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Abstract In this paper, we propose a Ward-like hierarchical clustering algorithm
including spatial/geographical constraints. Two dissimilarity matrices D0 and D1 are
inputted, along with a mixing parameter α ∈ [0, 1]. The dissimilarities can be non-
Euclidean and the weights of the observations can be non-uniform. The first matrix
gives the dissimilarities in the “feature space” and the second matrix gives the dissim-
ilarities in the “constraint space”. The criterion minimized at each stage is a convex
combination of the homogeneity criterion calculated with D0 and the homogeneity
criterion calculated with D1. The idea is then to determine a value of α which increases
the spatial contiguity without deteriorating too much the quality of the solution based
on the variables of interest i.e. those of the feature space. This procedure is illustrated
on a real dataset using the R package ClustGeo.
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1 Introduction

The difficulty of clustering a set of n objects into k disjoint clusters is one that is
well known among researchers. Many methods have been proposed either to find
the best partition according to a dissimilarity-based homogeneity criterion, or to fit
a mixture model of multivariate distribution function. However, in some clustering
problems, it is relevant to impose constraints on the set of allowable solutions. In
the literature, a variety of different solutions have been suggested and applied in a
number of fields, including earth science, image processing, social science, and—more
recently—genetics. The most common type of constraints are contiguity constraints
(in space or in time). Such restrictions occur when the objects in a cluster are required
not only to be similar to one other, but also to comprise a contiguous set of objects.
But what is a contiguous set of objects?

Consider first that the contiguity between each pair of objects is given by a matrix
C = (ci j )n×n , where ci j = 1 if the i th and the j th objects are regarded as contiguous,
and 0 if they are not. A cluster C is then considered to be contiguous if there is a path
between every pair of objects in C (the subgraph is connected). Several classical clus-
tering algorithms have been modified to take this type of constraint into account (see
e.g., Murtagh 1985a; Legendre and Legendre 2012; Bécue-Bertaut et al. 2014). Sur-
veys of some of these methods can be found in Gordon (1996) and Murtagh (1985b).
For instance, the standard hierarchical procedure based on Lance and Williams for-
mula (1967) can be constrained by merging only contiguous clusters at each stage.
But what defines “contiguous” clusters? Usually, two clusters are regarded as contigu-
ous if there are two objects, one from each cluster, which are linked in the contiguity
matrix. But this can lead to reversals (i.e. inversions, upward branching in the tree)
in the hierarchical classification. It was proven that only the complete link algorithm
is guaranteed to produce no reversals when relational constraints are introduced in
the ordinary hierarchical clustering procedure (Ferligoj and Batagelj 1982). Recent
implementation of strict constrained clustering procedures are available in the R pack-
age const.clust (Legendre 2014) and in the Python library clusterpy (Duque
et al. 2011). Hierarchical clustering of SNPs (Single Nucleotide Polymorphism) with
strict adjacency constraint is also proposed in Dehman et al. (2015) and implemented
in the R package BALD (www.math-evry.cnrs.fr/logiciels/bald). The recent R package
Xplortext (Bécue-Bertaut et al. 2017) implements also chronologically constrained
agglomerative hierarchical clustering for the analysis of textual data.

The previous procedures which impose strict contiguitymay separate objects which
are very similar into different clusters, if they are spatially apart. Other non-strict
constrained procedures have then been developed, including those referred to as
soft contiguity or spatial constraints. For example, Oliver and Webster (1989) and
Bourgault et al. (1992) suggest running clustering algorithms on a modified dissimi-
larity matrix. This dissimilarity matrix is a combination of the matrix of geographical
distances and the dissimilarity matrix computed from non-geographical variables.
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According to the weights given to the geographical dissimilarities in this combina-
tion, the solution will have more or less spatially contiguous clusters. However, this
approach raises the problem of defining weight in an objective manner.

In image processing, there are many approaches for image segmentation includ-
ing for instance usage of convolution and wavelet transforms. In this field non-strict
spatially constrained clustering methods have been also developed. Objects are pix-
els and the most common choices for the neighborhood graph are the four and eight
neighbors graphs. A contiguity matrix C is used (and not a geographical dissimilar-
ity matrix as previously) but the clusters are not strictly contiguous, as a cluster of
pixels does not necessarily represent a single region on the image. Ambroise et al.
(1997); Ambroise and Govaert (1998) suggest a clustering algorithm for Markov ran-
dom fields based on an Expectation–Maximization (EM) algorithm. This algorithm
maximizes a penalized likelihood criterion and the regularization parameter gives
more or less weight to the spatial homogeneity term (the penalty term). Recent imple-
mentations of spatially-located data clustering algorithms are available in SpaCEM3
(spacem3.gforge.inria.fr), dedicated to Spatial Clustering with EM and Markov Mod-
els. This software uses the model proposed in Vignes and Forbes (2009) for gene
clustering via integratedMarkovmodels. In a similar vein,Miele et al. (2014) proposed
a model-based spatially constrained method for the clustering of ecological networks.
This method embeds geographical information within an EM regularization frame-
work by adding some constraints to themaximum likelihood estimation of parameters.
The associated R package is available at http://lbbe.univ-lyon1.fr/geoclust. Note that
all these methods are partitioning methods and that the constraints are neighborhood
constraints.

In this paper, we propose a hierarchical clustering (and not partitioning) method
including spatial constraints (not necessarily neighborhood constraints). This Ward-
like algorithm uses two dissimilarity matrices D0 and D1 and a mixing parameter
α ∈ [0, 1]. The dissimilarities are not necessarily Euclidean (or non Euclidean) dis-
tances and the weights of the observations can be non-uniform. The first matrix gives
the dissimilarities in the ‘feature space’ (socio-economic variables or grey levels for
instance). The second matrix gives the dissimilarities in the ‘constraint space’. For
instance, D1 can be a matrix of geographical distances or a matrix built from the con-
tiguity matrix C. The mixing parameter α sets the importance of the constraint in the
clustering procedure. The criterionminimized at each stage is a convex combination of
the homogeneity criterion calculatedwith D0 and the homogeneity criterion calculated
with D1. The parameter α (the weight of this convex combination) controls the weight
of the constraint in the quality of the solutions. When α increases, the homogeneity
calculated with D0 decreases whereas the homogeneity calculated with D1 increases.
The idea is to determine a value of α which increases the spatial-contiguity without
deteriorating too much the quality of the solution on the variables of interest. The R
package ClustGeo (Chavent et al. 2017) implements this constrained hierarchical
clustering algorithm and a procedure for the choice of α.

The paper is organized as follows. After a short introduction (this section), Sect. 2
presents the criterion optimized when the Lance-Williams (1967) parameters are used
in Ward’s minimum variance method but dissimilarities are not necessarily Euclidean
(or non-Euclidean) distances. We also show how to implement this procedure with
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the package ClustGeo (or the R function hclust) when non-uniform weights are
used. In Sect. 3 we present the constrained hierarchical clustering algorithm which
optimizes a convex combination of this criterion calculated with two dissimilarity
matrices. Then the procedure for the choice of the mixing parameter is presented
as well as a description of the functions implemented in the package ClustGeo.
In Sect. 4 we illustrate the proposed hierarchical clustering process with geograph-
ical constraints using the package ClustGeo before a brief discussion given in
Sect. 5.

Throughout the paper, a real dataset is used for illustration and reproducibility
purposes. This dataset contains 303 French municipalities described based on four
socio-economic variables. The matrix D0 will contain the socio-economic distances
betweenmunicipalities and thematrix D1 will contain the geographical distances. The
results will be easy to visualize on a map.

2 Ward-like hierarchical clustering with dissimilarities and non-uniform
weights

Let us consider a set of n observations. Let wi be the weight of the i th observa-
tion for i = 1, . . . , n. Let D = [di j ] be a n × n dissimilarity matrix associated
with the n observations, where di j is the dissimilarity measure between observations
i and j . Let us recall that the considered dissimilarity matrix D is not necessar-
ily a matrix of Euclidean (or non-Euclidean) distances. When D is not a matrix of
Euclidean distances, the usual inertia criterion (also referred to as variance criterion)
used in Ward (1963) hierarchical clustering approach is meaningless and the Ward
algorithm implemented with the Lance and Williams (1967) formula has to be re-
interpreted. TheWard method has already been generalized to use with non-Euclidean
distances, see e.g. Strauss and von Maltitz (2017) for l1 norm or Manhattan distances.
In this section the more general case of dissimilarities is studied. We first present
the homogeneity criterion which is optimized in that case and the underlying aggre-
gation measure which leads to a Ward-like hierarchical clustering process. We then
provide an illustration using the package ClustGeo and the well-known R function
hclust.

2.1 The Ward-like method

Pseudo-inertia. Let us consider a partition PK = (C1, . . . , CK ) in K clusters. The
pseudo-inertia of a cluster Ck generalizes the inertia to the case of dissimilarity data
(Euclidean or not) in the following way:

I (Ck) =
∑

i∈Ck

∑

j∈Ck

wiw j

2μk
d2i j (1)

where μk = ∑
i∈Ck wi is the weight of Ck . The smaller the pseudo-inertia I (Ck) is,

the more homogenous are the observations belonging to the cluster Ck .
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The pseudo within-cluster inertia of the partition PK is therefore:

W (PK ) =
K∑

k=1

I (Ck).

The smaller this pseudowithin-inertiaW (PK ) is, themore homogenous is the partition
in K clusters.

Spirit of the Ward hierarchical clustering To obtain a new partition PK in K clusters
from a given partitionPK+1 in K +1 clusters, the idea is to aggregate the two clusters
A and B of PK+1 such that the new partition has minimum within-cluster inertia
(heterogeneity, variance), that is:

arg min
A,B∈PK+1

W (PK ), (2)

where PK = PK+1\{A,B} ∪ {A ∪ B} and

W (PK ) = W (PK+1) − I (A) − I (B) + I (A ∪ B).

Since W (PK+1) is fixed for a given partition PK+1, the optimization problem (2) is
equivalent to:

min
A,B∈PK+1

I (A ∪ B) − I (A) − I (B). (3)

The optimization problem is therefore achieved by defining

δ(A,B) := I (A ∪ B) − I (A) − I (B)

as the aggregation measure between two clusters which is minimized at each step of
the hierarchical clustering algorithm. Note that δ(A,B) = W (PK ) − W (PK+1) can
be seen as the increase of within-cluster inertia (loss of homogeneity).

Ward-like hierarchical clustering process for non-Euclidean dissimilarities The inter-
pretation of the Ward hierarchical clustering process in the case of dissimilarity data
is the following:

– Step K = n: initialization.
The initial partitionPn in n clusters (i.e. each cluster only contains an observation)
is unique.

– Step K = n − 1, . . . , 2: obtaining the partition in K clusters from the partition in
K + 1 clusters.
At each step K , the algorithm aggregates the two clusters A and B of PK+1
according to the optimization problem (3) such that the increase of the pseudo
within-cluster inertia is minimum for the selected partition over the other ones in
K clusters.
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– Step K = 1: stop. The partition P1 in one cluster (containing the n observations)
is obtained.

The hierarchically-nested set of such partitions {Pn, . . . ,PK , . . . ,P1} is repre-
sented graphically by a tree (also called dendrogram) where the height of a cluster
C = A ∪ B is h(C) := δ(A,B).

In practice, the aggregationmeasures between the new clusterA∪B and any cluster
D of PK+1 are calculated at each step thanks to the well-known Lance and Williams
(1967) equation:

δ(A ∪ B,D) = μA + μD
μA + μB + μD

δ(A,D) + μB + μD
μA + μB + μD

δ(B,D)

− μD
μA + μB + μD

δ(A,B). (4)

In the first step the partition is Pn and the aggregation measures between the sin-
gletons are calculated with

δi j := δ({i}, { j}) = wiw j

wi + w j
d2i j ,

and stored in the n × n matrix Δ = [δi j ]. For each subsequent step K , the Lance and
Williams formula (4) is used to build the corresponding K × K aggregation matrix.

The hierarchical clustering process described above is thus suited for non-Euclidean
dissimilarities and then for non-numerical data. In this case, it optimises the pseudo
within-cluster inertia criterion (3).

Case when the dissimilarities are Euclidean distances When the dissimilarities are
Euclidean distances calculated from a numerical data matrix X of dimension n × p
for instance, the pseudo-inertia of a cluster Ck defined in (1) is now equal to the inertia
of the observations in Ck :

I (Ck) =
∑

i∈Ck
wi d

2(xi , gk)

where xi ∈ �p is the i th row of X associated with the i th observation, and gk =
1
μk

∑
i∈Ck wi xi ∈ Rp is the center of gravity of Ck . The aggregation measure δ(A,B)

between two clusters is written then as:

δ(A,B) = μAμB
μA + μB

d2(gA, gB).

2.2 Illustration using the package ClustGeo

Let us examine how to properly implement this procedure with R. The dataset is made
up of n = 303 French municipalities described based on p = 4 quantitative variables
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and is available in the package ClustGeo. A more complete description of the data
is provided in Sect. 4.1.

> library(ClustGeo)
> data(estuary)
> names(estuary)
[1] "dat" "D.geo" "map"

To carry out Ward hierarchical clustering, the user can use the function hclustgeo
implemented in the packageClustGeo taking the dissimilaritymatrix D (which is an
object of class dist, i.e. an object obtained with the function dist or a dissimilarity
matrix transformed in an object of class dist with the function as.dist) and the
weights w = (w1, . . . , wn) of observations as arguments.

> D <- dist(estuary$dat)
> n <- nrow(estuary$dat)
> tree <- hclustgeo(D, wt=rep(1/n,n))

Remarks

– The function hclustgeo is a wrapper of the usual function hclust with the
following arguments:
– method = "ward.D",
– d = Δ,
– members = w.

For instance, when the observations are all weighted by 1/n, the argument dmust
be the matrix Δ = D2

2n and not the dissimilarity matrix D:

> tree <- hclust(Dˆ2/(2*n), method="ward.D")

– As mentioned before, the user can check that the sum of the heights in the den-
drogram is equal to the total pseudo-inertia of the dataset:

> inertdiss(D, wt=rep(1/n, n)) # the pseudo-inertia of the data
[1] 1232.769
> sum(tree$height)
[1] 1232.769

– When the weights are not uniform, the calculation of the matrix Δ takes a few
lines of code and the use of the function hclustgeo is clearly more convenient
than hclust:

> w <- estuary$map@data$POPULATION # non-uniform weights
> tree <- hclustgeo(D, wt=w)
> sum(tree$height)
[1] 1907989

versus

   > Delta <-  D
   > for (i in 1:(n-1)) {
       for (j in (i+1):n) {
         Delta[n*(i-1) - i*(i-1)/2 + j-i] <-
           Delta[n*(i-1) - i*(i-1)/2 + j-i]ˆ2*w[i]*w[j]/(w[i]+w[j])
           }}
   > tree <- hclust(Delta, method="ward.D", members=w)
   > sum(tree$height)
   [1] 1907989
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3 Ward-like hierarchical clustering with two dissimilarity matrices

Let us consider again a set of n observations, and let wi be the weight of the i th
observation for i = 1, . . . , n. Let us now consider that two n×n dissimilarity matrices
D0 = [d0,i j ] and D1 = [d1,i j ] are provided. For instance, let us assume that the
n observations are municipalities, D0 can be based on a numerical data matrix of
p0 quantitative variables measured on the n observations and D1 can be a matrix
containing the geographical distances between the n observations.

In this section, a Ward-like hierarchical clustering algorithm is proposed. A mixing
parameter α ∈ [0, 1] allows the user to set the importance of each dissimilarity matrix
in the clustering procedure. More specifically, if D1 gives the dissimilarities in the
constraint space, the mixing parameter α sets the importance of the constraint in the
clustering procedure and controls the weight of the constraint in the quality of the
solutions.

3.1 Hierarchical clustering algorithm with two dissimilarity matrices

For a given value of α ∈ [0, 1], the algorithm works as follows. Note that the partition
in K clusters will be hereafter indexed by α as follows: Pα

K .

Definitions Themixed pseudo inertia of the clusterCα
k (called mixed inertia hereafter

for sake of simplicity) is defined as

Iα(Cα
k ) = (1 − α)

∑

i∈Cα
k

∑

j∈Cα
k

wiw j

2μα
k
d20,i j + α

∑

i∈Cα
k

∑

j∈Cα
k

wiw j

2μα
k
d21,i j , (5)

where μα
k = ∑

i∈Cα
k

wi is the weight of Cα
k and d0,i j (resp. d1,i j ) is the normalized

dissimilarity between observations i and j in D0 (resp. D1).
Themixed pseudo within-cluster inertia (called mixed within-cluster inertia here-

after for sake of simplicity) of a partition Pα
K = (Cα

1 , . . . , Cα
K ) is the sum of the mixed

inertia of its clusters:

Wα(Pα
K ) =

K∑

k=1

Iα(Cα
k ). (6)

Spirit of the Ward-like hierarchical clustering As previously, in order to obtain a
new partition Pα

K in K clusters from a given partition Pα
K+1 in K + 1 clusters, the

idea is to aggregate the two clusters A and B of PK+1 such that the new partition
has minimum mixed within-cluster inertia. The optimization problem can now be
expressed as follows:

arg min
A,B∈Pα

K+1

Iα(A ∪ B) − Iα(A) − Iα(B). (7)
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Ward-like hierarchical clustering process

– Step K = n: initialization.
The dissimilarities can be re-scaled between 0 and 1 to obtain the same order of
magnitude: for instance,

D0 ← D0

max(D0)
and D1 ← D1

max(D1)
.

Note that this normalization step can also be done in a different way.
The initial partition Pα

n =: Pn in n clusters (i.e. each cluster only contains an
observation) is unique and thus does not depend on α.

– Step K = n − 1, . . . , 2: obtaining the partition in K clusters from the partition in
K + 1 clusters.
At each step K , the algorithm aggregates the two clusters A and B of Pα

K+1
according to the optimization problem (7) such that the increase of the mixed
within-cluster inertia is minimum for the selected partition over the other ones in
K clusters.
More precisely, at step K , the algorithm aggregates the two clustersA and B such
that the corresponding aggregation measure

δα(A,B) := Wα(Pα
K+1) − Wα(Pα

K ) = Iα(A ∪ B) − Iα(A) − Iα(B)

is minimum.
– Step K = 1: stop. The partition Pα

1 =: P1 in one cluster is obtained. Note that
this partition is unique and thus does not depend on α.

In the dendrogram of the corresponding hierarchy, the value (height) of a clusterA∪B
is given by the agglomerative cluster criterion value δα(A,B).

In practice, the Lance andWilliams equation (4) remains true in this context (where
δmust be replaced by δα). The aggregationmeasure between two singletons arewritten
now:

δα({i}, { j}) = (1 − α)
wiw j

wi + w j
d20,i j + α

wiw j

wi + w j
d21,i j .

The Lance and Williams equation is then applied to the matrix

Δα = (1 − α)Δ0 + αΔ1.

where Δ0 (resp. Δ1) is the n × n matrix of the values δ0,i j = wiw j
wi+w j

d20,i j (resp.

δ1,i j = wiw j
wi+w j

d21,i j ).

Remarks

– The proposed procedure is different from applying directly the Ward algorithm to
the “dissimilarity”matrix obtained via the convex combination Dα = (1−α)D0+
αD1. The main benefit of the proposed procedure is that the mixing parameter α

clearly controls the part of pseudo-inertia due to D0 and D1 in (5). This is not
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the case when applying directly the Ward algorithm to Dα since it is based on a
unique pseudo-inertia.

– When α = 0 (resp. α = 1), the hierarchical clustering is only based on the
dissimilarity matrix D0 (resp. D1). A procedure to determine a suitable value for
the mixing parameter α is proposed hereafter, see Sect. 3.2.

3.2 A procedure to determine a suitable value for the mixing parameter α

The key point is the choice of a suitable value for themixing parameter α ∈ [0, 1]. This
parameter logically depends on the number of clusters K and this logical dependence
is an issue when it comes to decide an optimal value for the parameter α. In this paper
a practical (but not globally optimal) solution to this issue is proposed: conditioning
on K and choosing α that best compromises between loss of socio-economic and loss
of geographical homogeneity. Of course other solutions than conditioning on K could
be explored (conditioning on α or defining a global criterion) but these solutions seem
to be more difficult to implement in a sensible procedure.

To illustrate the idea of the proposed procedure, let us assume that the dissimilarity
matrix D1 contains geographical distances between n municipalities, whereas the
dissimilarity matrix D0 contains distances based on a n × p0 data matrix X0 of p0
socio-economic variables measured on these nmunicipalities. An objective of the user
could be to determine a value of α which increases the geographical homogeneity of
a partition in K clusters without adversely affecting socio-economic homogeneity.
These homogeneities can be measured using the appropriate pseudo within-cluster
inertias.

Let β ∈ [0, 1]. Let us introduce the notion of proportion of the totalmixed (pseudo)
inertia explained by the partition Pα

K in K clusters:

Qβ(Pα
K ) = 1 − Wβ(Pα

K )

Wβ(P1)
∈ [0, 1].

Some comments on this criterion

– When β = 0, the denominator W0(P1) is the total (pseudo) inertia based on the
dissimilarity matrix D0 and the numerator is the (pseudo) within-cluster inertia
W0(Pα

K ) based on the dissimilarity matrix D0, i.e. only from the socio-economic
point of view in our illustration.
The higher the value of the criterion Q0(Pα

K ), the more homogeneous the partition
Pα
K is from the socio-economic point of view (i.e. each cluster Cα

k , k = 1, . . . , K
has a low inertia I0(Cα

k )whichmeans that individualswithin the cluster are similar).
When the considered partition Pα

K has been obtained with α = 0, the criterion
Q0(Pα

K ) is obviously maximal (since the partitionP0
K was obtained by using only

the dissimilarity matrix D0), and this criterion will naturally tend to decrease as α

increases from 0 to 1.
– Similarly, when β = 1, the denominatorW1(P1) is the total (pseudo) inertia based
on the dissimilarity matrix D1 and the numerator is the (pseudo) within-cluster
inertiaW1(Pα

K ) based on the dissimilarity matrix D1, i.e. only from a geographical
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point of view in our illustration.
Therefore, the higher the value of the criterion Q1(Pα

K ), the more homogeneous
the partition Pα

K from a geographical point of view.
When the considered partition Pα

K has been obtained with α = 1, the criterion
Q1(Pα

K ) is obviously maximal (since the partition P1
K was obtained by using only

the dissimilarity matrix D1), and this criterion will naturally tend to decrease as α

decreases from 1 to 0.
– For a value of β ∈]0, 1[, the denominatorWβ(P1) is a totalmixed (pseudo) inertia
which can not be easily interpreted in practice, and the numerator Wβ(Pα

K ) is the
mixed (pseudo) within-cluster inertia. Note that when the considered partitionPα

K
has been obtained with α = β, the criterion Qβ(Pα

K ) is obviously maximal by
construction, and it will tend to decrease as α moves away from β.

– Finally, note that this criterion Qβ(Pα
K ) is decreasing in K . Moreover, ∀β ∈ [0, 1],

it is easy to see that Qβ(Pn) = 1 and Qβ(P1) = 0. The more clusters there are
in a partition, the more homogeneous these clusters are (i.e. with a low inertia).
Therefore this criterion can not be used to select an appropriate number K of
clusters.

How to use this criterion to select the mixing parameter α Let us focus on the above
mentioned casewhere the user is interested in determining a value ofα which increases
the geographical homogeneity of a partition in K clusters without deteriorating too
much the socio-economic homogeneity. For a given number K of clusters (the choice
of K is discussed later), the idea is the following:

– Let us consider a given grid of J values for α ∈ [0, 1]:

G = {α1 = 0, α1, . . . , αJ = 1}.

For each value α j ∈ G, the corresponding partition Pα j
K in K clusters is obtained

using the proposed Ward-like hierarchical clustering algorithm.
– For the J partitions {Pα j

K , j = 1, . . . , J }, the criterion Q0(Pα j
K ) is evaluated.

The plot of the points {(α j , Q0(Pα j
K )), j = 1, . . . , J } provides a visual way to

observe the loss of socio-economic homogeneity of the partition Pα j
K (from the

“pure” socio-economic partition P0
K ) as α j increases from 0 to 1.

– Similarly, for the J partitions {Pα j
K , j = 1, . . . , J }, the criterion Q1(Pα j

K ) is
evaluated. The plot of the points {(α j , Q1(Pα j

K )), j = 1, . . . , J } provides a visual
way to observe the loss of geographical homogeneity of the partition Pα j

K (from
the “pure” geographical partition P1

K ) as α j decreases from 1 to 0.
– These two plots (superimposed in the same figure) allow the user to choose a
suitable value for α ∈ G which is a trade-off between the loss of socio-economic
homogeneity and greater geographical cohesion (when viewed through increasing
values of α).

Case where the two total (pseudo) inertias W0(P1) and W1(P1) used in Q0(Pα
K ) and

Q1(Pα
K ) are very different Let us consider for instance that the dissimilarity matrix D1

is a “neighborhood” dissimilarity matrix, constructed from the corresponding adja-
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cency matrix A: that is D1 = 1n − A with 1n,i j = 1 for all (i, j), ai j equal to 1 if
observations i and j are neighbors and 0 otherwise, and aii = 1 by convention. With
this kind of local dissimilarity matrix D1, the geographical cohesion for few clusters is
often small: indeed, W1(P1) could be very small and thus the criterion Q1(Pα

K ) takes
values generally much smaller than those obtained by the Q0(Pα

K ). Consequently, it
is not easy for the user to select easily and properly a suitable value for the mixing
parameter α since the two plots are in two very different scales.

One way to remedy this problem is to consider a renormalization of the two plots.
Rather than reasoning in terms of absolute values of the criterion Q0(Pα

K )

(resp. Q1(Pα
K )) which is maximal in α = 0 (resp. α = 1), we will renor-

malize Q0(Pα
K ) and Q1(Pα

K ) as follows: Q∗
0(Pα

K ) = Q0(Pα
K )/Q0(P0

K ) and
Q∗

1(Pα
K ) = Q1(Pα

K )/Q1(P1
K ) and we then reason in terms of proportions of these

criteria. Therefore the corresponding plot {(α j , Q∗
0(P

α j
K )), j = 1, . . . , J } (resp.

{(α j , Q∗
1(P

α j
K )), j = 1, . . . , J }) starts from 100% and decreases as α j increases

from 0 to 1 (resp. as α j decreases from 1 to 0).

The choice of the number K of clusters The proposed procedure to select a suitable
value for the mixing parameter α works for a given number K of clusters. Thus, it is
first necessary to select K .

One way of achieving this is to focus on the dendrogram of the hierarchically-
nested set of such partitions {P0

n = Pn, . . . ,P0
K , . . . ,P0

1 = P1} only based on the
dissimilarity matrix D0 (i.e. for α = 0, that is considering only the socio-economic
point of view in our application). According to the dendrogram, the user can select an
appropriate number K of clusters with their favorite rule.

3.3 Description of the functions of the package ClustGeo

The previous Ward-like hierarchical clustering procedure is implemented in the func-
tion hclustgeo with the following arguments:

hclustgeo(D0,D1 = NULL,alpha = 0,scale = TRUE,wt = NULL)

where

– D0 is the dissimilarity matrix D0 between n observations. It must be an object
of class dist, i.e. an object obtained with the function dist. The function
as.dist can be used to transform object of class matrix to object of class
dist.

– D1 is the dissimilarity matrix D1 between the same n observations. It must be an
object of class dist. By default D1=NULL and the clustering is performed using
D0 only.

– alpha must be a real value between 0 and 1. The mixing parameter α gives the
relative importance of D0 compared to D1. By default, this parameter is equal to
0 and only D0 is used in the clustering process.

– scale must be a logical value. If TRUE (by default), the dissimilarity matrices
D0 and D1 are scaled between 0 and 1 (that is divided by their maximum value).
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– wtmust be a n-dimensional vector of the weights of the observations. By default,
wt=NULL corresponds to the case where all observations are weighted by 1/n.

The function hclustgeo returns an object of class hclust.
The procedure to determine a suitable value for the mixing parameter α is applied

through the function choicealpha with the following arguments:

choicealpha(D0,D1,range.alpha,K,wt = NULL,scale

= TRUE,graph = TRUE)

where

– D0 is the dissimilarity matrix D0 of class dist, already defined above.
– D1 is the dissimilarity matrix D1 of class dist, already defined above.
– range.alpha is the vector of the real values α j (between 0 and 1) considered
by the user in the grid G of size J .

– K is the number of clusters chosen by the user.
– wt is the vector of the weights of the n observations, already defined above.
– scale is a logical value that allows the user to rescale the dissimilarity matrices

D0 and D1, already defined above.
– graph is a logical value. If graph=TRUE, the two graphics (proportion and
normalized proportion of explained inertia) are drawn.

This function returns an object of class choicealpha which contains

– Q is a J × 2 real matrix such that the j th row contains Q0(Pα j
K ) and Q1(Pα j

K ).
– Qnorm is a J×2 realmatrix such that the j th row contains Q∗

0(P
α j
K ) and Q∗

1(P
α j
K ).

– range.alpha is the vector of the real values α j considered in the G.
A plot method is associated with the class choicealpha.

4 An illustration of hierarchical clustering with geographical constraints
using the package ClustGeo

This section illustrates the procedure of hierarchical clustering with geographical con-
straints on a real dataset using the package ClustGeo. The complete procedure and
methodology for the choice of the mixing parameter α is provided with two types of
spatial constraints (with geographical distances and with neighborhood contiguity).
We have provided the R code of this case study so that readers can reproduce our
methodology and obtain map representations from their own data.

4.1 The data

Data were taken from French population censuses conducted by the National Institute
of Statistics and Economic Studies (INSEE). The dataset is an extraction of p = 4
quantitative socio-economic variables for a subsample of n = 303 French municipal-
ities located on the Atlantic coast between Royan and Mimizan:
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– employ.rate.city is the employment rate of the municipality, that is the
ratio of the number of individuals who have a job to the population of working
age (generally defined, for the purposes of international comparison, as persons
of between 15 and 64 years of age).

– graduate.rate refers to the level of education of the population, i.e. the highest
qualification declared by the individual. It is defined here as the ratio for the whole
population having completed a diploma equal to or greater than 2 years of higher
education (DUT, BTS, DEUG, nursing and social training courses, la licence,
maîtrise, DEA, DESS, doctorate, or Grande Ecole diploma).

– housing.appart is the ratio of apartment housing.
– agri.land is the part of agricultural area of the municipality.

We consider here two dissimilarity matrices:

– D0 is the Euclidean distance matrix between the n municipalities performed with
the p = 4 available socio-economic variables,

– D1 is a seconddissimilaritymatrix used to take the geographical proximity between
the n municipalities into account.

> library(ClustGeo)
> data(estuary) # list of 3 objects (dat, D.geo, map)
                # where dat= socio-economic data (n*p data frame),
                #       D.geo = n*n data frame of geographical distances,
                #       map = object of class "SpatialPolygonsDataFrame"
                #             used to draw the map
> head(estuary$dat)
      employ.rate.city graduate.rate housing.appart agri.land
17015            28.08         17.68           5.15  90.04438
17021            30.42         13.13           4.93  58.51182
17030            25.42         16.28           0.00  95.18404
17034            35.08          9.06           0.00  91.01975
17050            28.23         17.13           2.51  61.71171
17052            22.02         12.66           3.22  61.90798
> D0 <- dist(estuary$dat)   # the socio-economic distances
> D1 <- as.dist(estuary$D.geo)   # the geographic distances between the
  municipalities

4.2 Choice of the number K of clusters

To choose the suitable number K of clusters, we focus on theWard dendrogram based
on the p = 4 socio-economic variables, that is using D0 only.

> tree <- hclustgeo(D0)
> plot(tree,hang=-1, label=FALSE, xlab="", sub="", main="")
> rect.hclust(tree, k=5, border=c(4, 5, 3, 2, 1))
> legend("topright", legend=paste("cluster", 1:5), fill=1:5,

bty="n", border="white")

The visual inspection of the dendrogram in Fig. 1 suggests to retain K = 5 clusters.
We can use the map provided in the estuary data to visualize the corresponding
partition in five clusters, called P5 hereafter.
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Fig. 1 Dendrogram of the n = 303 municipalities based on the p = 4 socio-economic variables (that is
using D0 only)

> P5 <- cutree(tree, 5)  # cut the dendrogram to get the partition in 5
  clusters
> sp::plot(estuary$map, border="grey", col=P5) # plot an object of
  class sp
> legend("topleft", legend=paste("cluster", 1:5), fill=1:5, bty="n",
  border="white")

Figure 2 shows that municipalities of cluster 5 are geographically compact, corre-
sponding to Bordeaux and the 15 municipalities of its suburban area and Arcachon.
On the contrary, municipalities in cluster 3 are scattered over a wider geographical
area from North to South of the study area. The composition of each cluster is easily
obtained, as shown for cluster 5:

# list of the municipalities in cluster 5
> city_label <- as.vector(estuary$map$"NOM_COMM")
> city_label[which(P5 == 5)]
[1] "ARCACHON" "BASSENS" "BEGLES"
[4] "BORDEAUX" "LE BOUSCAT" "BRUGES"
[7] "CARBON-BLANC" "CENON" "EYSINES"
[10] "FLOIRAC" "GRADIGNAN" "LE HAILLAN"
[13] "LORMONT" "MERIGNAC" "PESSAC"
[16] "TALENCE" "VILLENAVE-D’ORNON"

The interpretation of the clusters according to the initial socio-economic variables
is interesting. Figure 7 shows the boxplots of the variables for each cluster of the
partition (left column). Cluster 5 corresponds to urbanmunicipalities, Bordeaux and its
outskirts plus Arcachon, with a relatively high graduate rate but low employment rate.
Agricultural land is scarce and municipalities have a high proportion of apartments.
Cluster 2 corresponds to suburban municipalities (north of Royan; north of Bordeaux
close to the Gironde estuary) with mean levels of employment and graduates, a low
proportion of apartments, more detached properties, and very high proportions of

123



1814 M. Chavent et al.

Fig. 2 Map of the partition P5
in K = 5 clusters only based on
the socio-economic variables
(that is using D0 only)

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5

farmland. Cluster 4 corresponds to municipalities located in the Landes forest. Both
the graduate rate and the ratio of the number of individuals in employment are high
(greater than the mean value of the study area). The number of apartments is quite
low and the agricultural areas are higher to the mean value of the zone. Cluster 1
corresponds to municipalities on the banks of the Gironde estuary. The proportion of
farmland is higher than in the other clusters. On the contrary, the number of apartments
is the lowest. However this cluster also has both the lowest employment rate and the
lowest graduate rate. Cluster 3 is geographically sparse. It has the highest employment
rate of the study area, a graduate rate similar to that of cluster 2, and a collective housing
rate equivalent to that of cluster 4. The agricultural area is low.

4.3 Obtaining a partition taking into account the geographical constraints

To obtain more geographically compact clusters, we can now introduce the matrix D1
of geographical distances into hclustgeo. This requires a mixing parameter to be
selected α to improve the geographical cohesion of the 5 clusters without adversely
affecting socio-economic cohesion.

Choice of the mixing parameter α The mixing parameter α ∈ [0, 1] sets the impor-
tance of D0 and D1 in the clustering process. When α = 0 the geographical
dissimilarities are not taken into account and when α = 1 it is the socio-economic
distances which are not taken into account and the clusters are obtained with the
geographical distances only.
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The idea is to perform separate calculations for socio-economic homogeneity and
the geographic cohesion of the partitions obtained for a range of different values of α

and a given number of clusters K .
To achieve this, we can plot the quality criterion Q0 and Q1 of the partitions Pα

K
obtained with different values of α ∈ [0, 1] and choose the value of α which is a
trade-off between the lost of socio-economic homogeneity and the gain of geographic
cohesion. We use the function choicealpha for this purpose.

> cr <- choicealpha(D0, D1, range.alpha=seq(0, 1, 0.1), K=5,
graph=TRUE)

> cr$Q # proportion of explained pseudo-inertia
Q0 Q1

alpha=0 0.8134914 0.4033353
alpha=0.1 0.8123718 0.3586957
alpha=0.2 0.7558058 0.7206956
alpha=0.3 0.7603870 0.6802037
alpha=0.4 0.7062677 0.7860465
alpha=0.5 0.6588582 0.8431391
alpha=0.6 0.6726921 0.8377236
alpha=0.7 0.6729165 0.8371600
alpha=0.8 0.6100119 0.8514754
alpha=0.9 0.5938617 0.8572188
alpha=1 0.5016793 0.8726302
> cr$Qnorm # normalized proportion of explained pseudo-inertias

Q0norm Q1norm
alpha=0 1.0000000 0.4622065
alpha=0.1 0.9986237 0.4110512
alpha=0.2 0.9290889 0.8258889
alpha=0.3 0.9347203 0.7794868
alpha=0.4 0.8681932 0.9007785
alpha=0.5 0.8099142 0.9662043
alpha=0.6 0.8269197 0.9599984
alpha=0.7 0.8271956 0.9593526
alpha=0.8 0.7498689 0.9757574
alpha=0.9 0.7300160 0.9823391
alpha=1 0.6166990 1.0000000

Figure 3 gives the plot of the proportion of explained pseudo-inertia calculatedwith D0
(the socio-economic distances) which is equal to 0.81when α = 0 and decreases when
α increases (black solid line). On the contrary, the proportion of explained pseudo-
inertia calculated with D1 (the geographical distances) is equal to 0.87 when α = 1
and decreases when α decreases (dashed line).
Here, the plot would appear to suggest choosing α = 0.2 which corresponds to a
loss of only 7% of socio-economic homogeneity, and a 17% increase in geographical
homogeneity.

Final partition obtained with α = 0.2 We perform hclustgeo with D0 and D1
and α = 0.2 and cut the tree to get the new partition in five clusters, called P5bis
hereafter.
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Fig. 3 Choice of α for a partition in K = 5 clusters when D1 is the geographical distances between
municipalities. Top: proportion of explained pseudo-inertias Q0(Pα

K ) versus α (in black solid line) and
Q1(Pα

K ) versus α (in dashed line). Bottom: normalized proportion of explained pseudo-inertias Q∗
0(Pα

K )

versus α (in black solid line) and Q∗
1(Pα

K ) versus α (in dashed line)

> tree <- hclustgeo(D0, D1, alpha=0.2)
> P5bis <- cutree(tree, 5)
> sp::plot(estuary$map, border="grey", col=P5bis)
> legend("topleft", legend=paste("cluster", 1:5), fill=1:5, bty="n",
  border="white")

The increased geographical cohesion of this partition P5bis can be seen in Fig. 4.
Figure 7 shows the boxplots of the variables for each cluster of the partition P5bis
(middle column). Cluster 5 of P5bis is identical to cluster 5 of P5 with the Blaye
municipality added in. Cluster 1 keeps the same interpretation as in P5 but has gained
spatial homogeneity. It is now clearly located on the banks of theGironde estuary, espe-
cially on the north bank. The same applies for cluster 2 especially for municipalities
between Bordeaux and the estuary. Both clusters 3 and 4 have changed significantly.
Cluster 3 is now a spatially compact zone, located predominantly in the Médoc.

It would appear that these two clusters have been separated based on proportion of
farmland, because the municipalities in cluster 3 have above-average proportions of
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Fig. 4 Map of the partition
P5bis in K = 5 clusters based
on the socio-economic distances
D0 and the geographical
distances between the
municipalities D1 with α = 0.2

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5

this type of land, while cluster 4 has the lowest proportion of farmland of the whole
partition. Cluster 4 is also different because of the increase in clarity both from a
spatial and socio-economic point of view. In addition, it contains the southern half of
the study area. The ranges of all variables are also lower in the corresponding boxplots.

4.4 Obtaining a partition taking into account the neighborhood constraints

Let us construct a different type of matrix D1 to take neighbouring municipalities into
account when clustering the 303 municipalities.

Two regions with contiguous boundaries, that is sharing one or more boundary
point, are considered as neighbors. Let us first build the adjacency matrix A.

> list.nb <- spdep::poly2nb(estuary$map,
row.names=rownames(estuary$dat)) #list
of neighbors

It is possible to obtain the list of the neighbors of a specific city. For instance, the
neighbors of Bordeaux (which is the 117th city in the R data table) is given by the
script:

> city_label[list.nb[[117]]] # list of the neighbors of BORDEAUX
[1] "BASSENS" "BEGLES" "BLANQUEFORT" "LE BOUSCAT"

"BRUGES"
[6] "CENON" "EYSINES" "FLOIRAC" "LORMONT"

"MERIGNAC"
[11] "PESSAC" "TALENCE"

The dissimilarity matrix D1 is constructed based on the adjacency matrix A with
D1 = 1n − A.
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Fig. 5 Choice of α for a partition in K = 5 clusters when D1 is the neighborhood dissimilarity matrix
between municipalities. Top: proportion of explained pseudo-inertias Q0(Pα

K ) versus α (in black solid
line) and Q1(Pα

K ) versus α (in dashed line). Bottom: normalized proportion of explained pseudo-inertias
Q∗
0(Pα

K ) versus α (in black solid line) and Q∗
1(Pα

K ) versus α (in dashed line)

> A <- spdep::nb2mat(list.nb, style="B") # build the adjacency
matrix

> diag(A) <- 1
> colnames(A) <- rownames(A) <- city_label
> D1 <- 1-A
> D1[1:2, 1:5]

ARCES ARVERT BALANZAC BARZAN BOIS
ARCES 0 1 1 0 1
ARVERT 1 0 1 1 1
> D1 <- as.dist(D1)

Choice of the mixing parameter α The same procedure for the choice of α is then
used with this neighborhood dissimilarity matrix D1.

> cr <- choicealpha(D0, D1, range.alpha=seq(0, 1, 0.1), K=5,
graph=TRUE)

> cr$Q # proportion of explained pseudo-inertia
> cr$Qnorm # normalized proportion of explained pseudo-inertia
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Fig. 6 Map of the partition
P5ter in K = 5 clusters based
on the socio-economic distances
D0 and the “neighborhood”
distances of the municipalities
D1 with α = 0.2

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5

With these kinds of local dissimilarities in D1, the neighborhood within-cluster cohe-
sion is always very small. Q1(Pα

K ) takes small values: see the dashed line of Q1(Pα
K )

versus α at the top of Fig. 5. To overcome this problem, the user can plot the nor-
malized proportion of explained inertias (that is Q∗

0(Pα
K ) and Q∗

1(Pα
K )) instead of the

proportion of explained inertias (that is Q0(Pα
K ) and Q1(Pα

K )). At the bottom of Fig. 5,
the plot of the normalized proportion of explained inertias suggests to retain α = 0.2
or 0.3. The value α = 0.2 slightly favors the socio-economic homogeneity versus the
geographical homogeneity. According to the priority given in this application to the
socio-economic aspects, the final partition is obtained with α = 0.2.

Final partition obtained with α = 0.2 It remains only to determine this final partition
for K = 5 clusters and α = 0.2, called P5ter hereafter. The corresponding map is
given in Fig. 6.

> tree <- hclustgeo(D0, D1, alpha=0.2)
> P5ter <- cutree(tree, 5)
> sp::plot(estuary$map, border="grey", col=P5ter)
> legend("topleft", legend=paste("cluster", 1:5), fill=1:5, bty="n",
  border="white")

Figure 6 shows that clusters of P5ter are spatially more compact than that of P5bis.
This is not surprising since this approach builds dissimilarities from the adjacency
matrix which givesmore importance to neighborhoods. However since our approach is
based on soft contiguity constraints, municipalities that are not neighbors are allowed
to be in the same clusters. This is the case for instance for cluster 4 where some
municipalities are located in the north of the estuary whereas most are located in the
southern area (corresponding to forest areas). The quality of the partition P5ter is
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Fig. 7 Comparison of the final partitions P5, P5bis and P5ter in terms of variables x1 =
employ.rate.city, x2 = graduate.rate, x3 = housing.appart and x4 = agri.land
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slightly worse than that of partition P5ter according to criterion Q0 (72.69% versus
75.58%). However the boxplots corresponding to partition P5ter given in Fig. 7
(right column) are very similar to those of partition P5bis. These two partitions have
thus very close interpretations.

5 Concluding remarks

In this paper, a Ward-like hierarchical clustering algorithm including soft spacial
constraints has been introduced and illustrated on a real dataset. The corresponding
approach has been implemented in the R package ClustGeo available on the CRAN.
When the observations correspond to geographical units (such as a city or a region), it
is then possible to represent the clustering obtained on a map regarding the considered
spatial constraints. This Ward-like hierarchical clustering method can also be used in
many other contexts where the observations do not correspond to geographical units.
In that case, the dissimilarity matrix D1 associated with the “constraint space” does
not correspond to spatial constraints in its current form.

For instance, the user may have at his/her disposal a first set of data of p0 variables
(e.g. socio-economic items) measured on n individuals on which he/she has made a
clustering from the associated dissimilarity (or distance) matrix. This user also has
a second data set of p1 new variables (e.g. environmental items) measured on these
same n individuals, on which a dissimilarity matrix D1 can be calculated. Using the
ClusGeo approach, it is possible to take this new information into account to refine
the initial clustering without basically disrupting it.
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