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Abstract This article deals with constructing a confidence interval for the reliability
parameter using ranked set sampling. Some asymptotic and resampling-based intervals
are suggested, and compared with their simple random sampling counterparts using
Monte Carlo simulations. Finally, the methods are applied on a real data set in the
context of agriculture.

Keywords Bootstrap · Jackknife · Judgment ranking

1 Introduction

Ranked set sampling (RSS) is a data collection method introduced byMcIntyre (1952)
in an agricultural context involving pasture yields. It serves as an alternative to the usual
simple random sampling (SRS) in situations in which exact measurements of sample
units are difficult or expensive to obtain but judgment ranking of them according to
the variable of interest is relatively easy and cheap. The judgment ranking is usually
performed visually (by a field expert, say), or using one ormore concomitant variables,
but it cannot necessitate actual measurements on the selected units.
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The RSS design can be explained as follows:

1. Draw k random samples, each of size k, from the target population.
2. Apply the judgement ordering, by any cheap method without the actual measure-

ment of the variable of interest, on the elements of the r th (r = 1, . . . , k) sample
and identify the r th smallest unit.

3. Actually measure the k identified units in step 2.
4. Repeat steps 1–3,m times (cycles), if needed, to obtain a ranked set sample of size

mk.

Let X[r ]i be the r th judgement order statistic from the i th cycle. This is a standard
notation in the RSS literature (see Chapter 1 in Chen et al. 2004, for example). Then,
the resulting ranked set sample is denoted by {X[r ]i : r = 1, . . . , k ; i = 1, . . . ,m}.
The design parameter k is called set size. To facilitate the judgment ranking, the set
size should be kept small in practice, say 2–8. Nonetheless, larger set sizes can be used
as long as the ranking process is not hampered.

A ranked set sample comprising m cycles and with set size k exploits information
about far more units than a simple random sample of sizemk. In the RSS, the judgment
ranking information aboutmk(k−1) unmeasured units contributes to drawing a more
representative sample. The SRS, however, has no mechanism for incorporating the
judgment ranking information. Thus, the RSS-based procedures are usually more effi-
cient than their SRS competitors. The extent of improvement hinges on the accuracy
of the judgment ranking. The RSS has been applied in a variety of fields, includ-
ing forestry (Halls and Dell 1966), entomology (Howard et al. 1982), environmental
monitoring (Kvam 2003), clinical trials and genetic quantitative trait loci mappings
(Chen 2007), segmentation of Terahertz images (Ayech and Ziou 2015), and medicine
(Zamanzade and Mahdizadeh 2017).

In reliability theory, the probability θ = P(X < Y ) represents the reliability of
a stress–strength model, where X and Y represent the stress and strength variables,
respectively. This probability also quantifies steady state availability of a repairable
system with X and Y denoting repair time and lifetime of the system, respectively. In
fact, θ provides a general measure of the difference between two populations, that has
found applications in diverse areas (Kotz et al. 2003). For example, it is a measure of
household financial fragility in economics when X and Y are disposable household
income and consumption, respectively. In medicine, it is interpreted as a measure
of treatment’s effectiveness if X and Y are the response variables from control and
treatment groups, respectively. The latter situation is illustrated using a real data set
in Sect. 5.

It is well known that a point estimate is generally different from the true parameter
value, say ϑ . Moreover, it does not convey any measure of reliability. Interval estima-
tion is another type of estimation which contains more information about the data used
to obtain the point estimate. It allows us to have some degree of confidence for secur-
ing ϑ . Interval estimators are called confidence intervals (CIs). Let L and U be two
statistics such that P (L < ϑ < U ) = 1−α, for some α ∈ (0, 1). Then, (L ,U ) is a CI
for ϑ with coverage probability (confidence level) 1− α. The width of the CI reflects
the amount of variability inherent in the point estimate. A good interval should be rel-
atively narrow on the average, with high probability of enclosing the true parameter.
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Interval estimation of P(X < Y ) in ranked set sampling 1327

This article deals with constructing some CIs for θ in the RSS design. It is worth
noting that point estimation of different population attributes have been comprehen-
sively studied in the RSS literature, while hypothesis testing and interval estimation
problems have received little attention (see Chen et al. 2004; Wolfe 2012; Chapter 15
in Hollander et al. 2014 for a good review of the RSS and its applications). Yin et al.
(2016) proposed a CI for θ based on kernel density estimation. A simpler approach is
to use empirical distribution function, which has not been investigated yet. We set out
to fill this gap in this work. It emerges that the resulting intervals have an edge over
the existing one.

In Sect. 2, our point estimator is introduced and its theoretical properties are studied.
Some estimators for variance of this estimator also are presented. In Sect. 3, six types
of intervals are developed. Section 4 contains results of Monte Carlo simulations
assessing performances of the suggested intervals in terms of coverage probability
and expected length. An agricultural data set is analyzed in Sect. 5. Final conclusions
appear in Sect. 6. Proofs are put off to an appendix.

2 Nonparametric estimation

Let {X[r ]i : r = 1, . . . , k ; i = 1, . . . ,m} and {Y[s] j : s = 1, . . . , � ; j = 1, . . . , n} be
independent ranked set samples from two populations with the distribution functions
F and G, respectively. Also, the survival function associated with G is denoted by Ḡ.
The standard estimator of θ is given by

θ̂RSS = 1

mkn�

m∑

i=1

n∑

j=1

k∑

r=1

�∑

s=1

I (X[r ]i < Y[s] j ), (1)

where I (.) is the indicator function.
The properties of θ̂RSS in the especial case of m = n = 1 was investigated by

Sengupta and Mukhuti (2008). They showed that the this estimator is unbiased and
more efficient than its SRS counterpart, even in the presence of ranking errors. The
following result shows asymptotic normality of θ̂RSS.

Proposition 1 Let θ̂RSS be as in (1), and N = mk+n�. If m, n → ∞ and (mk)/N →
λ ∈ (0, 1), then

√
N (θ̂RSS − θ)

d→ N

(
0,

σ 2
1

λ
+ σ 2

2

1 − λ

)
,

where

σ 2
1 = Var

(
Ḡ(X)

) − 1

k

k∑

r=1

[
E

(
Ḡ(X[r ])

) − θ
]2

,
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and

σ 2
2 = Var (F(Y )) − 1

�

�∑

s=1

[
E

(
F(Y[s])

) − θ
]2

.

Suppose θ̂SRS is the counterpart of (1) based on two independent simple random
samples of sizes mk and n� from F and G, respectively. By virtue of the next result,
θ̂RSS is asymptotically more efficient than θ̂SRS. This statement is valid regardless of
the accuracy of the judgment ranking process.

Proposition 2 The asymptotic relative efficiency of θ̂RSS to θ̂SRS is

ARE(θ̂RSS, θ̂SRS) = 1 +
1−λ
k

∑k
r=1

[
E

(
Ḡ(X[r ])

) − θ
]2 + λ

�

∑�
s=1

[
E

(
F(Y[s])

) − θ
]2

1−λ
k

∑k
r=1 Var

(
Ḡ(X[r ])

) + λ
�

∑�
s=1 Var

(
F(Y[s])

) .

In light of the above result, interval estimation of θ based on the RSS is expected to
be more efficient than that based on the SRS. An estimate of Var(θ̂RSS) is needed to
propose an interval based on Proposition 1. To the best of our knowledge, this has not
been studied yet. In the sequel, we introduce an estimator for σ 2

1 . Similar arguments
yield an estimate of σ 2

2 . These are combined to arrive at the final estimator.
Let {X[r ]i : r = 1, . . . , k; i = 1, . . . ,m} be a ranked set sample from a population

with finite mean μ and variance σ 2. If μ[r ] and σ 2[r ] denote the mean and variance of
X[r ]1, respectively, then Stokes (1980) showed that

σ 2 = 1

k

k∑

r=1

σ 2[r ] + 1

k

k∑

r=1

(
μ[r ] − μ

)2
. (2)

Suppose the random variable W is defined as W = Ḡ(X). Then using (2), we get

Var(W ) = 1

k

k∑

r=1

Var(W[r ]) + 1

k

k∑

r=1

[
E(W[r ]) − E(W )

]2
,

where W[r ] = Ḡ(X[r ]1). That is to say that

σ 2
1 = 1

k

k∑

r=1

Var(W[r ]).

Now, from Equation 3 in MacEachern et al. (2002), one can construct an estimator for
σ 2
1 as

σ̂ 2
1 = 1

2km(m − 1)

k∑

r=1

m∑

i=1

m∑

i ′=1

(W[r ]i − W[r ]i ′
)2

, (3)
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where

W[r ]i = 1

n�

�∑

s=1

n∑

j=1

I (X[r ]i < Y[s] j ).

Similarly, an estimator of σ 2
2 is obtained as

σ̂ 2
2 = 1

2�n(n − 1)

�∑

s=1

n∑

j=1

n∑

j ′=1

(Z[s] j − Z[s] j ′
)2

, (4)

where

Z[s] j = 1

mk

k∑

r=1

m∑

i=1

I (X[r ]i < Y[s] j ).

Combining (3) and (4), we conclude that

̂Var(θ̂RSS) = 1

N

(
σ̂ 2
1

λ̂
+ σ̂ 2

2

1 − λ̂

)
, (5)

where λ̂ = (mk)/N . The above estimator is expected to work well for moderate
to large values of m and n, but not for small choices of them. In the sequel, three
alternatives are suggested.

The jackknife methodology has been proposed to serve two purposes, namely, to
reduce a possible bias of an estimator, and to yield an approximation for its variance
(see Quenouille 1956; Tukey 1958). Let θ̂ (X1, . . . , Xn) be a statistic of interest, where
Xi ’s are iid random variables, and θ̂ is invariant under permutation of the arguments. If
θ̂ (i) denotes the value of θ̂ based on X1, . . . , Xi−1, Xi+1, . . . , Xn , then the jackknife
estimate of Var(θ̂) is given by

̂Var(θ̂) = n − 1

n

n∑

i=1

(
θ̂ (i) − θ̂ (0)

)2
,

where θ̂ (0) = ∑n
i=1 θ̂ (i)/n.

A ranked set sample consists of independent but not identically distributed random
variables. Therefore, one should adapt the above technique to estimate Var(θ̂RSS). The
first method is to treat data as m + n iid random variables X1, . . . ,Xm,Y1, . . . ,Yn ,
where Xi = (X[1]i , . . . , X[k]i ) (i = 1, . . . ,m) and Y j = (Y[1] j , . . . ,Y[�] j ) ( j =
1, . . . , n). This is to say thatXi (Y j ) contains the elements of the X (Y ) sample drawn

in the i th ( j th) cycle. Suppose θ̃
(t)
RSS is value of the reliability estimator when Zt ,

t = 1, . . . ,m + n, is omitted from the data, where
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Zt =
{
Xt t = 1, . . . ,m
Yt−m t = m + 1, . . . ,m + n

.

Now, the jackknife estimate of the variance is

˜Var1(θ̂RSS) = m + n − 1

m + n

m+n∑

t=1

(
θ̃

(t)
RSS − θ̃ (0)

)2
, (6)

where θ̃ (0) = ∑m+n
t=1 θ̃

(t)
RSS/(m + n).

It is possible to obtain another jackknife-type estimate of the variance by excluding
the cycles from the two samples simultaneously. Let θ̆ (u,v)

RSS denote value of the estimator
when Xu and Yv are removed from the data. The second estimator is then

˜Var2(θ̂RSS) = mn − 1

mn

m∑

u=1

n∑

v=1

(
θ̆

(u,v)
RSS − θ̆ (0)

)2
, (7)

where θ̆ (0) = ∑m
u=1

∑n
v=1 θ̆

(u,v)
RSS /(mn).

The bootstrap method, introduced by Efron (1979), can also be used to estimate the
variance. The method involves drawing samples repeatedly from the empirical distri-
bution function. Suppose X1, . . . , Xn is a random sample from the target population,
and θ̂ is an estimator of interest. First we draw a sample of size n, with replacement,
from the data points (called a bootstrap sample). This sampling procedure is repeated B
times, and the estimator is computed from each bootstrap sample. The sample variance
of these B values is then the bootstrap estimate of Var(θ̂).

Modarres et al. (2006) suggested two bootstrap algorithms in the RSS design. The
bootstrap ranked set sampling (BRSS) method, which is the most efficient one, is now
delineated. Let Fmk be the empirical distribution function based on the ranked set
sample {X[r ]i : r = 1, . . . , k; i = 1, . . . ,m}, i.e.

Fmk(x) = 1

mk

k∑

r=1

m∑

i=1

I (X[r ]i ≤ x).

According to the BRSS algorithm, a bootstrap sample is drawn as follows:

1. Assign to each element of the ranked set sample a probability of (mk)−1.

2. Randomly draw k elements X1, . . . ,Xk
iid∼ Fmk , sort them in ascending order

X(1), . . . ,X(k), and retain X∗[r ]1 = X(r).
3. Perform step 2 for r = 1, . . . , k.
4. Repeat steps 2 and 3 m times to obtain {X∗[r ]i}.

Following similar steps, a bootstrap copy of {Y[s] j : s = 1, . . . , �; j = 1, . . . , n} is
generated. Suppose B pairs of bootstrap samples are drawn as described above, and let
θ̂bRSS be the value of the reliability estimator based on data in the bth (b = 1, . . . , B)
replication. Then bootstrap variance estimator is given by
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Interval estimation of P(X < Y ) in ranked set sampling 1331

̂Varboot(θ̂RSS) = 1

B − 1

B∑

b=1

(
θ̂bRSS − θ̄∗)2 , (8)

where θ̄∗ = ∑B
b=1 θ̂bRSS/B.

3 Proposed CIs

In this section, we construct several CIs for θ using asymptotic and resampling meth-
ods. Based on Proposition 1, one can employ the pivotal quantity

T = θ̂RSS − θ√
̂Var(θ̂RSS)

≈ N (0, 1),

where ̂Var(θ̂RSS) is defined in (5). The corresponding approximate (1 − α)-CI is

(
θ̂RSS − zα/2

√
̂Var(θ̂RSS), θ̂RSS + zα/2

√
̂Var(θ̂RSS)

)
, (9)

where zα/2 is the (1 − α/2) quantile of the standard normal distribution. The pivotal

quantity T can be altered if ̂Var(θ̂RSS) is replaced by one of the estimates presented
in (6), (7) and (8). Accordingly, natural modifications of (9) would be

(
θ̂RSS − zα/2

√
˜Var1(θ̂RSS), θ̂RSS + zα/2

√
˜Var1(θ̂RSS)

)
, (10)

(
θ̂RSS − zα/2

√
˜Var2(θ̂RSS), θ̂RSS + zα/2

√
˜Var2(θ̂RSS)

)
, (11)

and (
θ̂RSS − zα/2

√
̂Varboot(θ̂RSS), θ̂RSS + zα/2

√
̂Varboot(θ̂RSS)

)
. (12)

We can construct a two-sided equal-tailed (1 − α)-CI for θ from the empirical
distribution function of a series of bootstrap replications of θ̂RSS. The α/2 and the
1−α/2 quantiles of the bootstrap replications are used as lower and upper confidence
bounds. This procedure is called percentile bootstrap, and the corresponding interval
is given by (

θ̂
α/2
RSS, θ̂

1−α/2
RSS

)
, (13)

where θ̂
β
RSS is the β quantile of θ̂1RSS, . . . , θ̂

B
RSS.

The bootstrap-t method approximates quantiles of the distribution of T from sample
quantiles of the quantities

Tb = θ̂bRSS − θ̂RSS√
̂Var(θ̂bRSS)

(b = 1, . . . , B),
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1332 M. Mahdizadeh, E. Zamanzade

where θ̂bRSS and̂Var(θ̂bRSS) are computed from thebth bootstrap sample.Thebootstrap-
t interval is defined as

(
θ̂RSS − t1−α/2

√
̂Var(θ̂RSS), θ̂RSS − tα/2

√
̂Var(θ̂RSS)

)
, (14)

where tβ is the β quantile of T1, . . . , TB .
The intervals (9), (10), (11), (12), (13) and (14) will be referred to as Nor-

mal, Normal-J1, Normal-J2, Normal-B, Boot-p and Boot-t, respectively. It should
be mentioned that all the above intervals, except Boot-p, may have endpoints
outside the interval (0,1). Therefore, we correct the original interval (L ,U ) as
(max{0, L},min{1,U }).

4 Simulation results

This section contains results of simulation studies conducted to compare the per-
formances of the different intervals suggested in the previous section. We consider
the cases where both X and Y follow either a normal or exponential distribution. If
X − μ (μ ∈ R) and Y are independent standard normal random variables, then

θ = 	

(−μ√
2

)
,

where	(.) is the distribution function of Y . Similarly, for independent standard expo-
nential random variables X/β (β > 0) and Y , it can be shown that

θ = 1

1 + β
.

Under each parent distribution, three values were assigned to the associated param-
eter so as to produce θ = 0.25, 0.5, 0.75 which are referred to as case A, B and
C, respectively. The appropriate parameter values are given in Table 1. If the total
sample sizes are denoted by N1 = mk and N2 = n�, then we select (N1, N2) ∈{
(10, 10), (10, 20), (10, 30), (20, 20)

}
. Also, ranked set samples are drawn from the

two populations using common set sizes k = � = 1, 2, 5, where the set size one simply
represents the SRS design.

We assume that the ranking the variables of interest X and Y are done based on the
concomitant variables X and Y which are related according to equations

X = ρ1

(
X − μx

σx

)
+

√
1 − ρ2

1 Z1,

and

Y = ρ2

(
Y − μy

σy

)
+

√
1 − ρ2

2 Z2,
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Table 1 Parameter values
corresponding to case A, B and
C

Parameter A B C

μ 0.95387 0 −0.95387

β 3 1 1/3

where ρi ∈ [0, 1] (i = 1, 2), and Z1 (Z2) is a standard normal random variable inde-
pendent from X (Y ). Moreover, Z1 and Z2 are independent. The quality of rankings
are controlled by the parameter ρi ’s. It is easy to see that Corr(X,X ) = ρ1 and
Corr(Y,Y) = ρ2. The chosen values of (ρ1, ρ2) are (1, 1) for perfect rankings of X
and Y , (1, 0.8) for perfect ranking of X and fairly accurate ranking of Y , and (0.8, 0.8)
for fairly accurate rankings of X and Y .

For each combination of distribution, sample sizes and correlations, 5000 pairs
of samples were generated in the RSS design (with the aforesaid set sizes). The six
intervalswere constructed from each pair of samples forα = 0.05. In doing so, number
of the bootstrap replications is chosen to be 500. Then, coverage rate and expected
length of any interval is estimated by fraction of the intervals containing true θ , and
mean of the intervals’ lengths, respectively. The results with the perfect ranking are
reported in Tables 2, 3, 4 and 5, where the lengths of intervals appear in parentheses.

It can be seen generally that the higher length of interval, the better coverage
probability. Normal-J2 and Boot-t CIs have the best coverage rates, and the latter is
always shorter. Also, Normal-B and Boot-p are the shortest CIs, and their coverage
rates are more or less the same. For a fixed N1+N2, performances of the CIs generally
improvewith equal sample sizes setup. Compare similar intervals for sample sizes (10,
30) and (20, 20) under different parent distributions.

Given a pair of total sample sizes, the lengths of all intervals are decreasing in
the set size regardless of the case (A, B or C). However, changes in the coverage
probabilities are not regular. The above trends are consistent with some results in the
RSS literature. For example, Terpstra and Miller (2006) studied exact inference for a
population proportion based on the RSS. According to their findings, expected length
of the RSS-based CI is uniformly (as a function of the true population proportion)
smaller than that of the SRS-based CI. However, there is not a uniform superiority for
the coverage probability. See Figure 3 in Terpstra and Miller (2006). In our problem,
the situation is more complex because the intervals are based on asymptotic and/or
resampling methods.

If the perfect rankings are assumed, the performances of each interval for cases A
and C are in close agreement when the parent distribution is normal. This statement
is true about the exponential distribution if N1 = N2. These properties can also be
observed in the imperfect ranking setup (seeTables 1–8 in the supplementarymaterial),
but the additional assumption ρ1 = ρ2 is needed for the exponential distribution. In the
presence of ranking errors, lengths of the CIs increase (as compared with the perfect
ranking case) but the coverage probabilities do not behave regularly. Overall, Normal-
J2 and Boot-t CIs have satisfactory coverage rates (which are close to the nominal
level or higher than it) in this situation, although they are longer than the other CIs.

Mahdizadeh and Zamanzade (2016) used kernel density estimation to estimate θ in
the RSS. Let h1 and h2 be bandwidth of the kernel density estimator based on {X[r ]i :
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r = 1, . . . , k ; i = 1, . . . ,m} and {Y[s] j : s = 1, . . . , � ; j = 1, . . . , n}, respectively
(see Chen 1999 for the kernel density estimation in the RSS). If t =

√
h21 + h22, then

kernel-based estimator is given by

θ̃RSS = 1

mkn�

m∑

i=1

n∑

j=1

k∑

r=1

�∑

s=1

	

(
Y[s] j − X[r ]i

t

)
,

where 	(.) is the distribution function of standard normal random variable. Yin et al.
(2016) established asymptotic normality of the above estimator, and employed this
result in developing a CI for θ . The corresponding interval is defined as

(
θ̃RSS − zα/2

√
̂Var(θ̃RSS), θ̃RSS + zα/2

√
̂Var(θ̃RSS)

)
, (15)

where ̂Var(θ̃RSS) is computed similar to (5) based on

W[r ]i = 1

n�

�∑

s=1

n∑

j=1

	

(
Y[s] j − X[r ]i

t

)
,

and

Z[s] j = 1

mk

k∑

r=1

m∑

i=1

	

(
Y[s] j − X[r ]i

t

)
.

We conducted a partial simulation study to compare CIs (9) and (15) in terms of the
coverage probability and length, based on 10,000 pairs of samples. In determining h1
and h2, the following three methods of the bandwidth selection were utilized: normal
reference (NR) rule, unbiased cross-validation (UCV), and plug-in (PI). Although
these techniques are developed for the SRS (see Sheather 2004 for more details), they
can be applied in the RSS setup by considering data as if collected by the SRS.

Figures 1 and 2 display the results for (N1, N2) = (10, 10) with k = � = 2, 5,
when the perfect rankings are assumed. Here, black/solid curve is corresponding to the
interval (9). Also, blue/dashed, red/dotted and orange/longdash curves are associated
with the interval (15) using NR, UCV and PI methods, respectively. It is observed
that the interval (9) has better coverage rate, while the interval (15) is always shorter.
Hence, there is not a single interval preferred from both aspects. Among the kernel-
based intervals, overall performance of the CI using PI method is satisfactory.

5 Illustration

We now apply the proposed procedures to an agricultural data set. Murray et al. (2000)
conducted an experiment in which apple trees are sprayed with chemical containing
fluorescent tracer, Tinopal CBS-X, at 2% concentration level in water. Two nine-tree
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Fig. 1 Estimated coverage rates and lengths of 95% intervals under normal distribution with the perfect
ranking when (N1, N2) = (10, 10)

plots were chosen for spraying. One plot was sprayed at high volume, using coarse
nozzles on the sprayer to give a large average droplet size. The other plot was sprayed
at low volume, using fine nozzles to give a small average droplet size. Fifty sets of
five leaves were identified from the central five trees of each plot, and used to draw
10 copies a ranked set sample of size five, from each plot. The variable of interest is
the percentage of area covered by the spray on the surface of the leaves. The formal
measurement entails chemical analysis of the solution collected from the surface of
the leaves, and thereby is a time-consuming and expensive process. The judgment
ranking within each set is based on the visual appearance of the spray deposits on the
leaf surfaces when viewed under ultraviolet light. Clearly, the latter method is cheap,
and fairly accurate if implemented by an expert observer.

The data are given in Table 6, where measurements obtained from the plot sprayed
at high (low) volume constitute the control (treatment) group. The interest centers
on knowing whether the sprayer settings affect the percentage area coverage. If
X (Y ) denotes the response variable from the control (treatment) group, then θ̂RSS
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Fig. 2 Estimated coverage rates and lengths of 95% intervals under exponential distributionwith the perfect
ranking when (N1, N2) = (10, 10)

is a measure of the treatment effect. From the data in Table 6, θ̂RSS = 0.6184 is
obtained with estimated varianceŝVar(θ̂RSS) = 0.001344,˜Var1(θ̂RSS) = 0.001825,
˜Var2(θ̂RSS) = 0.019038, and ̂Varboot(θ̂RSS) = 0.001169. For the bootstrap-based
estimate, B = 5000 is used. It is seen that with the exception of˜Var2(θ̂RSS), all of the
estimates are in good agreement. Table 7 displays 95% CIs for θ based on different
methods. Apart from Normal-J2 interval, we may conclude that the treatment effect is
significant at 0.05 level as none of the intervals contain 0.5. It should bementioned that
Normal-J2 is the longest interval in this example, and this is consistent with simulation
results in Sect. 4.

As a reviewer pointed out, the accuracy of sampling and statistical inference largely
hinges on properties of the population, conditions of the sample, and the method of
estimation, so called sampling and statistical trinity (seeWanget al. 2012, for example).
Here, the proposedprocedures are illustratedusing agricultural data. Spatial population
may be dominated by spatial autocorrelation, spatial stratified heterogeneity, or both.
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Table 6 Ranked set sample data for the percentage area covered on the surface of the leaves of apple trees

Group Copy Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Control 1 0.003 0.028 0.244 0.057 0.143

2 0.039 0.119 0.126 0.105 0.565

3 0.034 0.118 0.130 0.218 0.296

4 0.051 0.104 0.193 0.210 0.150

5 0.032 0.141 0.130 0.250 0.229

6 0.069 0.070 0.260 0.225 0.285

7 0.100 0.091 0.244 0.130 0.347

8 0.012 0.096 0.069 0.373 0.133

9 0.046 0.117 0.126 0.223 0.273

10 0.028 0.083 0.108 0.212 0.261

Treatment 1 0.036 0.137 0.183 0.270 0.487

2 0.250 0.181 0.290 0.328 0.715

3 0.089 0.032 0.269 0.419 0.315

4 0.180 0.111 0.130 0.194 0.742

5 0.100 0.009 0.184 0.277 0.122

6 0.042 0.089 0.199 0.269 0.395

7 0.044 0.083 0.227 0.177 0.742

8 0.044 0.171 0.067 0.192 0.336

9 0.009 0.017 0.217 0.438 0.544

10 0.071 0.132 0.310 0.343 0.379

Table 7 95% CIs for θ based
on the apple trees data

Normal Normal-J1 Normal-J2

(0.547, 0.690) (0.535, 0.702) (0.348, 0.889)

Normal-B Boot-p Boot-t

(0.551, 0.685) (0.551, 0.683) (0.546, 0.691)

Also, there may be significant covariates. The properties of the population should be
tested beforemaking a choice of themost suitable one among numerous estimators. To
justify the choice of a method, a table may be drawn to compare the assumptions of the
mainstream models in the topic and the properties of the data under study (e.g. spatial
autocorrelation, spatial stratified heterogeneity, and the significance of covariates).
Unfortunately, we have not any information about the population from which our
sample in Table 6 is drawn. Thus, it is not possible to check the aforesaid properties.

6 Conclusion

The RSS method combines measurement with the judgment ranking information for
purpose of statistical inference. It is advantageous in settings where precise mea-

123



1346 M. Mahdizadeh, E. Zamanzade

surement on the variable of interest is difficult (e.g., time-consuming, expensive or
destructive), but small sets of units can be accurately ranked without actual quantifi-
cation.

While point estimation of different population attributes have been exhaustively
studied in the RSS literature, hypothesis testing and interval estimation problems have
received little attention. This article aims to fill this gap in the context of estimating
the reliability parameter. Several asymptotic and resampling-based intervals are devel-
oped, and compared with their SRS analogs through extensive simulation study. The
results confirm the preference of the RSS-based CIs with respect to length, although
their coverage rates are not uniformly superior. An agricultural data set is used to
illustrate the suggested interval estimation procedures.

The intervals presented in this work utilize a point estimator constructed based on
empirical distribution function. We have partly investigated performance of one of
the CIs modified using kernel density estimation. The other intervals can be adapted
similarly. This will be considered in a separate article.

Acknowledgements This researchwas supportedby IranNational ScienceFoundation (INSF).The authors
wish to thank the reviewers for insightful comments and suggestions that improved an earlier version of
this paper.

Appendix

In this section, we first provide some results about the two-sample U-statistics, and
then present proofs of Propositions 1 and 2.

Suppose that h(x1, . . . , xp; y1, . . . , yq) is a symmetric kernel of degree (p, q) for
the parameter θ = E (h). For independent simple random samples X1, . . . , Xmk from
F , and Y1, . . . ,Yn� from G, the corresponding two-sample U-statistic for θ is given
by

USRS = U (X1, . . . , Xmk; Y1, . . . ,Yn�)

= 1
(mk
p

)(n�
q

)
∑

α∈A

∑

β∈B
h(Xα1, . . . , Xαp ; Yβ1 , . . . ,Yβq ),

where α = (α1, . . . , αp), β = (β1, . . . , βq), andA (B) is the collection of all subsets
of size p (q) chosen from integers 1, . . . ,mk (1, . . . , n�). Let

h10(x) = E
(
h(x, X2, . . . , X p; Y1, . . . ,Yq)

)
,

and

h01(y) = E
(
h(X1, . . . , X p; y,Y2, . . . ,Yq)

)
.

Also, in connection with the above functions, define ζ10 = Var (h10(X1)) and ζ01 =
Var (h01(Y1)).
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Let {X[r ]i : r = 1, . . . , k ; i = 1, . . . ,m} and {Y[s] j : s = 1, . . . , � ; j = 1, . . . , n}
be independent ranked set samples from twopopulationswith the distribution functions
F and G, respectively. The two-sample U-statistic for θ in the RSS is given by

URSS = U (X1, . . . ,Xm;Y1, . . . ,Yn),

where Xi = (X[1]i , . . . , X[k]i ) (i = 1, . . . ,m), and Y j = (Y[1] j , . . . ,Y[�] j ) ( j =
1, . . . , n). In addition, suppose γr0 = E

(
h10(X[r ]1)

)
, γ0s = E

(
h01(Y[s]1)

)
, ξr0 =

Var
(
h10(X[r ]1)

)
, and ξ0s = Var

(
h01(Y[s]1)

)
.

Assume that N = mk + n�, and (mk)/N → λ ∈ (0, 1) as m, n → ∞. Then,
according to Theorem 2 in Presnell and Bohn (1999),

√
N (URSS − θ)

d→ N

(
0,

p2φ

λ
+ q2ϕ

1 − λ

)
,

where

φ = ζ10 − 1

k

k∑

r=1

(γr0 − θ)2 ,

and

ϕ = ζ01 − 1

�

�∑

s=1

(γ0s − θ)2 .

If we set h(x, y) = I (x < y), which is a kernel of degree (1, 1), then θ = P(X < Y )

and Proposition 1 follows.
Also, from Corollary 2 in Presnell and Bohn (1999), the asymptotic relative effi-

ciency of URSS to USRS is

ARE(URSS,USRS) = 1 +
(1−λ)p2

k

∑k
r=1 (γr0 − θ)2 + λq2

�

∑�
s=1 (γ0s − θ)2

(1−λ)p2

k

∑k
r=1 ξr0 + λq2

�

∑�
s=1 ξ0s

.

Again, by the same choice of the kernel mentioned above, Proposition 2 is concluded.
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