GB (k = 5) with the 2.5% and 97.5% quantiles (grey solid
lines) and true parameter values (red dashed lines) (colour figure online)

DA, SM, GB2, and GB are fitted. The same default prior distributions and algorithm
settings as in the simulation studies are used.

Table 3 presents the posterior means and 95% credible intervals under the target
tolerances. For GB, we are able to learn about a and c, while little learning about
p and q occurred, similar to Setting (i) of the simulation study. Similarly, for GB2,
some learning about a and p occurred similar to Setting (ii) of the simulation study.
We can still obtain some insights on the shape of the underlying income distribution.
Figure 8 presents the implied income distributions which are obtained by generating
the random numbers from each distribution with the parameters fixed to their posterior
means and scaling themwith the theoretical standard deviations under these parameter
values. The distribution shapes of GB and GB2 are almost identical. The figure also
shows that DA and SM have higher density in the low income region and the right
tails decays more quickly compared to GB and GB2.

The goodness of fit of the income models can be quantified through the marginal
likelihood, which is calculated following Didelot et al. (2011). The log marginal like-
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Fig. 8 Implied income distributions for the quintile and decile data
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Fig. 9 Plots of |E[x j |y] − y j | for the quintile and decile data

lihoods for GB, GB2, DA, and SM are, respectively, − 3.971, − 2.110, − 8.037, and
− 5.675 for the quintile data and− 4.064,− 2.100,− 8.736, and− 5.427 for the decile
data. Based on the marginal likelihoods, GB2 is supported the most by the both data
followed by GB. This result is consistent with McDonald and Xu (1995) and is also
in line with the argument made by Kleiber and Kotz (2003). The goodness of fit can
be also checked through the simulating function by plotting the absolute difference
between the posterior mean of the simulated income share x j and the observed income
share y j , |E[x j |y] − y j |, for j = 1, . . . , k − 1 under each model. Figure 9 shows that
the absolute differences under GB and GB2 are generally smaller than those under DA
and SM for both quintile and decile data, also suggesting the use of a more flexible
class of income distributions.

The posterior distributions of the Gini coefficient are compared with the nonpara-
metric bounds of Gastwirth (1972), in which a Gini estimate should be included. The
nonparametric bounds are given by (0.2310, 0.2545) and (0.2419, 0.2484) for the
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Fig. 10 Posterior distributions of the Gini coefficient using the proposed ABC approach and the MCMC
approach using the level income for the quintile and decile data. The shaded area and symbols on the
horizontal axis indicate the nonparametric bounds of Gastwirth (1972) and the posterior means of the Gini
coefficient, respectively

quintile and decile data, respectively. This can be seen from Fig. 10, which presents
the posterior distributions of the Gini coefficient. The shaded area in the figure repre-
sents the region inside the nonparametric bounds. The symbols on the horizontal axis
represent the posterior means. For the quintile data, all models resulted the posterior
distributions of the Gini coefficient which are fairly concentrated within the nonpara-
metric bounds. The posterior probabilities that the Gini coefficient is included in the
bounds are 1.000, 0.999, 0.984, and 0.998 for GB, GB2, DA, and SM, respectively. In
the case of the decile data, the figure shows that the bodies of the posterior distributions
under GB, GB2, and SM are included in the nonparametric bounds. Under DA, only
the left half of the posterior distribution is include in the bounds and the posterior mean
is outside the bounds. The posterior probabilities of theGini coefficient included inside
the bounds are 0.818, 0.776, 0.468, and 0.718 for GB, GB2, DA, and SM, respec-
tively. While this result indicates the limitation that the posterior distribution obtained
by using the proposed method does not shrink as fast as the nonparametric bounds, it
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is consistent with the results of the simulation studies. Nonetheless, GB2 appears to
be the most appropriate income model among the four in terms of goodness of fit and
the Gini coefficient.

For comparison purpose, Fig. 10 also presents the posterior distributions of the Gini
coefficient fromSOS.For the quintile data, the posterior distributions appear to bemore
dispersed and scattered across regions. For the decile data, GB and GB2 produced the
posterior distributions concentrated around the bounds with the posterior probabilities
given by 0.335 and 0.656, respectively. Contrary, the posterior distributions under DA
and SM are located away from the bounds. Therefore, the proposed ABC method
also provides more reliable estimates of Gini coefficient in terms of the nonparametric
bounds.

4 Discussion

We have proposed a new Bayesian approach to estimate the Gini coefficient assuming
a hypothetical income distribution based on the grouped data on the Lorenz curve
by using the ABC method via the SMC algorithm. From the simulation study, the
proposed approach is found to perform comparably with or better than the existing
methods. Our approach is found to be particularly valuable in the cases where the
number of group is small as in quintile data. In the application to the Japanese data, the
usefulness of the proposed approach assuming the class ofGBdistribution is illustrated
by showing that the posterior distributions of the Gini coefficient are included within
the nonparametric boundswith relatively high posterior probabilities and by presenting
the income distributions implied from the hypothetical distributions. The numerical
examples presented in this paper illuminated the limitation of the present study. Some
parameters of the hypothetical distribution may not be identified when the number of
parameters is large as in the cases of GB and GB2, because the information contained
in grouped data is severely limited. Further, the posterior distribution of the Gini
coefficient from the proposed approach does not shrink as fast as the nonparametric
bounds as the number of income classes increases. Therefore, reconciling the goodness
of fit and the accuracy of the Gini estimate when we have more groups in the data
would be a direction for the future research.
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