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Abstract This article redefines the self-exciting threshold integer-valued autoregres-
sive (SETINAR(2,1)) processes under a weaker condition that the second moment is
finite, and studies the quasi-likelihood inference for the new model. The ergodicity
of the new processes is discussed. Quasi-likelihood estimators for the model parame-
ters and the asymptotic properties are obtained. Confidence regions of the parameters
based on the quasi-likelihood method are given. A simulation study is conducted for
the evaluation of the proposed approach and an application to a real data example is
provided.

Keywords SETINAR process · Integer-valued threshold models · Confidence region

1 Introduction

There has been an increasing interest in developing models for time series of (small)
counts because of their wide range of applications, including epidemiology, finance,
disease modeling, etc. The majority of these models are based on the thinning oper-
ators, see Al-Osh and Alzaid (1987), Du and Li (1991), Ristić et al. (2009), Zhang
et al. (2010) and Li et al. (2015), among others. Weiß (2008) and Scotto et al. (2015)
gave detailed reviews of the development of integer-valued time seriesmodels. Among
the above models, the class of Poisson integer-valued autoregressive (INAR) moving
average models (Al-Osh and Alzaid 1987, 1991, 1992; Du and Li 1991) play a central
role. However, when dealing with the nonlinear time series of counts such as volatility
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changes in time, high threshold exceedances appearing in clusters, and the so-called
piecewise phenomenon, such models will not work well.

On modelling the non-linear phenomena, especially the piecewise phenomenon,
the threshold models (Tong 1978; Tong and Lim 1980) have attracted much attention
and have been widely used in diverse areas. For dealing with time series of counts
exhibiting piecewise-type patterns, Monteiro et al. (2012) introduced a class of SETI-
NAR(2,1) models driven by a Poisson distribution. Wang et al. (2014) proposed a
self-excited threshold Poisson autoregressive (SETPAR) model and applied it to the
world major earthquakes data. Yang et al. (2017) proposed an integer-valued threshold
autoregressive process based on negative binomial thinning operator (NBTINAR(1)),
and compared the performances of the above threshold models. Möller and Weiß
(2015) presented a brief survey of threshold models of integer-valued time series.

Adrawbackof SETINAR(2,1)model proposedbyMonteiro et al. (2012) is themean
and variance of Poisson distribution are equal and this property is not always found
in the real data. The goal of this paper is to weaken the conditions of original SETI-
NAR(2,1) model by removing the assumption of Poisson distribution, and to present a
quasi-likelihood (QL) inference for the new SETINAR(2,1) process. Quasi-likelihood
method, a nonparametric inference method was initially introduced by Wedderburn
(1974). QL methods are useful because (i) they can be used in cases where exact
distributional information is not available, (ii) only second moment assumptions are
required and, (iii) they enjoy a certain robustness of validity. Hence the proposed
method allows precise estimation of the relationship between the response and the
covariate variables without requiring exact distributional assumptions. QLmethod has
been widely applied in many fields, including generalized linear models (McCullagh
and Nelder 1989; Sutardhar and Rao 2001; Lu et al. 2006), stochastic volatility models
(Ruiz 1994), semiparametric models (Severini and Staniswalis 1994), median regres-
sion models (Jung 1996), autoregressive models (Azrak andMélard 1998, 2006; Ling
2007), nonstationary time series models (Kim and Park 2008; Aue and Horváth 2011),
integer-valued time seriesmodels (Zheng et al. 2006a, b; Niaparast and Schwabe 2013;
Christou and Fokianos 2014), among others.

The rest of this paper is organized as follows. In Sect. 2, we redefine the SETI-
NAR(2,1) processes, and consider the quasi-likelihood inference for the unknown
parameters of interest. In Sect. 3, some numerical results of the estimates are pre-
sented. In Sect. 4, we give an application of the proposed QLmethod to a real data set.
Some concluding remarks are given in Sect. 5. All proofs are postponed to “Appendix”.

2 Main results

The SETINAR(2,1) process (originally proposed by Monteiro et al. 2012), is defined
by the following recursive equation:

Xt = I1,t (α1 ◦ Xt−1) + I2,t (α2 ◦ Xt−1) + Zt , (2.1)

where
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(i) I1,t := I {Xt−1 ≤ r}, I2,t := 1 − I1,t = I {Xt−1 > r}, r is the known threshold
variable;

(ii) The thinning operator “◦”, introduced in Steutel and Harn (1979), is defined as

αi◦X =
X∑

k=1

B(i)
k , αi ∈ (0, 1),

where {B(i)
k } is a sequence of independent and identically distributed (i.i.d.)

Bernoulli random variables independent of X , satisfying P(αi = 1) = 1 −
P(αi = 0) = αi , i = 1, 2;

(iii) {Zt } is a sequence of i.i.d. random variables with E(Zt ) = λ and Var(Zt ) =
σ 2
z < ∞;

(iv) For fixed t and i (i = 1, 2), Zt is assumed to be independent of counting series
in{αi ◦ Xt−l , l≥1} and {Xt−l , l≥1}.

Remark 2.1 In Monteiro et al. (2012), the SETINAR(2,1) process is defined with Zt

follows a Poisson distribution with mean λ. In this paper, we remove the assumption
of Poisson distribution (in (iii)) and use E(Zt ) = λ and Var(Zt ) = σ 2

z < ∞ instead,
so that the model is more flexible.

Remark 2.2 The conditional expectation and conditional variance of the SETI-
NAR(2,1) process are given by

(i) E(Xt |Xt−1) = α1Xt−1 I1,t + α2Xt−1 I2,t + λ, t = 1, 2, . . .
(ii) Var(Xt |Xt−1) = α1(1 − α1)Xt−1 I1,t + α2(1 − α2)Xt−1 I2,t + σ 2

z , t = 1, 2, . . .

Remark 2.3 FollowingMonteiro et al. (2012), we assume that r is known. In practice,
we can use NeSS algorithm (see, e.g., Li and Tong 2016; Yang et al. 2017) to estimate
r first.

The following theorem states the ergodicity of the SETINAR(2,1) process (2.1).
This property will be useful in deriving the asymptotic properties of the estimators.

Proposition 2.1 The SETINAR(2,1) process {Xt }t∈Z defined in (2.1) is an ergodic
Markov chain.

Suppose we have a series of observations {Xt }nt=1 generated from the SETI-
NAR(2,1) process and we want to estimate the parameter β = (α1, α2, λ)T. Monteiro
et al. (2012) considered the conditional least squares (CLS) estimation and the condi-
tional maximum likelihood (CML) estimation of β. In what follows, we will consider
the maximum quasi-likelihood (MQL) estimation of β first, and then give the QL
confidence regions of β.

Denote θ = (θ1, θ2, σ
2
z )T with θi = αi (1 − αi ), i = 1, 2, then the variance of Xt

conditional on Xt−1 fixed is given by

Vθ (Xt |Xt−1) = Var(Xt |Xt−1) = θ1Xt−1 I1,t + θ2Xt−1 I2,t + σ 2
z . (2.2)
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As discussed in Wedderburn (1974), we have the standard QL estimating equations:

n∑

t=1

mt (β) = 0, (2.3)

where

mt (β) = (m1t (β),m2t (β),m3t (β))T, mit (β)

= Xt − E(Xt |Xt−1)

Vθ (Xt |Xt−1)

∂E(Xt |Xt−1)

∂βi
, i = 1, 2, 3,

with β1 = α1, β2 = α2, β3 = λ. Note that the presence of θ in the expression for the
conditional variance makes the estimating equations (2.3) complicated and intractable
in the general case. Consequently, we propose substituting a suitable consistent esti-
mator θ̂ of θ obtained by other means and then solve the resulting MQL estimating
equations for the primary parameters of interest. This approach leads to the following
closed form estimator of β:

β̂MQL = Q−1
n qn, (2.4)

where

Qn =

⎛

⎜⎜⎝

∑
V−1

θ̂
(Xt |Xt−1)I1,t X

2
t−1 0

∑
V−1

θ̂
(Xt |Xt−1)I1,t Xt−1

0
∑

V−1
θ̂

(Xt |Xt−1)I2,t X
2
t−1

∑
V−1

θ̂
(Xt |Xt−1)I2,t Xt−1

∑
V−1

θ̂
(Xt |Xt−1)I1,t Xt−1

∑
V−1

θ̂
(Xt |Xt−1)I2,t Xt−1

∑
V−1

θ̂
(Xt |Xt−1)

⎞

⎟⎟⎠ ,

and

qn =
⎛

⎜⎝

∑n
t=1 V

−1
θ̂

(Xt |Xt−1)I1,t Xt Xt−1∑n
t=1 V

−1
θ̂

(Xt |Xt−1)I2,t Xt Xt−1∑n
t=1 V

−1
θ̂

(Xt |Xt−1)Xt

⎞

⎟⎠ .

To study the asymptotic behaviour of the estimator, wemake the following assump-
tions:

(C1) {Xt } is a stationary process.
(C2) E |Xt |4 < ∞.

We now state the asymptotic properties of MQL-estimators β̂MQL . Theorem 2.1

shows the MQL-estimators β̂MQL is asymptotic normally distributed if θ can be
estimated consistently; Theorem 2.2 constructs a consistent estimator of θ .

Theorem 2.1 Under the assumptions (C1)–(C2), the MQL-estimators β̂MQL is
asymptotically normal,

√
n(β̂MQL − β)

L−→ N (0, T−1(θ)),
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where

T (θ) = (Ti j (θ))3×3, Ti j (θ) = Tji (θ), 1 ≤ i ≤ j ≤ 3;
Tii (θ) = E[V−1

θ (X1|X0)X2
0 Ii,1] (i = 1, 2), T33(θ) = E[V−1

θ (X1|X0)];
T12(θ) = 0, T13(θ) = E[V−1

θ (X1|X0)X0 I1,1], T23(θ) = E[V−1
θ (X1|X0)X0 I2,1],

Furthermore, the matrix T (θ) can be estimated consistently by

̂T (θ) = 1

n

n∑

t=1

mt (β̂MQL)mt (β̂MQL)T. (2.5)

Remark 2.4 Since the MQL-estimators β̂MQL given in (2.4) is the result from a two-
stage estimation procedure mentioned above, the true asymptotic variance is supposed
to be larger than T (θ) in Theorem 2.1. Fortunately, the estimator ̂T (θ) given in (2.5)
can give a estimate of the true asymptotic variance consistently.

Note that the consistency of β̂MQL follows readily from the above result.

Theorem 2.2 Under the assumptions (C1)–(C2), the following estimators are con-
sistent:

σ̂ 2
z = 1

n

n∑

t=1

(Xt − α̂1Xt−1 I1,t − α̂2Xt−1 I2,t − λ̂)2 − 1

n

2∑

i=1

n∑

t=1

α̂i (1 − α̂i )Xt−1 Ii,t ,

(2.6)

and

θ̂ =(α̂1(1 − α̂1), α̂2(1 − α̂2), σ̂
2
z )T, (2.7)

where α̂i and λ̂ are consistent estimators of αi (i = 1, 2) and λ. In practice, we can
use the CLS-estimators of αi (i = 1, 2) and λ given in Theorem 3.1 of Monteiro et al.
(2012).

Theorem 2.2 gives a consistent estimator θ̂ of θ which depends on some consistent
estimators α̂i (i = 1, 2) and λ̂. Sometimes we may be interested in the variance of θ̂ .
Since the consistent estimators α̂i (i = 1, 2) and λ̂ may have many forms, we refer to
the moving block bootstrap (MBB) methods (Kreiss and Lahiri 2012) to estimate the
variance of θ̂ . Suppose the sample (X1, X2, . . . , Xn) is observed. Let � be an integer
satisfying 1 < � < n. We can use the following MBBmethod to estimate the variance
of θ̂ :

Step 1 Define the overlapping blocks B1, . . . , BN of length � as, B1 = (X1, X2, . . . ,

X�), B2 = (X2, . . . , X�, X�+1), . . ., BN = (Xn−�+1, . . . , Xn), where N =
n − � + 1;

Step 2 To generate the MBB samples, select b blocks at random with replacement
from the collection {B1, . . . , BN }. Denote the selected MBB samples by
(X∗

1, X
∗
2, . . . , X

∗
b);
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Step 3 For j = 1, . . . , b, calculate the θ̂ j by (2.6) and (2.7) with the MBB sample
X∗

j ;

Step 4 Calculate the variance of θ̂ by

Var(θ̂) = 1

b

b∑

j=1

(θ̂ j − θ)(θ̂ j − θ)T, θ =
b∑

j=1

θ̂ j . (2.8)

Next, we give the QL confidence region of β based on the above theorems.

Theorem 2.3 Under the assumptions (C1)–(C2), for 0 < δ < 1, the 100 (1 − δ)%
confidence region of β is given by:

Cβ{δ} = {β ∈ R

3 : n(β̂MQL − β)T̂T (θ)(β̂MQL − β) ≤ χ2
(3)(δ)}, (2.9)

where χ2
3 (δ) denotes the δ-upper quantile of χ2 distribution with degrees of freedom

3.

Equation (2.9) is called the normal approximation (NA) confidence region based on
MQL method. By Theorems 3.1 and 3.3 in Monteiro et al. (2012), we can easily
construct the NA confidence regions based on CLS and CML methods. In the next
section, we will compare the performances of these confidence regions in terms of
coverage rates.

3 Simulation studies

To report the performances of the proposed method described in the previous section,
we conduct simulation studies under the following two models:

Model I. Assume that Zt follows a Poisson distribution with mean λ.
Model II. Assume that Zt follows a Geometric distribution with probability mass

function (p.m.f.) given by

p(Zt = z) = λz

(1 + λ)z+1 , z = 0, 1, 2, . . . (3.1)

It is easy to see that E(Zt ) = λ, Var(Zt ) = λ(1 + λ). These properties are different
from Model I.

For all the following simulations, we generating the data with X0 = 0. All simula-
tion results are calculated under MATLAB software based on 1000 replications.

3.1 Performances of the MQL-estimators

In this subsection, we first show the performances of theMQL-estimators β̂MQL , then

compare the performances with the CLS-estimator β̂CLS and CML-estimators β̂CML
obtained by Monteiro et al. (2012) under Models I and II. For generating the data of
Models I and II, we each consider the following three series:
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Fig. 1 Sample paths for series A–C of Model I (a–c) and Model II (d–f)

Series A. (α1, α2, λ) = (0.2, 0.1, 3), r = 4.
Series B. (α1, α2, λ) = (0.2, 0.1, 7), r = 8.
Series C. (α1, α2, λ) = (0.8, 0.1, 7), r = 21.

Remark 3.1 The parameter setting of the above three series are the same with models
(A1), (B1) and (B3) in Monteiro et al. (2012). So that we can compare our simulation
results with the corresponding results in Monteiro et al. (2012).

For each of the above series, the values of r was chosen such that the observations
in each regime is at least 10% of the total sample size. As mentioned in Li and Tong
(2016), when the proportion of observations in one regime to the whole is less than
5%, the estimate result may not be reliable. The sample paths are plotted in Fig. 1.
The simulation results are summarized in Tables 1, 2, 3 and 4.

It is shown in Fig. 1 that the threshold r of the series A and B are relatively
moderate, and the threshold r of series C (especially in Model I) is slightly larger.
Compare subfigures (a)–(c) and (d)–(f) we can find that the sample paths of Model II
fluctuate greatly. This is because the variance of Zt of Model II is much larger than
its mean.
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Table 1 Simulation results of MQL for Models I and II: mean bias and MSE

Models N Para. Series A Series B Series C

True Mean MSE True Mean MSE Ture Mean MSE

I 100 α1 0.2 0.194 0.030 0.2 0.195 0.036 0.8 0.804 0.005

α2 0.1 0.086 0.009 0.1 0.094 0.013 0.1 0.099 0.003

λ 3 3.028 0.229 7 7.040 1.368 7 6.957 1.046

200 α1 0.2 0.196 0.016 0.2 0.202 0.018 0.8 0.801 0.003

α2 0.1 0.095 0.005 0.1 0.098 0.006 0.1 0.100 0.001

λ 3 3.021 0.115 7 7.005 0.698 7 7.001 0.548

300 α1 0.2 0.196 0.011 0.2 0.199 0.014 0.8 0.801 0.002

α2 0.1 0.095 0.004 0.1 0.100 0.005 0.1 0.100 0.001

λ 3 3.016 0.085 7 7.007 0.537 7 6.990 0.374

II 100 α1 0.2 0.164 0.093 0.2 0.189 0.130 0.8 0.803 0.022

α2 0.1 0.090 0.011 0.1 0.086 0.011 0.1 0.094 0.007

λ 3 3.061 0.408 7 7.097 2.160 7 7.060 3.471

200 α1 0.2 0.202 0.045 0.2 0.196 0.063 0.8 0.797 0.012

α2 0.1 0.096 0.005 0.1 0.095 0.006 0.1 0.096 0.004

λ 3 3.016 0.188 7 7.051 1.141 7 7.052 1.872

300 α1 0.2 0.199 0.031 0.2 0.203 0.044 0.8 0.798 0.008

α2 0.1 0.096 0.003 0.1 0.095 0.004 0.1 0.098 0.002

λ 3 3.006 0.127 7 7.047 0.833 7 7.038 1.267

Table 2 Comparison of simulation results for Series A of Model I: CLS, MQL and CML

N Para. CLSa MQL CMLb

Mean MSE Mean MSE Mean MSE

50 α1 = 0.2 0.413 0.095 0.184 0.063 0.388 0.067

α2 = 0.1 0.176 0.020 0.079 0.020 0.177 0.021

λ = 3 2.556 0.464 3.073 0.458 2.565 0.422

100 α1 = 0.2 0.336 0.051 0.194 0.030 0.322 0.042

α2 = 0.1 0.141 0.010 0.086 0.009 0.141 0.011

λ = 3 2.762 0.215 3.028 0.229 2.765 0.201

200 α1 = 0.2 0.280 0.031 0.196 0.016 0.276 0.025

α2 = 0.1 0.120 0.005 0.095 0.005 0.121 0.005

λ = 3 2.880 0.113 3.021 0.115 2.873 0.107

500 α1 = 0.2 0.222 0.011 0.200 0.007 0.221 0.010

α2 = 0.1 0.101 0.002 0.099 0.002 0.101 0.002

λ = 3 2.991 0.049 3.005 0.048 2.986 0.045

a Remark: This column are the CLS results for model (A1) in Monteiro et al. (2012).
b Remark: This column are the CML results for model (A1) in Monteiro et al. (2012)
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Table 3 Comparison of simulation results for Series B of Model I: CLS, MQL and CML

N Para. CLSa MQL CMLb

Mean MSE Mean MSE Mean MSE

50 α1 = 0.2 0.470 0.120 0.198 0.200 0.428 0.085

α2 = 0.1 0.212 0.027 0.091 0.082 0.197 0.020

λ = 7 5.630 3.431 7.039 8.075 5.831 2.462

100 α1 = 0.2 0.352 0.052 0.195 0.036 0.341 0.043

α2 = 0.1 0.162 0.013 0.094 0.013 0.160 0.011

λ = 7 6.252 1.442 7.040 1.368 6.293 1.197

200 α1 = 0.2 0.263 0.019 0.202 0.018 0.266 0.018

α2 = 0.1 0.124 0.005 0.098 0.006 0.126 0.005

λ = 7 6.700 0.579 7.005 0.698 6.677 0.563

500 α1 = 0.2 0.212 0.008 0.199 0.008 0.215 0.007

α2 = 0.1 0.102 0.003 0.098 0.003 0.104 0.002

λ = 7 6.965 0.286 7.007 0.334 6.943 0.254

a Remark: This column are the CLS results for model (B1) in Monteiro et al. (2012).
b Remark: This column are the CML results for model (B1) in Monteiro et al. (2012)

Table 4 Comparison of simulation results for Series C of Model I: CLS, MQL and CML

N Para. CLSa MQL CMLa

Mean MSE Mean MSE Mean MSE

50 α1 = 0.8 0.821 0.008 0.805 0.008 0.814 0.004

α2 = 0.1 0.112 0.004 0.099 0.004 0.109 0.002

λ = 7 6.733 1.684 6.948 1.597 6.808 0.935

100 α1 = 0.8 0.804 0.006 0.804 0.005 0.807 0.002

α2 = 0.1 0.103 0.003 0.099 0.003 0.105 0.001

λ = 7 6.947 1.213 6.957 1.046 6.897 0.549

200 α1 = 0.8 0.799 0.003 0.801 0.003 0.801 0.001

α2 = 0.1 0.098 0.001 0.100 0.001 0.100 0.001

λ = 7 7.025 0.549 7.001 0.548 6.986 0.269

500 α1 = 0.8 0.800 0.001 0.800 0.001 0.801 4.9e-04

α2 = 0.1 0.100 0.001 0.101 0.001 0.100 3.4e-04

λ = 7 6.998 0.233 6.997 0.233 6.988 0.114

a Remark: This column are the CLS results for model (B3) in Monteiro et al. (2012).
b Remark: This column are the CML results for model (B3) in Monteiro et al. (2012)

Table 1 reports the means and mean square errors (MSE) of the MQL-estimators
β̂MQL . From Table 1 we can find that all the simulation results perform better as N
increases, which imply that out estimators are consistent for all the parameters. Most
of the biases (the means minus the corresponding true values) and MSE of Model II
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Fig. 2 Plot for SD and SE values of Model I: Series A–C

Fig. 3 Plot for SD and SE values of Model II: Series A to C

are bigger than those in Model I. This is because the variances of Zt in Model II are
bigger than in Model I.

Figures 2 and 3 show the standard deviations (SD) of the MQL-estimators β̂MQL

across 1000 replications, and the standard errors (SE) of the MQL-estimators β̂MQL .
The SE are calculated by the mean of the square roots of the asymptotic variances
divided by N . From Figs. 2 and 3 we can find that the SD and SE of the β̂MQL are very
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Table 5 Comparison of simulation results for Series D of Model I: CLS, MQL and CML

N Para. CLS MQL CML

Mean MSE Mean MSE Mean MSE

50 α1 = 0.2 0.190 0.023 0.207 0.021 0.208 0.028

α2 = 0.8 0.778 0.003 0.783 0.003 0.786 0.003

λ = 7 7.637 2.344 7.483 2.014 7.444 1.889

100 α1 = 0.2 0.194 0.012 0.204 0.011 0.200 0.013

α2 = 0.8 0.789 0.001 0.793 0.001 0.793 0.001

λ = 7 7.319 1.096 7.222 0.985 7.228 0.905

200 α1 = 0.2 0.190 0.009 0.195 0.008 0.195 0.007

α2 = 0.8 0.793 0.001 0.795 0.001 0.796 0.001

λ = 7 7.191 0.647 7.143 0.591 7.124 0.474

500 α1 = 0.2 0.190 0.005 0.192 0.005 0.198 0.003

α2 = 0.8 0.796 0.000 0.797 0.000 0.800 0.000

λ = 7 7.103 0.390 7.085 0.364 7.004 0.183

close, indicating that the MQL method converges fast. The values of SD and SE in
Model II (shown in Fig. 3) are bigger than the corresponding series in Model I (shown
in Fig. 2), indicating that bigger variances of Zt will result slower convergence rate
of the estimate.

Tables 2, 3 and 4 show the simulation results based on different methods. As can be
seen in Table 2 that most biases of β̂MQL are smaller than those of CLS ones, almost

all of the MSE of β̂MQL are smaller than the β̂CLS . The CML method considered by
Monteiro et al. (2012) can be used as a benchmark here. From Table 2 we can see
that the MSE of the MQL and CML methods is basically the same, when the sample
size is small, most of biases of MQL estimates are less than the CML estimates,
which indicates that the MQL results are credible. We can obtain similar conclusions
in Tables 3 and 4. In addition, when n = 50 in Table 3, the MSE of the MQL-
estimator β̂MQL is relatively large. Thismaybe because theQLmethod uses a two-step
estimation. Before estimating the parameters of interest, the variance σ 2

z of Zt needs
to be estimated. When the sample size is small, the estimator σ̂ 2

z is occasionally less
effective. Based on the above simulation results, we conclude that theMQL-estimators
β̂CML is better than the CLS-estimators, and the CML method is not unanimously
better than the MQL method.

Considering that different samples may have some impact on the estimates, we
consider another simulations based on another series of Model I, i.e., Series D:
(α1, α2, λ) = (0.2, 0.8, 7), r = 16. In Series D, we calculate the CLS, MQL and
CML estimates under the same samples. The simulation results are summarized in
Table 5. As is shown in Table 5, the MQL estimates perform better than the CLS ones,
and the CML estimates are not unanimously better than the MQL ones, i.e., we can
get the same conclusions from Table 5 as shown in Tables 2, 3 and 4.
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Next we continue to show the performances of the variance of θ̂ calculated by (2.8).
For generating the bootstrap samples, we choose � = 80% of the total sample size
and b = 500. The simulation results are summarized in Table 6. We can see from
Table 6 that all variances Var(θ̂) convergence to zero as N increases, implying the θ̂

is consistent. Further, we can find that the variances Var(θ̂) of each series of Model II
are bigger than the corresponding series in Model I. This is because the true variance
of Model II is much bigger than Model I. To study the sample size that can make
the variance of σ̂ 2

z in Model II close to zero, we do some additional simulations. The
simulation results (not given here) show that more than 5000 samples are needed,
meaning that the convergence rate of Var(σ̂ 2

z ) in Model II is much slower than that of
Model I.

3.2 Coverage rates of the confidence regions

In this subsection, we first consider the performances of the coverage rates of the QL
confidence regions, then compare the simulation results of QL confidence regions with
NA confidence regions based on CLS and CML methods in terms of overage rates.

To show the performances of QL confidence regions given in (2.9), we consider the
same series of Models I and II mentioned above. Table 7 reports the coverage rates of
the QL confidence regions under Models I and II based on confidence levels 0.90 and
0.95, respectively. It can be seen from Table 7 that as the sample size N increases, the
coverage rates of three series (in each model) all increase. These results indicate that
the QL confidence regions perform well in practice.

Figure 4plots theQLconfidence regions for SeriesAofModel I basedon confidence
level 95%with sample size N = 300,while Fig. 5 plots the 95%QLconfidence regions
forModel II under the same sample size and the same series. FromFigs. 4 and 5we can
see that the points which fall within the confidence regions (blue dots) are dense near
the center of the confidence regions and are sparse at the edges. There are about 4%
of the points (red plus) scattered outside the confidence regions, which is consistent
with the confidence level 95%. Similar results are obtained for other series of Models
I and II, but are not given here.

To demonstrate the robustness of the QL method, we consider the following mixed
model:

Model III: Assume that Zt has the following mixed structure:

Zt = δt Z1t + (1 − δt )Z2t , (3.2)

where Z1t follows a Poisson distribution with mean λ, Z2t follows a Geometric distri-
bution with p.m.f. given in (3.1), δt follows a Bernoulli distribution with p.m.f. given
by P(δt = 1) = 1 − P(δt = 0) = γ , meaning that Z1t is contaminated by Z2t with
probability 1 − γ . Calculate to see that E(Zt ) = λ, Var(Zt ) = λ2(1 − γ ) + λ.

For generating the data, we set the parameters setting the same as Series A, B and
C mentioned above. The coefficient γ is chosen as γ = 1, 0.95, 0.90, respectively,
so that we can compare the performances of NA confidence regions based on CLS,
MQL and CMLmethods. Table 8 shows the simulation results of the coverage rates of
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Table 7 Coverage rates based on QL method for Models I and II

N level Model I Model II

Series A Series B Series C Series A Series B Series C

100 0.95 0.936 0.930 0.960 0.928 0.933 0.928

0.90 0.893 0.870 0.916 0.876 0.878 0.871

200 0.95 0.940 0.944 0.954 0.943 0.942 0.931

0.90 0.897 0.898 0.911 0.892 0.882 0.882

300 0.95 0.952 0.951 0.947 0.948 0.950 0.949

0.90 0.899 0.899 0.892 0.901 0.901 0.897

α

α

α α

α

λ

α λ

α

λ

α λ

Fig. 4 Confidence regions for Series A of Models I with confidence level 95%

α

α

α α

α

λ

α λ

α

λ

α λ

Fig. 5 Confidence regions for Series A of Models II with confidence level 95%

the NA confidence regions based on different methods under contaminated samples.
From Table 8 we can see that when the sample is not been contaminated (γ = 1), the
coverage rates of NA confidence regions based on CML method performs better than
the other twomethods.However, once the samples are contaminated (γ = 0.95, 0.90),
the results of the confidence regions based on CMLmethod are no longer accurate, the
corresponding coverage rates decrease rapidly. This shows that the CML method is
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Table 8 Comparison of the NA confidence regions based on different methods under Model III

Series r γ = 1 γ = 0.95 γ = 0.90

CLS MQL CML CLS MQL CML CLS MQL CML

(0.2,0.1,3,4) 0.95 0.956 0.959 0.949 0.949 0.952 0.935 0.959 0.954 0.897

0.90 0.889 0.896 0.898 0.872 0.890 0.863 0.886 0.891 0.789

(0.2,0.1,7,8) 0.95 0.956 0.961 0.953 0.949 0.951 0.890 0.942 0.950 0.791

0.90 0.882 0.896 0.906 0.878 0.896 0.765 0.878 0.888 0.580

(0.8,0.1,7,21) 0.95 0.946 0.949 0.948 0.940 0.944 0.779 0.956 0.948 0.464

0.90 0.892 0.913 0.895 0.893 0.898 0.657 0.879 0.896 0.382

not robust. The coverage accuracy of confidence regions based on CLS method is also
affected (slightly) with the decrease of γ . When γ down to 0.9, the coverage accuracy
of the proposed QL method has exceeded that of the other two methods, indicating
that the quasi-likelihood method is more robust than the least square method.

3.3 Performances of r̂

In this subsection, we investigate the performances of r̂ using the NeSS algorithm
proposed by Li and Tong (2016). Yang et al. (2017) used this algorithm to estimate
the threshold r in the NBTINAR(1) model. Following Li and Tong (2016), let

Jn(r) =
n∑

t=1

(
Xt −

∑n
t=1 Xt Xt−1 − λ

∑n
t=1 Xt−1∑n

t=1 X
2
t−1

· Xt−1 − λ

)2

− Sn(r),

where

Sn(r) =
n∑

t=1

(
Xt −

2∑

k=1

∑n
t=1 Xt Xt−1 Ik,t (r) − λ

∑n
t=1 Xt−1 Ik,t∑n

t=1 X
2
t−1 Ik,t (r)

· Xt−1 Ik,t (r) − λ

)2

,

with I1,t (r) := I {Xt−1 ≤ r}, I2,t (r) := 1 − I1,t (r) = I {Xt−1 > r}. Then, the
threshold r can be estimated by maximizing Jn(r), i.e.,

r̂ = arg max
r∈[r ,r ] Jn(r). (3.3)

For more details of the NeSS algorithm, please see Li and Tong (2016) and Yang et al.
(2017). Table 9 reports the means, medians, MSE and the percentage which correctly
estimate the threshold value of r̂ across 1000 replications for Series A - C of Models I
and II, respectively, under sample size N = 100, 300, 500. From Table 9 we can find
that all the simulation results perform better as N increases implying that the algorithm
is consistent. We also find that the results of r̂ in Model I have smaller biases, MSE
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and higher correct percentages than in Model II. This may be because the variance
of Model II is larger than Model I for each series. Furthermore, we find that for the
integer-valued r the median estimated to be better than the mean.

4 Real data example

In this section, we will use the new SETINAR(2,1) model to fit a series of crimi-
nal data, which can be downloaded from the Forecasting Principles website (http://
www.forecastingprinciples.com). The analyzed data set is about the counts of drug in
Pittsburgh, which consist of 144 monthly observations, starting from January 1990 to
December 2001. The sample mean and sample variance are 4.181 and 10.597, respec-
tively, showing considerable over-dispersion. Figure 6 shows the sample path and the
ACF plot of the observations. From the sample path and the ACF plot shown in Fig. 6
we can see that the analyzed data set is a time series showing piecewise phenomenon
with the threshold value r = 4. The threshold value of r is calculated by the NeSS
algorithm discussed in Li and Tong (2016) and Yang et al. (2017). It also displays
positive serial dependence, as can be seen in the ACF plot in Fig. 6.

We use the following competitive counts models to fit the data set, and compare
different models via the AIC criterion and BIC criterion.

– i.i.d. Poisson distribution with mean λ, denoted by i.i.d. Poisson.
– i.i.d. Geometric distribution with p.m.f. given in (3.1), denoted by i.i.d. Geometric.
– The Poisson INAR(1) model proposed by Al-Osh and Alzaid (1987), denoted by
Po-INAR(1).

– The Geometric INAR(1) model proposed by Alzaid and Al-Osh (1988), denoted
by Ge-INAR(1).

– SETINAR(2,1) model with innovations Zt follows a Poisson distribution with
mean λ, denoted by SETINAR(2,1)-I.

– SETINAR(2,1) model with innovations Zt follows a Geometric distribution with
p.m.f. given in (3.1), denoted by SETINAR(2,1)-II.

For each model, we use the CLS (if available), MQL and CMLmethods to estimate
the parameters, and summarized the fitting results in Table 10. As can be seen from
Table 10, the fitting results of the CML, CLS and MQL of SETINAR(2,1)-II are

Fig. 6 Sample path (left) and the ACF plot (right) of the criminal data. The blue line in the sample path
estimated threshold dividing the range into two regimes
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Table 10 The fitting results of criminal data

CLS MQL CML AIC BIC

i.i.d. Poisson – a λ̂ = 4.181 λ̂ = 4.181 792.283 795.253

i.i.d. Geometric – λ̂ = 4.181 λ̂ = 4.181 733.954 736.924

Po-INAR(1) α̂ = 0.577 α̂ = 0.598 α̂ = 0.424 708.607 714.547

λ̂ = 1.776 λ̂ = 1.688 λ̂ = 2.389

Ge-INAR(1) α̂ = 0.578 α̂ = 0.591 α̂ = 0.461 694.299 700.238

p̂ = 0.192 p̂ = 0.192 p̂ = 0.244

SETINAR(2,1)-I α̂1 = 0.335 α̂1 = 0.364 α̂1 = 0.123 690.919 699.808

α̂2 = 0.545 α̂2 = 0.563 α̂2 = 0.446

λ̂ = 2.173 λ̂ = 2.083 λ̂ = 2.726

SETINAR(2,1)-II α̂1 = 0.335 α̂1 = 0.364 α̂1 = 0.395 654.135 663.023

α̂2 = 0.545 α̂2 = 0.563 α̂2 = 0.503

λ̂ = 2.173 λ̂ = 2.083 λ̂ = 2.226

a Remark: “–” stand for not available

approximately the same, and the SETINAR(2,1)-II model takes the smallest AIC and
BIC values. Thus, we can conclude that SETINAR(2,1)-II is appropriate for this data
set. Moreover, this example also shows that it is necessary to extend the original
SETINAR(2,1) model proposed by Monteiro et al. (2012).

5 Conclusions

This article extended the original SETINAR(2,1) model proposed by Monteiro et al.
(2012) by removing the assumption of Poisson distribution of Zt , and redefined the
new SETINAR(2,1) process under the conditions of finite second moment of Zt . The
ergodicity of the new process is established. MQL-estimators of the model parameters
and confidence regions based on QLmethod are derived and the asymptotic properties
of the estimators are obtained. A real data example reveals that the new SETINAR(2,1)
model with Geometric innovations is appropriate for the criminal data. Potential issues
of future research include to test the linearity against the nonlinear model, themarginal
distributions, extend the results to multivariate cases.
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Appendix

Proof of Proposition 2.1 According to Theorem 3.1 of Tweedie (1975)(or Proposition
2.2 of Zheng and Basawa 2008), the sufficient condition of {Xt } to be ergodic is that
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there exists a set K and a non-negative measurable function g on state space N0 such
that

∫

N0

P(x, dy)g(y) ≤ g(x) − 1, x /∈ K , (5.1)

and for some fixed B,

∫

N0

P(x, dy)g(y) = λ(x) ≤ B < ∞, x ∈ K , (5.2)

where P(x, A) = P(X1 ∈ A|X0 = x). Let g(x) = x, we have

∫

N0

g(y)dP(X1 = y|X0 = x0) = E(X1|X0 = x0) = α1x0 I0,1 + α2x0 I0,2 + λ

≤ αmaxx0 + λ,

where αmax = max{α1, α2} < 1. let N = [ 1+λ
1−αmax

] + 1, where [x] denotes the integer
part of x . Then for x0 ≥ N , we have

αmaxx0 + λ ≤ x0 − 1 = g(x0) − 1,

and for 0 ≤ x0 ≤ N − 1,

∫

N0

g(y)dP(X1 = y|X0 = x0) = E(X1|X0 = x0) ≤ αmaxx0 + λ ≤ N + λ < ∞.

Let K = {0, 1, . . . , N −1}, then (5.1) and (5.2) both hold which completes the proof.

�

Proof of Theorem 2.1 First, we suppose θ is known. Let Ft = σ(X0, X1, . . . , Xt ) be
the σ -field generated by {X0, X1, . . . , Xt }. For the following estimation equations:

S(1)
n (θ ,β) =

n∑

t=1

V−1
θ (Xt |Xt−1)(Xt − α1Xt−1 I1,t − α2Xt−1 I2,t − λ)I1,t Xt−1,

we have

E[V−1
θ (Xt |Xt−1)(Xt − α1Xt−1 I1,t − α2Xt−1 I2,t − λ)I1,t Xt−1|Ft−1]

= V−1
θ (Xt |Xt−1)I1,t Xt−1E[(Xt − α1Xt−1 I1,t − α2Xt−1 I2,t − λ)|Ft−1]

= 0,
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and

E[S(1)
t (θ,β)|Ft−1]

= E[(V−1
θ (Xt |Xt−1)(Xt − α1Xt−1 I1,t − α2Xt−1 I2,t − λ)I1,t Xt−1

+ S(1)
t−1(θ ,β))|Ft−1]

= S(1)
t−1(θ,β).

Thus, {S(1)
t (θ ,β),Ft , t ≥ 0} is a martingale. By (C1) and Theorem 1.1 in Billingsley

(1961),

1

n

n∑

t=1

V−2
θ (Xt |Xt−1)(Xt − α1Xt−1 I1,t − α2Xt−1 I2,t − λ)2X2

t−1 I1,t

a.s.−→ E
(
V−2

θ (X1|X0)(X1 − α1X0 I1,1 − α2X0 I2,1 − λ)2X2
0 I1,1

)

= E
(
E[V−2

θ (X1|X0)(X1 − α1X0 I1,1 − α2X0 I2,1 − λ)2X2
0 I1,1|X0]

)

= E[V−1
θ (X1|X0)X

2
0 I1,1]

= T11(θ).

Hence, by Corollary 3.2 in Hall and Heyde (1980) and the central limit theorem of
martingale, we have,

1√
n
S(1)
n (θ ,β)

L−→ N (0, T11(θ)).

Similarly,

S(2)
n (θ ,β) =

n∑

t=1

V−1
θ (Xt |Xt−1)(Xt − α1Xt−1 I1,t − α2Xt−1 I2,t − λ)I2,t Xt−1,

and

S(3)
n (θ ,β) =

n∑

t=1

V−1
θ (Xt |Xt−1)(Xt − α1Xt−1 I1,t − α2Xt−1 I2,t − λ),

We can verify that {S(i)
t (θ ,β),Ft , t ≥ 0} (i = 2, 3) are also martingales. Similar to

the previous discussion, we have

1√
n
S(i)
n (θ ,β)

L−→ N (0, Tii (θ)), i = 2, 3.

By Cramer-Wold device, for any cT = (c1, c2, c3) ∈ R

3 and (c1, c2, c3) �= (0, 0, 0),
we have
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cT√
n

⎛

⎜⎜⎝

S(1)
n (θ,β)

S(2)
n (θ,β)

S(3)
n (θ,β)

⎞

⎟⎟⎠ = 1√
n

3∑

i=1

ci S
(i)
n (θ ,β)

= 1√
n

n∑

t=1

V−1
θ (Xt |Xt−1)(Xt − α1Xt−1 I1,t − α2Xt−1 I2,t − λ)

· (c1 I1,t Xt−1 + c2 I2,t Xt−1 + c3)

L−→ N (0, E[V−1
θ (X1|X0)(c1X0 I1,1 + c2X0 I2,1 + c3)

2]),

implying

1√
n

⎛

⎜⎜⎝

S(1)
n (θ ,β)

S(2)
n (θ ,β)

S(3)
n (θ ,β)

⎞

⎟⎟⎠
L−→ N (0, T (θ)) .

Now, we replace Vθ (Xt |Xt−1) with V
θ̂
(Xt |Xt−1), where θ̂ is a consistent estimator

of θ . Then we want

1√
n

⎛

⎜⎜⎝

S(1)
n (θ̂ ,β)

S(2)
n (θ̂ ,β)

S(3)
n (θ̂ ,β)

⎞

⎟⎟⎠
L−→ N (0, T (θ)) . (5.3)

To prove (5.3), we need to check that

1√
n
S(i)
n (θ̂ ,β) − 1√

n
S(i)
n (θ ,β)

P−→ 0, i = 1, 2, 3. (5.4)

Let Rn(θ) = (1/
√
n)S(1)

n (θ,β). Then for any ε > 0 and δ > 0, we have

P(|Rn(θ̂) − Rn(θ)| > ε) ≤
2∑

i=1

P(|θ̂i − θi | > δ) + P(|σ̂ 2
z − σ 2

z | > δ)

+ P(sup
D

|Rn(θ1) − Rn(θ)| > ε),

where θ1 = (θ11 , θ12 , σ 2
1 )T, D := {|θ11 − θ1| < δ, |θ12 − θ2| < δ, |σ 2

1 − σ 2
z | < δ}. If θ̂

is a consistent estimator of θ , then we just need to prove that

P

(
sup
D

|Rn(θ1) − Rn(θ)| > ε

)
P−→ 0.
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By Markov inequality,

P

(
sup
D

|Rn(θ1) − Rn(θ)| > ε

)

≤ 1

ε2
E

(
sup
D

(Rn(θ1) − Rn(θ))2
)

= 1

ε2
E

⎛

⎝sup
D

1

n

n∑

t=1

(V−1
θ1

(Xt |Xt−1) − V−1
θ (Xt |Xt−1))

2

(
Xt −

2∑

i=1

αi Ii,t Xt−1 − λ

)2

X2
t−1 I1,t

⎞

⎠

= 1

ε2
E

⎛

⎝sup
D

(V−1
θ1

(X1|X0) − V−1
θ (X1|X0))

2

(
X1 −

2∑

i=1

αi Ii,t X0 − λ

)2

X2
0 I1,1

⎞

⎠

= 1

ε2
E

⎛

⎜⎝sup
D

(∑2
i=1

(
θi − θ1i

)
X0 Ii,1 + (

σ 2
z − σ 2

1

))2

V 2
θ1

(X1|X0)V 2
θ (X1|X0)

(
X1 −

2∑

i=1

αi Ii,t X0 − λ

)2

X2
0 I1,1

⎞

⎟⎠

= 1

ε2
E

⎛

⎜⎝sup
D

(∑2
i=1

(
θi − θ1i

)
X0 Ii,1 + (

σ 2
z − σ 2

1

))2

V 2
θ1

(X1|X0)Vθ (X1|X0)
X2
0 I1,1

⎞

⎟⎠

≤ 1

ε2
sup
D

{
((θ1 − θ11 )2m1 + (θ2 − θ12 )2m2 + (σ 2

z − σ 2
1 )2m3 + 2m4|θ1 − θ21 ||θ2 − θ12 |

+2m5|θ1 − θ11 ||σ 2
z − σ 2

1 | + 2m6|θ2 − θ12 ||σ 2
z − σ 2

1 |)X2
0 I1,1

}

≤ Cδ2

ε2
, (5.5)

wheremi (i = 1, 2, . . . , 6) denote some finitemoments of process {Xt },C is a positive
constant. Similar argument can be used for 1/

√
nS(i)

n (θ,β)(i = 2, 3). For any fixed
ε > 0, letting δ → 0, we get our assertion which in turn establishes (5.3).

Finally, by the ergodic theorem, we have

1

n
Qn

P−→ T (θ).

After some algebra, we have,

(β̂MQL − β) = Q−1
n

⎛

⎜⎜⎝

S(1)
n (θ̂ ,β)

S(2)
n (θ̂ ,β)

S(3)
n (θ̂ ,β)

⎞

⎟⎟⎠ ,

Therefore,

√
n(β̂MQL − β) =

(
1

n
Qn

)−1 1√
n

⎛

⎜⎜⎝

S(1)
n (θ̂,β)

S(2)
n (θ̂,β)

S(3)
n (θ̂,β)

⎞

⎟⎟⎠
L−→ N (0, T−1(θ)). (5.6)

The proof is complete. 
�
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Proof of Theorem 2.2 The proof follows by the ergodic theorem. 
�

Proof of Theorem 2.3 The proof follows from Theorem 2.1. 
�
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