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Abstract Ranked set sampling (RSS) is a statistical technique that uses auxiliary
ranking information of unmeasured sample units in an attempt to select a more repre-
sentative sample that provides better estimation of population parameters than simple
random sampling. However, the use of RSS can be hampered by the fact that a com-
plete ranking of units in each set must be specified when implementing RSS. Recently,
to allow ties declared as needed, Frey (Environ Ecol Stat 19(3):309–326, 2012) pro-
posed amodification of RSS, which is to simply break ties at random so that a standard
ranked set sample is obtained, and meanwhile record the tie structure for use in esti-
mation. Under this RSS variation, several mean estimators were developed and their
performance was compared via simulation, with focus on continuous outcome vari-
ables. We extend the work of Frey (2012) to binary outcomes and investigate three
nonparametric and three likelihood-based proportion estimators (with/without utiliz-
ing tie information), among which four are directly extended from existing estimators
and the other two are novel. Under different tie-generating mechanisms, we compare
the performance of these estimators and draw conclusions based on both simulation
and a data example about breast cancer prevalence. Suggestions are made about the
choice of the proportion estimator in general.
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1 Introduction

Ranked set sampling (RSS) is a cost-efficient sampling strategy that can be used to
provide a more representative sample than simple random sampling (SRS). RSS has
been found useful in situations where measuring sample units is expensive, time-
consuming or difficult but a small set of units can be ranked using methods such
as eye inspection, personal judgment or use of a concomitant variable, which do
not require formal quantification of the units. First introduced by McIntyre (1952) for
estimating themean pasture yield inAustralia, RSShas beenwidely used inmany other
fields including forestry (Halls and Dell 1966), medicine (Chen et al. 2005, 2007),
biometrics (Mahdizadeh andZamanzade2017), environmentalmonitoring (Nussbaum
and Sinha 1997; Kvam 2003; Ozturk et al. 2005), entomology (Howard et al. 1982)
and educational studies (Wang et al. 2016).

To draw a (balanced) ranked set sample using a set size m, one first draws a simple
random sample of size m2 from the population of interest. He then divides the sample
into m sets of size m randomly. Each set of m units is ranked from smallest to largest
without measuring values of these units. From the first set, the unit with rank 1 is
selected for actual measurement; from the second set, the unit with rank 2 is selected
for measurement and so on. The whole process is repeated n times (cycles) to form a
ranked set sample of size N = m × n. The set size m is usually selected to be a small
number (e.g, 2–10), to avoid poor-quality ranking.

RSS requires a ranker to provide a unique rank to each unit when ranking a set,
and so there is no tie allowed. However, situations when the ranker is not sure about
how to rank two or more observations arise frequently in practice. To mitigate this
difficulty, Frey (2012) proposed a slightly different version of the RSS scheme, which
is denoted by RSS-t in this paper. RSS-t allows the ranker to declare ties as much as
he wishes. Further, the ranker breaks the ties at random, but records the tie structure to
be used in the estimation process. Frey (2012) then developed several nonparametric
estimators of the population mean and discussed two models for rankings with ties:
Discrete Perceived Size (DPS) and Tied-If-Close (TIC). He showed via simulation
based on the DPS model that using the tie information would improve the estimation
efficiency. All these have been done with focus on continuous variables. Although
the estimators in Frey (2012) can be applied to binary outcomes, the use of RSS-t for
estimating the population proportion p has not been systematically investigated yet.

In the past, the problem of proportion estimation based on a ranked set sample has
received considerable attention. Terpstra (2004) and Terpstra and Liudahl (2004) first
showed that RSS proportion estimators are more efficient than their SRS counterparts
in cases of judgment ranking and ranking via a concomitant variable, respectively.
Terpstra and Wang (2008) developed several methods to construct confidence bounds
for the population proportion based on RSS. Chen et al. (2005) further proposed to
aid the ranking of a binary variable of interest by fitting a logistic regression model,
and Chen et al. (2007) investigated the application of RSS, combined with logistic
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regression for ranking, to estimation of disease prevalence. Hatefi and Jafari Jozani
(2017) considered the problem of estimating malignant breast cancer prevalence using
partially rank ordered set samples based on a different strategy for handling ties when
more than one concomitant variable is available.

We consider the use of RSS-t with binary outcomes and investigate six estimators
of the population proportion p. Throughout this paper, we restrict our attention to bal-
anced RSS when using RSS-t. These estimators can be classified in two ways: (i) two
estimators ignoring the tie information and the other four exploiting such information;
and (ii) three nonparametric estimators and three likelihood-based estimators. Here,
we address main research questions including whether using RSS-t over SRS is ben-
eficial for binary responses, whether utilizing tie information can improve proportion
estimation and if yes, which estimator(s) to use in different scenarios. To do so, we
compare the performance of the different estimators via simulation under both TIC
and DPS models for generating ties. We also present an empirical study using a breast
cancer data set, where ranking is done through ordinal concomitant variables and so
ties naturally occur.

2 An illustrative example of RSS-t

Let Y be a binary randomvariable that follows aBernoulli distributionwith probability
of success p. To estimate p, suppose we obtain a RSS-t sample with the total sample
size N = mn, where m is the set size and n is the number of cycles. The sampling
scheme of RSS-t is essentially the same as that of RSS, as described in the introduction,
except for breaking ties at random when deciding which units to select for actual
quantification and meanwhile recording the tie structure. That is, in the i th set of the
j th cycle, if there are more than one observation with (judgement) rank i , the ranker
randomly select one to measure (say Y[i] j ) and use anm×m matrix, say T j , to record
how the units are tied:

T j =

⎡
⎢⎢⎣
I j1,1 . . . I j1,m
...

...
...

I jm,1 . . . I jm,m

⎤
⎥⎥⎦ ,

where I ji,k is an indicator variable that is one if the unitwith rank i is tied for rank k in the

j th cycle and zero otherwise (i = 1, . . . ,m, k = 1, . . . ,m). Note that
∑m

k=1 I
j
i,k ≥ 1

and “=” occurs if rank i is assigned only to one unit in the set.
We illustrate the sampling scheme by a hypothetical example. Suppose that we are

interested in estimating the prevalence of breast cancer in a given population of adults.
To determine if one suffers from breast cancer, a comprehensive biopsy procedure is
required, which is expensive and inconvenient, especially in some developing coun-
tries. However, a medical researcher can simply rank a small set of patients according
to their probability of having breast cancer. Let Y be one (success) if the test subject
suffers from breast cancer and zero (failure) otherwise.

To draw a ranked set sample of size N = 10, using set size m = 5, the researcher
draws m2 × n = 50 subjects from the given population and divide them into 10 sets
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Table 1 An example of RSS-t with N = 10 and m = 5

Cycle Set Ranked units Breast cancer status Y

1 1 u11,1&u12,1&u13,1, u
1
4,1, u

1
5,1 No 0

2 u11,2,u
1
2,2, u

1
3,2&u14,2&u15,2 No 0

3 u11,3, u
1
2,3, u

1
3,3, u

1
4,3&u15,3 Yes 1

4 u11,4, u
1
2,4, u

1
3,4&u14,4, u

1
5,4 No 0

5 u11,5, u
1
2,5, u

1
3,5, u

1
4,5, u

1
5,5 Yes 1

2 1 u21,1, u
2
2,1, u

2
3,1, u

2
4,1, u

2
5,1 No 0

2 u21,2,u
2
2,2, u

2
3,2, u

2
4,2, u

2
5,2 Yes 1

3 u21,3, u
2
2,3&u23,3&u24,3, u

2
5,3 Yes 1

4 u21,4&u22,4&u23,4&u24,4, u
2
5,4 No 0

5 u21,5, u
2
2,5&u23,5, u

2
4,5, u

2
5,5 Yes 1

The sample units in each set are listed in an increasing order of perceived probability of having breast cancer
and the ties are connected with ampersands

of size 5. In each set, he ranks the subjects according to their perceived probabilities
of having breast cancer. This can be done by examining superficial lumps or masses
using the fine needle aspiration biopsy technique, which is much faster and cheaper
than the comprehensive biopsy procedure. Whenever the researcher cannot determine
the exact ranks of two or more subjects in the set, he is allowed to declare ties, and then
selects one at random for formal testing. An example of the RSS-t scheme is detailed in
Table 1, where each row corresponds to one set, and sample units in each set are listed
based on their judgement probability of having breast cancer after the possible ties
are broken at random. Let u j

i,k be the i th judgement unit of the kth set in the j th cycle
(i, k ∈ {1, . . . , 5} and j = 1, 2). In this table, we connect the units that are declared
tied with ampersands, and the unit selected for actual quantification with bold face.

Table 1 shows that in the first set of the first cycle, the ranker is able to distinguish
the top two subjects but cannot distinguish among the bottom three. Therefore, he
selects one of the three at random for measurement and also records this tie structure
for potential use in the estimation process. In the second set of the first cycle, the top
three subjects are tied. However, since in the second set, the researcher’s interest is
to identify the subject with rank 2, this tie structure is irrelevant and so not recorded.
Thus, the matrices that contain tie information are specified as follows.

T1 =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

, T2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 1 1 1 0
1 1 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

.
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3 Proportion estimation based on RSS-t

For RSS-t, the full data include not only
{
Y[i] j , i = 1, . . . ,m, j = 1, . . . , n

}
, where

Y[i] j is the precisely measured value for the unit with (judgement) rank i in the
j th cycle after randomly breaking ties, but also T1, . . . ,Tn , matrices of tie infor-
mation.

3.1 Nonparametric estimators

Frey (2012) considered six nonparametric mean estimators, μ̂1 − μ̂6, for use with
RSS-t: μ̂1 is the standard RSS mean estimator that ignores the tie information; μ̂2 is
the estimator that uses a strategy proposed inMacEachern et al. (2004) to split each tied
unit among the strata corresponding to the ranks for which the unit was tied; μ̂3 and
μ̂4 are the isotonized versions of μ̂1 and μ̂2, respectively; and μ̂5 and μ̂6 are the Rao-
Blackwellized (RB) versions of μ̂1 and μ̂3 (the RB versions of μ̂2 and μ̂4 do not lead
to new estimators.) Since we focus on balanced RSS-t where μ̂1 = μ̂3 = μ̂5 = μ̂6
holds,we only need to consider μ̂1, μ̂2, and μ̂4 for estimating the population proportion
when Y is binary. The resulting proportion estimators, denoted by p̂st , p̂sp and p̂iso,
are essentially the same as μ̂1, μ̂2, and μ̂4, respectively, which are discussed below
for completeness.

The standard RSS proportion estimator that simply ignores the matrices of tie
structures is given by

p̂st = 1

m

m∑
i=1

p̂[i],

where p̂[i] = ∑n
j=1 Y[i] j/n is the sample proportion within the i th rank stratum.

Our second proportion estimator p̂sp for RSS-t, which corresponds to μ̂2, is given
by

p̂sp = 1

m

m∑
i=1

p̂[i],sp,

with

p̂[i],sp =
∑m

l=1
∑n

j=1 Y[l] j × w
j
l,i∑m

l=1
∑n

j=1 w
j
l,i

, (1)

and

w
j
l,i = I jl,i∑m

k=1 I
j
l,k

,

where I jl,k is the element in the lth row and kth column of T j . This estimator incor-
porates tie information through a splitting strategy; that is, if Y[i] j is tied for r distinct
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ranks, we then assign it to the corresponding r rank strata with equally split weights
1/r . For example, if the measured unit with rank 2 is tied for ranks 2, 3 and 4, we
split the Y value among the three strata with ranks 2, 3 and 4 with equal weights 1/3.
Our third proportion estimator p̂iso for RSS-t is the isotonized version of p̂sp, which
corresponds to μ̂4. Let p[i] = E

(
Y[i] j

)
be the probability of success for sample units

with rank i . It is often reasonable to assume that the probability of the i th (judgement)
order statistic satisfies the following order constraint, i.e.

p[1] ≤ · · · ≤ p[m]. (2)

However, the estimates p̂[i],sp may violate constraint (2) due to sampling variability.

Let ni = ∑m
l=1

∑n
j=1 w

j
l,i (i = 1, . . . ,m) be the total weighted sample size of the

i th rank stratum. To isotonize { p̂[i],sp}mi=1 so that constraint (2) is imposed, we define
nrs = ∑s

g=r ng and

p̂[i],iso = min
r≤i

max
s≥i

s∑
g=r

ng p̂[g],sp
nrs

,

where
{
p̂[i],iso

}m
i=1 are known as isotonic regression estimators of

{
p[i]

}m
i=1, which

minimize the weighted least square
∑m

i=1 ni
(
p[i] − p̂[i],sp

)2 under constraint (2).
Then the isotonized proportion estimator is given by

p̂iso = 1

m

m∑
i=1

p̂[i],iso. (3)

We would expect that p̂iso improves p̂sp for small N ; but as N → +∞, the chance
that (2) is violated approaches zero, and so they become identical.

3.2 Likelihood-based estimators

Terpstra (2004) proposed themaximum likelihood (ML) estimator based on (balanced)
RSS data for binary outcomes, which has been found to be more efficient than the
standard estimator p̂st asymptotically as well as in certain finite-sample simulation
settings. Let

{
Y(i) j ; i = 1, . . . ,m, j = 1, . . . , n

}
be a ranked set sample inwhich there

is no ranking error. Then, the log likelihood function can be expressed by

L (p) =
m∑
i=1

n∑
j=1

{
Y(i) j log

(
p(i)

) + (
1 − Y(i) j

)
log

(
1 − p(i)

)}
,

where p(i) ≡ Bm+1−i,i (p) is the probability of success for sample units in the i th
rank stratum. Here, Bm+1−i,i (p) is the cumulative distribution function (CDF) of the
beta distribution with parameters m + 1 − i and i , evaluated at the point p, namely

Bm+1−i,i (p) =
∫ p

0
(m + 1 − i)

(
m

m + 1 − i

)
tm−i (1 − t)i−1dt.
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Thus, the ML estimator of p based on RSS is given by p̂ml = arg max
p∈[0,1]L (p).

Since data from RSS-t constitutes a ranked-set sample, p̂ml can still be used if we
ignore the tie information. Next, we propose two new proportion estimators, p̂t.ml and
p̂m.ml , to incorporate tie information using likelihood-based approaches.

Assume that Y(i) j is tied for two or more units in the set of size m. Then Y(i) j

follows a Bernoulli distribution with probability of success p(i),t , where

p(i),t =
∑m

k=1 I
j
i,k Bm+1−k,k (p)
∑m

k=1 I
j
i,k

,

is a mixture of beta CDFs, evaluated at the point p. Then, the log-likelihood function
of

{
Y(i) j

}
that incorporates the tie information can be written as

Lt (p) =
m∑
i=1

n∑
j=1

{
Y(i) j log

(
p(i),t

) + (
1 − Y(i) j

)
log

(
1 − p(i),t

)}
.

Thus, the ML estimator of p based on RSS-t can be obtained by p̂t.ml =
arg max

p∈[0,1]Lt (p) , where the subscript “t” stands for tie.

Another approach to incorporate tie information is to define a pseudo log-likelihood
function L∗ (p) based on the splitting strategy,

L∗ (p) =
m∑
i=1

{
ni p̂(i),splog

(
p(i)

) + ni
(
1 − p̂(i),sp

)
log

(
1 − p(i)

)}
,

where p̂(i),sp is defined in (1), but with “[ ]” replaced by “( )” in the subscript of p to
indicate the requirement of perfect ranking. The corresponding ML estimator is given
by p̂m.ml = arg max

p∈[0,1]L
∗ (p). Here, the subscript “m” indicates a mixed strategy used.

In the past,MacEachern et al. (2004) and Frey (2012) found the splitting strategyworks
well in dealing with ties for continuous outcomes. Also, as mentioned before, ML
estimation may work well for binary outcomes. Thus, our pseudo likelihood method
attempts to combine the strength from the splitting strategy and ML estimation for
binary data with ties.

As shown above, the development of the three likelihood-based estimators, p̂ml ,
p̂t.ml , and p̂m.ml , requires the assumption of perfect ranking. So it is important to
examine the robustness of these estimators in the presence of ranking errors. Finally,
we mention that all these ML estimators are well defined and can be solved easily
using standard optimization procedures. This can be seen from the following facts; (i)
since Bm+1−i,i (p) is a log concave function in p, L (p) and L∗(p) are both concave
in p; and (ii) from Theorem 2 in Mu (2015), we can conclude that p(i),t is strictly
log-concave in p and so Lt (p) is strictly concave in p as well.
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4 Comparison of proportion estimators

Wefirst compare the six estimators using the example given in Sect. 2. Based on the tie
structure and data in Table 1, the three nonparametric estimators produce p̂st = 0.5,
p̂sp = 0.463, and p̂iso = 0.481; and the three likelihood-based estimators produce
p̂ml = 0.492, p̂t.ml = 0.552 and p̂m.ml = 0.531. Recall that p̂st and p̂ml ignore the
tie information among the six. It is interesting to observe that, their values are pretty
close but the other four give quite different estimates. In this example, p̂st is larger than
the other two of its same kind but p̂ml is smaller. Evidently, this example illustrates
that incorporating tie information into estimation can make a noticeable difference,
no matter which direction it is in, for either estimation technique.

Inwhat follows,we present a simulation study to formally compare the performance
of the six different proportion estimators fromSect. 3, wherewe consider varying rank-
ing quality and different tie-generating models, as well as different design parameters.

4.1 Simulation setups

Suppose Y ∼ Bernoulli(p) is the variable of interest; and X is a continuous variable
which can be measured at a negligible cost, satisfying X |Y = y ∼ N (μy, 1) for
y = 0, 1 with μ0 ≡ 0. Let ρ denote the correlation between X and Y . Then it can be
verified that

μ1 = ρ√(
1 − ρ2

)
p (1 − p)

. (4)

Note that the relationship between X and Y can be modeled via a logistic regression
model so that Xi reflects the probability of success of the unit i . In our simulation, X
is used for ranking Y and so the correlation ρ is used to measure the ranking quality.
We set ρ to 0.9, 0.7, 0.5 and 0.1, representing good, fair, poor and nearly random
ranking, respectively. Due to the symmetry considerations of all the six estimators,
we set p = 0.1, 0.2, . . . 0.5 and the results for p = 0.6, 0.7, . . . , 0.9 would be the
same as those corresponding to 1− p except for Monte Carlo errors. For each (ρ, p)
combination, we solve for the conditional mean μ1 using (4).

Frey (2012) described two classes of models for ties in rankings: DPS and TIC.
The DPS model involves discretizing X , which can be done by X∗ = 
X/c�, where

x� is the largest integer less than or equal to x . Rankings are then based on X∗, with
units that have the same X∗ value being declared tied. The TIC model declares the
i th and j th units to be tied whenever |Xi − X j | < c. Due to the transitivity of the
TIC model, the i th and j th units may be still declared as ties even if |Xi − X j | ≥ c
provided that there are other units to bridge the gap. In either model, c > 0 is a
user-chosen model parameter. As mentioned in Frey (2012), models in each class can
exhibit certain undesirable behavior when the model parameter c and the set size m
are modified. For TIC models, adding a unit to a set can increase the number of ties
among the units already in the set. For DPS models, we would expect that increasing
c leads to more ties, but this is not necessarily true. Frey (2012) also discussed other
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differences between the two classes. Thus, it would be interesting to investigate the
potential impact of the different tie-generatingmechanismson the relative performance
of the estimators. However, Frey (2012) only evaluated themean estimators underDPS
models. Here, we evaluate the performance of our proportion estimators under both
classes of models, where we set c ∈ {0.5, 1, 2, 4} for DPS models as in Frey (2012)
and c ∈ {0.5, 1, 1.5, 2} for TIC models.

For the RSS design parameters, we set the total sample size N ∈ {15, 30, 90, 180}
and the set sizem ∈ {3, 5}. For each (N ,m, p, ρ, c) combination under DPS/TIC, we
generate 100,000 RSS-t samples, and estimate the mean square error (MSE) for each
proportion estimator. We define the relative efficiency (RE) of a proportion estimator
(say p̂) as the ratio of the MSE of the SRS proportion estimator p̂srs vs. the MSE of
p̂, given by

RE (p) = p (1 − p) /N

MSE
(
p̂
) ,

where a RE value larger than 1 indicates p̂ is more efficient than p̂srs .

4.2 Simulation results

Here, we only report simulated REs for settings with N = 30 in Figs. 1 and 2 for
DPS models and in Figs. 3 and 4 for TIC models. This is because unless N is very
small (e.g., RSS-t is implemented with only one cycle), N seems to have not much
impact on the relative performance of the six estimators (see results for settings with
N ∈ {15, 90, 180} in Figures S1–S6 for DPS models and in Figures S9–S14 for TIC
models in the Supplementary Material; for readers’ reference, results for one-cycle
settings with N = m ∈ {3, 5} are reported as well in Figures S7–S8 for DPS models
and in Figures S15–S16 for TIC models). We further mention that, although the RE
of p̂iso is always higher than that of p̂sp in all the cases considered, their performance
is so close that the two curves overlap in all these figures and cannot be distinguished
from each other. Thus, we simply omit p̂sp in our discussion below.

Results under DPS models

From comparing Fig. 1 with Fig. 2, we can see that as the set size m increases, RE
generally increases if it is larger than 1 but decreases if it is smaller than 1 for all the
six estimators.

The relative performance of the six estimators varies as p varies, and we distinguish
two cases: (i) p is close to 0.5; that is, p ∈ (δ, 1− δ), where δ is a number in the range
(0, 0.5), but is likely to be around 0.25; and (ii) p is close to 0 (or 1), i.e., p ∈ (0, δ]
or p ∈ [1 − δ, 1). When p is close to 0.5, p̂m.ml is usually the best except for cases
with nearly random ranking (i.e. ρ = 0.1), where p̂ml often outperforms p̂m.ml , and
both are better than the other estimators. When p is close to 0 (or 1), p̂m.ml seems
to the best for good-quality ranking (i.e. ρ = 0.9); but in general, the nonparametric
estimator p̂iso is preferred. This is because the performance of p̂iso is the best or close
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Fig. 1 Simulation: comparing relative efficiency of p̂st (represented by ◦), p̂sp (represented by ), p̂iso
(represented by �), p̂ml (represented by +), p̂t.ml (represented by ×) and p̂m.ml (represented by ∗) to
p̂srs as a function of population proportion p, for various (c, ρ) settings with (N ,m) = (30, 3) under DPS
models. This figure appears in color in the electronic version of this paper

to the best in nearly all the settings. As the ranking quality ρ decreases or the sample
size N increases, δ tends to increase, meaning that the central interval where p̂m.mlor
p̂ml works best becomes narrower.

We note that among 640 simulation scenarios under DPS, there are only 12 sce-
narios where the maximum RE among the six estimators falls below 1. A closer
examination reveals that all the 12 scenarios are for nearly random ranking, and the
lowest RE value of the best estimator among these scenarios is 0.993. This seems
to suggest that as long as we choose an appropriate estimator to use, using RSS-t
over SRS would not incur loss of estimation efficiency even in situations when it
is not helpful. As to whether to utilize the tie information when estimating p from
RSS-t data, the answer is clearly yes as long as ranking is better than random guess-
ing.

Results under TIC models

From comparing Fig. 3 with Fig. 4, we find that the impact of the set size m on RE
is not as clear as in DPS models. Although in many cases, increasing m increases
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Fig. 2 Simulation: comparing relative efficiency of p̂st (represented by ◦), p̂sp (represented by ), p̂iso
(represented by �), p̂ml (represented by +), p̂t.ml (represented by ×) and p̂m.ml (represented by ∗) to
p̂srs as a function of population proportion p, for various (c, ρ) settings with (N ,m) = (30, 5) under DPS
models. This figure appears in color in the electronic version of this paper

RE when RE>1, this is obviously not true for some estimators. For example, when
p = 0.1 and 0.2, the RE values of p̂m.ml are above 1.2 for the case of N = 30,m = 3,
c = 1.5 and ρ = 0.7; but when m is increased to 5 while fixing the other parameters,
the RE of p̂m.ml decreases to values slightly above 1. Similarly, the RE values of p̂ml

jump from above 1 to below 1 when increasing m to 5 from 3.
When p is close to 0.5, p̂m.ml is usually the best except for cases with nearly random

ranking, where p̂ml and p̂m.ml are the best two, with one slightly outperforming the
other or comparable performance otherwise. When p is close to 0 (or 1), p̂iso is
preferred as its overall performance is the best. As in the DPS model, δ tends to
increase as ρ decreases or N increases.

Among 640 simulation scenarios under TIC, there are only 23 scenarios where the
maximum RE among the six estimators falls below 1. Again, all these scenarios are
for nearly random ranking, and the lowest value of the best estimator among these
scenarios is 0.990. Thus, under TIC models, as long as an appropriate estimator is
chosen, loss of estimation efficiency is not a concern either, even if it is not helpful to
use RSS-t over SRS. As to whether to utilize the tie information when estimating p,
the answer is again yes in general situations.
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Fig. 3 Simulation: comparing relative efficiency of p̂st (represented by ◦), p̂sp (represented by ), p̂iso
(represented by �), p̂ml (represented by +), p̂t.ml (represented by ×) and p̂m.ml (represented by ∗) to
p̂srs as a function of population proportion p, for various (c, ρ) settings with (N ,m) = (30, 3) under TIC
models. This figure appears in color in the electronic version of this paper

5 An empirical study

Theperformance of the six proportion estimators has been evaluated under two existing
classes of tie-generating models through simulation. In practical situations, ranking
can be done through ordinal variables that are associated with the (binary) response
variable of interest and so ties may frequently happen. This can be thought of as
another tie-generating mechanism, of which DPS might become a special case if the
ordinal variable is defined by discretizing a continuous variable. Here, we conduct
an empirical study to further examine the performance under this third mechanism
using real data, Wisconsin Breast Cancer Data (WBCD), including 699 patients from
a doctor’s clinic. In particular, some ordinal variables in this dataset may be defined
based on a natural and error-prone process instead of using any underlying continuous
variables.

WBCD is available online at UCI machine learning repository (Lichman 2013). It
contains a binary variable (say Y ) indicating tumour status and related variables of 9
visually cytological characteristics that are measured using an ordinal scale and are
coded from 1 to 10, including clump thickness, uniformity of cell size, uniformity of
cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,
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Fig. 4 Simulation: comparing relative efficiency of p̂st (represented by ◦), p̂sp (represented by ), p̂iso
(represented by �), p̂ml (represented by +), p̂t.ml (represented by ×) and p̂m.ml (represented by ∗) to
p̂srs as a function of population proportion p, for various (c, ρ) settings with (N ,m) = (30, 5) under TIC
models. This figure appears in color in the electronic version of this paper

normal nucleoli, and mitoses. We note that although diagnosing the tumour status of a
patient is expensive and requires a comprehensive biopsy procedure, these cytological
variables can be easily measured and therefore can be used for ranking. In our study,
WBCD is treated as a hypothetical population, and we are interested in estimating the
incidence rate p of breast cancer in this “population”, where 241 out of 699 patients
have breast cancer, and so p = 0.344.

We consider three combinations for (N ,m), (15,3), (15,5) and (30, 3); and for
each, we draw 100, 000 samples using RSS-t from WBCD, where sampling is all
done with replacement. We select uniformity of cell size, epithelial cell size and
mitoses as ranking variables, each having correlation 0.818, 0.683, 0.431 with Y and
approximately representing relatively good, fair, poor ranking quality, respectively.
Figure 5 shows bar plots of these concomitant variables. Clearly, the frequency of
level 1 or 2 is much higher than the other levels. Therefore, ranking ties can easily
arise in a set of size 3 or 5.

Table 2 reports estimated bias, relative efficiency, and percent of sample size reduc-
tion (PSSR) for the scenarios considered. For each of the six estimators, the bias is
estimated by the difference between the mean of the proportion estimates based on
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Fig. 5 Empirical Study using WBCD: bar plots of ranking variables in WBCD: uniformity of cell size,
epithelial cell size and mitoses

B = 100, 000 replicates and the true population proportion p = 0.344. The RE is
defined as in Sect. 4. The PSSR of an estimator p̂ measures what percent of sample
units can be reduced for p̂ to achieve the same precision as the SRS estimator p̂srs ,
defined as

PSSR =
⎛
⎝1 −

̂Var
(
p̂
)

p(1 − p)/N

⎞
⎠ × 100,

where ̂Var
(
p̂
)
is the estimated variance of p̂.

From Table 2, we find that the three nonparametric estimators are (nearly) unbiased
in all the settings considered. Among them, both p̂iso and p̂sp outperform p̂st that does
not utilize the tie information; and p̂iso is (slightly) better than p̂sp for N = 15, and
their performance becomes nearly identical for N = 30. Overall, p̂iso is the best
nonparametric estimator.

Among the three likelihood-based estimators, p̂t.ml consistently overestimates p
(or more precisely, its estimates tend to be closer to 0.5 than they should be); and p̂m.ml
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Table 2 Empirical Study using WBCD: comparing performance of different proportion estimators based
on 100,000 RSS-t samples (winning values in each setting are bolded)

(N ,m) Ranking variables

Uniformity of cell size Single epithelial cell size Mitoses

(ρ = 0.818) (ρ = 0.683) (ρ = 0.431)

Bias RE PSSR Bias RE PSSR Bias RE PSSR

(15, 3)

p̂st 0.00 1.45 31 0.00 1.33 25 0.00 1.07 6

p̂sp 0.00 1.66 40 0.00 1.47 32 − 0.01 1.12 11

p̂iso 0.00 1.67 40 0.00 1.47 32 0.00 1.13 11

p̂ml 0.00 1.45 31 0.00 1.36 26 0.02 1.19 18

p̂t.ml 0.02 1.40 31 0.02 1.31 26 0.02 1.08 10

p̂m.ml 0.00 1.66 40 0.00 1.52 34 0.02 1.34 27

(15, 5)

p̂st 0.00 1.77 44 0.00 1.53 35 0.00 1.11 10

p̂sp − 0.01 2.09 53 − 0.01 1.71 42 − 0.01 1.17 15

p̂iso − 0.01 2.11 53 − 0.01 1.74 43 − 0.01 1.18 16

p̂ml 0.00 1.76 43 0.01 1.54 35 0.03 1.22 23

p̂t.ml 0.02 1.67 42 0.02 1.49 35 0.02 1.16 17

p̂m.ml 0.00 2.07 52 0.00 1.76 43 0.03 1.40 33

(30, 3)

p̂st 0.00 1.46 31 0.00 1.34 25 0.00 1.07 7

p̂sp 0.00 1.68 41 0.00 1.49 33 0.00 1.14 13

p̂iso 0.00 1.68 41 0.00 1.49 33 0.00 1.15 13

p̂ml 0.00 1.47 32 0.00 1.38 28 0.02 1.19 21

p̂t.ml 0.02 1.35 31 0.02 1.27 27 0.02 1.04 12

p̂m.ml 0.00 1.69 41 0.00 1.55 36 0.02 1.33 30

and p̂ml appear to be unbiased when the ranking quality is fair or good; but they both
become biased (again, estimates tend to be closer to 0.5) when the ranking quality is
poor. In terms of RE and PSSR, p̂m.ml clearly outperforms p̂t.ml and p̂ml . Thus, p̂m.ml

is the best likelihood-based estimator.
Table 2 shows that as the ranking quality ρ decreases, the RE decreases for every

estimator as expected. When the ranking quality is good, the performance of p̂iso
and p̂m.ml is quite close, with p̂iso being slightly better than p̂m.ml for N = 15 and
p̂m.ml slightly better for N = 30. When the ranking quality decreases, it seems that
the performance of p̂iso deteriorates faster than p̂m.ml , and so p̂m.ml becomes a clear
winner. Evenwhen the rankingquality is poor, about 30%reduction in sample size from
usingRSS-t over SRS can be achieved by p̂m.ml . In case that information about ranking
quality is not available, we would recommend the use of p̂m.ml in this example for its
consistently top performance. This agrees with the conclusion from our simulation in
Sect. 4 that when p is not extreme, p̂m.ml is generally preferred for N ∈ {15, 30}.
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Furthermore, by comparing results of the setting (15, 3) with those of (15, 5), we
find that the RE of every estimator increases with the set sizem while the total sample
size N is fixed. By comparing results of (15, 3) with (30, 3), we find that the RE of
every estimator increases with N whilem is fixedwith an exception of p̂t.ml that shows
the opposite pattern.

6 Conclusion

We have extended the work of Frey (2012) about RSS-t to binary outcomes. Besides
the direct extension of the three nonparametric estimators considered in Frey (2012)
and themaximum likelihood estimator proposed inTerpstra (2004),we have added two
new likelihood-based estimators into the pool to incorporate the tie information. We
have thoroughly examined the performance of the six proportion estimators, through
simulation using data generated from both DPS and TIC models and a data example
involving a natural tie-generating process via the use of ordinal ranking variables.

Our results suggest that usingRSS-t over SRS, combinedwith an appropriate choice
of the proportion estimator, cangreatly improve the efficiencyof proportion estimation.
Unless ranking is close to random, utilizing tie information is helpful in the estimation
process, which leads to considerable efficiency gain when the quality of ranking is
good. We also find that the relative performance of the different proportion estimators
candependon the value of p, rankingquality and tie-generatingmechanism, as detailed
in Sects. 4 and 5. However, in a very wide range of settings, we find that p̂iso works
well for rare or common events, and p̂m.ml is the best choice otherwise, regardless of
the tie-generating mechanism. Thus, in the most common situations where one can
get a rough estimate of p but is not sure about the other factors, we recommend that
p̂m.ml be used for p close to 0.5 and p̂iso be used otherwise.

This paper focuses on proportion estimation from (balanced) ranked set samples
with tie structures recorded. One future task can be to extend our work to judgment
post-stratification (JPS)with binary outcomes,where empty stratamay arise oftenwith
small sample sizes so that different versions of the isotonic estimator no longer lead
to identical estimates. It would be interesting to investigate how various proportion
estimators perform for JPS in the presence of tie information.

We mention that deriving theoretical properties of the proposed proportion estima-
tors is very difficult because the added tie structure ofRSS-t depends on the researcher’s
ability to rank the sample units. For the same reason, Frey (2012) did not present any
theoretical justification for mean estimators proposed for RSS-t. Even how the orig-
inal RSS mean estimator (without utilizing the tie information) performs when ties
occur (and then are randomly broken) has not been theoretically examined in the past.
Studying these estimators formally in presence of ties may help researchers deeply
understand their behaviors, and this has an ample space for future research. On the
other hand, obtaining such theoretical resultsmay require large-sample arguments. It is
well known that ranked set sampling is a cost efficientmethod, and so the small-sample
properties (typically studied via simulation) are more relevant in practice.

Finally, we note that a natural way to draw statistical inference for RSS-t samples
is via resampling. We can easily adapt a procedure called BRSSR (Bootstrap RSS by
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row), proposed by Modarres et al. (2006). The BRSSR method first resamples each
judgment stratum separately. LetY = {

Y[i] j , i = 1, . . . ,m, j = 1, . . . , n
}
be the orig-

inal RSS sample. Then a bootstrap sample Yb =
{
Yb

[i] j , i = 1, . . . ,m, j = 1, . . . , n
}

is obtained by drawing Yb
[i] j with replacement from the discrete uniform distribution

on the set
{
Y[i]1, . . . ,Y[i]n

}
, for each i = 1, . . . ,m, respectively. However, for RSS-t,

the sample should also include T1, . . . ,Tn , matrices of tie information. Therefore,
we propose to draw the i th row of T j , say T j,b

i , along with Yb
[i] j to construct a RSS-t

bootstrap sample (Y , T )b =
{(

Yb
[i] j ,T

j,b
i

)
, i = 1, . . . ,m, j = 1, . . . , n

}
; and sta-

tistical inference for RSS-t can be done based on multiple copies of the bootstrap
samples [(Y , T )b]Bb=1. For example, to construct a (1 − α)% confidence interval for
p based on some proportion estimator (say p̂), we can generate B bootstrap samples
using the method described above from a RSS-t sample and then compute the corre-
sponding B bootstrap estimates

(
p̂1, . . . , p̂B

)
. Then the (1 − α)%confidence interval

can be given by
(
p̂ α

2
, p̂1− α

2

)
, where p̂α is the αth sample quantile of

(
p̂1, . . . , p̂B

)
.

Other methods of interval estimation such as random grouping and jackknife can be
also considered for potentially better performance. The code for implementing the
modified BRSSR procedure and our numerical experiments is publicly available at
goo.gl/sf7DJW.
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