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Abstract In thiswork,wepropose several different confidence intervalmethods based
on ranked-set samples. First, we develop bootstrap bias-corrected and accelerated
method for constructing confidence intervals based on ranked-set samples. Usually,
for this method, the accelerated constant is computed by employing jackknife method.
Here, we derive an analytical expression for the accelerated constant, which results
in reducing the computational burden of this bias-corrected and accelerated bootstrap
method. The other proposed confidence interval approaches are based on a monotone
transformation along with normal approximation. We also study the asymptotic prop-
erties of the proposedmethods. The performances of these methods are then compared
with those of the conventional methods. Through this empirical study, it is shown that
the proposed confidence intervals can be successfully applied in practice. The use-
fulness of the proposed methods is further illustrated by analyzing a real-life data on
shrubs.
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1 Introduction

Ranked set sampling (RSS) is an alternative method of data collection and has been
known as a cost-efficient sampling procedure for many years. This approach to data
collection was first proposed byMcIntyre (1952) as a method to improve the precision
of estimated pasture yield. Later, Takahasi and Wakimoto (1968) established a rigor-
ous statistical foundation for the theory of RSS. For more details and real applications
of RSS scheme, one may refer to Patil et al. (1999), Chen (2007), Linder et al. (2015),
Samawi et al. (2017), and Al-Omari and Bouza (2014). An RSS utilizes the basic intu-
itive properties associated with simple random sampling (SRS). However, it involves
the extra structure induced through the judgment ranking and the independence of
the resulting order statistics. As a result, the procedures based on RSS lead to more
efficient estimators of population parameters than those based on an SRS with the
same sample size. The existing literature also includes works on hypothesis testing
as well as point and interval estimation under both parametric and nonparametrics
settings. See, for example, Bohn and Wolfe (1992), Chen et al. (2006), Fligner and
MacEachern (2006), Frey (2007), Ozturk and Balakrishnan (2009), and the references
cited therein.

The most basic version of RSS is the so-called balanced RSS. The process of
generating an RSS involves drawing k2 units at random from the target population.
These items are then randomly divided into k sets of k units each. Within each set,
the units are then ranked by some means other than direct measurement. For example,
the ranking can be done either visually or by using a concomitant measurement that is
comparatively cheaper to measure and also easier to obtain than the measurement of
interest itself. Finally, one item from each set is chosen for actual quantification. To
be more specific, from the first set we select the item with the smallest judgment-rank
for measurement, from the second set we select the item with the second smallest
judgment-rank, and so on, until the unit ranked largest is chosen from the kth set.
This complete procedure, called a cycle, is repeated independently m times to obtain
a Ranked set sample of size mk. Therefore, a balanced RSS of size mk requires a
total of mk2 units to be selected, but only mk of them are actually measured. Hence,
a wider range of the population can be covered while greatly reducing the sampling
cost. According to Takahasi and Wakimoto (1968), for easy implementation of RSS,
the set size k is usually kept as small as 4 or less. However, we can obtain a large
sample by increasing the cycle size m. Another option is that of unbalanced RSS. In
an unbalanced RSS, n × k units are selected at random from the target population.
These items are then randomly divided into n sets of k units each. Units in each set
are judgment ranked without measuring the actual units. In this setting, let mr denote
the number of sets allocated to measure units having the r th judgment-rank such that
n = ∑k

r=1 mr . The measured observations then constitute an unbalanced RSS of size
n.

Recently, several bootstrap methods have been developed based on RSS. Hui et al.
(2004) proposed a bootstrap confidence interval method for the populationmean based
onRSS via linear regression,wherein they applied the bootstrapmethod to estimate the
variance of the estimator of the population mean for constructing confidence intervals.
In a similar vein, Modarres et al. (2006) developed many bootstrap procedures for
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balanced RSS and established their consistency for the sample mean. Drikvandi et al.
(2006) proposed abootstrapmethod to test for the symmetryof thedistribution function
about an unknown median based on RSS. Finally, Frey (2014) developed confidence
bands for the CDF based on RSS by using the bootstrap method.

In this article, we develop three confidence interval methods for themean parameter
of RSS. First, we suggest the bias-corrected and accelerated (BCa) confidence interval
method. The BCa was proposed by Efron (1987) for SRS and it is an improvement
over the bootstrap percentile confidence interval method in terms of coverage proba-
bility (see Hall 1988). The BCa method has been considered by several researchers
in different contexts. This method requires numerical implementation of the acceler-
ation constant that is computed by using the jackknife method. However, in the case
of RSS, the numerical computation of the acceleration constant becomes intensive
as set size increases. This motivates us to develop an alternative approach to reduce
this computational burden. For this purpose, we derive a formula for the accelera-
tion constant based on Edgeworth expansion which avoids the cumbersome numerical
implementation. Next, two confidence interval methods are proposed based on mono-
tone transformations. These methods transform the studentized pivot into another one
based on a monotone transformation so that the resulting distribution of the trans-
formed pivot is nearly symmetric and then we can construct confidence intervals by
inverting back the transformation. Various transformations of the studentized pivot
have been investigated by Johnson (1978), Hall (1992a), Zhou and Gao (2000), and
Cojbasic and Loncar (2011) under SRS.

The remainder of this paper is organized as follows. Section 2 introduces a Ranked
set sample. In Sects. 3 and 4, we develop BCa method and transformation confidence
interval methods, respectively. Simulation results are presented in Sect. 5. Section 6
presents a real data application.Wefinally conclude the articlewith some brief remarks
in Sect. 7. Proofs are relegated to the “Appendix”.

2 Ranked set sample

Let nk units be drawn randomly from a population with an unknown distribution
F(x). Let μ and σ 2 be the mean and variance of F(x), respectively. These units are
then randomly divided into n groups G1, . . . ,Gn of size k each. The r th group Gr

consists of {Xr,1, Xr,2, . . . , Xr,k}. Then, the units in each n subgroups are ordered on
the attribute of interest by the use of some ranking process. Let mr be the number of
actual measurements on units having rank r, r = 1, . . . , k, such that n = ∑k

i=1 mr .
Under the assumption of perfect ranking, let X(r), j denote the measurement on the
j th unit having rank r and let the mr resulting measurements on units with rank r be
labeled as {X(r),1, . . . , X(r),mr }. Therefore, the resulting RSS of size n drawn from
that underlying distribution F(x) is given by XRSS = {X(r), j , r = 1, . . . , k; j =
1 . . . ,mr }. When mr = m, r = 1, . . . , k, RSS leads to the balanced ranked set
sample of size mk.

Let {X(r),1, . . . , X(r),mr } be a random sample from Fr , where Fr denotes the dis-
tribution function of the r th order statistic from F(x). Let μr denote the mean of Fr .
We are then interested in constructing confidence intervals for
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μ = k−1
k∑

r=1

μr

based on XRSS . As stated by Dell and Clutter (1972), the above identity holds under
both perfect and imperfect rankings. An unbiased estimator of μ can be obtained as

X̄ RSS = 1

k

k∑

r=1

X̄r = 1

k

k∑

r=1

1

mr

mr∑

j=1

X(r), j ,

where X̄r is the sample mean based on {X(r),1, . . . , X(r),mr }. Let τ 2 be the variance
of X̄ RSS given by

τ 2 = 1

k2

k∑

r=1

σ 2
r

mr
,

where σ 2
r is the variance of X(r), j . Set S2r = 1

mr

∑mr
j=1(X(r), j − X̄r )

2, a plug-in

estimator for σ 2
r , so that the corresponding plug-in estimator for τ 2 becomes

τ̂ 2 = 1

k2

k∑

r=1

S2r
mr

.

While seeking confidence intervals for μ, let tζ denote the ζ th quantile of the
distribution of the pivot

TRSS = (X̄ RSS − μ)

τ̂
=

∑k
r=1(X̄r − μr )
√∑k

r=1
S2r
mr

such that P(TRSS ≤ tζ ) = ζ. For the rest of this article, we consider α as the nominal
coverage probability of a confidence interval. Then, I0 = [X̄ RSS − tατ̂ ,∞), I1 =
(−∞, X̄ RSS − t1−ατ̂ ], and I2 = [X̄ RSS − t(1+α)/2τ̂ , X̄ RSS − t1−(1+α)/2τ̂ ] are the ideal
lower, upper, and two-sided confidence intervals for μ, respectively. However, these
intervals are unknown since tζ is unknown. Usually, we estimate these by employing
the normal approximation, based on the central limit theorem, to the distribution of
TRSS . An alternative method to the normal approximation is through bootstrapmethod
which has become a standard tool for estimating unknown confidence intervals.

Our proposed confidence intervals depend on detailed properties of the Edgeworth
expansions of the distributions of TRSS and SRSS = (X̄ RSS − μ)/τ . For this purpose,
we assume that the distribution of (X(r), X2

(r)) satisfies Cramér’s continuity condition

(see Hall 1992b, pp. 66–67) for each r = 1, 2, . . . , k and that E(X8) < ∞. We also
assume that m1, . . . ,mr are of the same order, i.e., limn→∞(mr/n) = λr ∈ (0, 1).
These conditions are sufficient for all the results derived in this paper. We conclude
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Nonparametric confidence intervals for ranked set samples 1693

this section by presenting the Edgeworth expansions of the distributions of TRSS and
SRSS .

Theorem 2.1 Under the above conditions, the distributions of SRSS and TRSS have
the following Edgeworth expansions:

P(SRSS ≤ x) = �(x) + n−1/2 p1(x)φ(x) + O(n−1),

and

P(TRSS ≤ x) = �(x) + n−1/2q1(x)φ(x) + O(n−1),

where �(x) is the cdf of the standard normal distribution, and p1(x) and q1(x) are
even polynomials of degree 2 having the expressions

p1(x) = −1

6
η

−3/2
1 η2(x

2 − 1),

q1(x) = 1

6
η

−3/2
1 η2(2x

2 + 1),

with

η1 =
k∑

r=1

σ 2
r

λr
, η2 =

k∑

r=1

γr

λ2r
and γr = E(X(r) − μr )

3.

An excellent review on the theory of Edgeworth expansion can be found in Hall
(1992a). A simpler procedure to approximate the confidence intervals I0, I1 and I2
is based on the normal approximation to the distribution of TRSS , using the fact that
P(TRSS ≤ x)→�(x) as n→∞. Let zζ be the ζ th quantile of the standard normal
distribution. Then, I0,N = [X̄ RSS − τ̂ zα,∞], I1,N = (−∞, X̄ RSS − τ̂ z1−α] and
I2,N = [X̄ RSS − τ̂ z(1+α)/2, X̄ RSS − τ̂ z1−(1+α)/2] are the respective lower, upper and
both-sided confidence intervals for μ based on the normal approximation. For a given
α, Theorem 2.1 shows that

P(μ ∈ I0,N ) = P(μ ∈ I1,N ) = α + O(n−1/2) and P(μ ∈ I2,N ) = α + O(n−1).

Hence, I0,N and I1,N are the first-order accurate confidence intervals while I2,N is
the second-order accurate confidence interval. In the next section, we develop BCa

confidence intervals for μ using RSS.

3 Bootstrap for ranked set samples

To facilitate the development of bootstrap confidence interval methods based on RSS,
we first give a short description of the existing resampling methods, namely, BRSSR
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(bootstrap RSS by row), BRSS (bootstrap RSS), and MRBRSS (mixed row bootstrap
RSS), for RSS. Chen et al. (2004) introduced BRSSR and Modarres et al. (2006)
subsequently studied its properties. They showed that BRSSR is asymptotically con-
sistent in estimating the distribution of the standardized sample mean under RSS.
Since RSS can be viewed as k independent random samples from k different distri-
butions, BRSSR can therefore be easily implemented by drawing bootstrap samples
independently from each of the k independent random samples.

BRSS and MRBRSS were proposed by Modarres et al. (2006) for balanced RSS
under perfect rankings. BRSS method draws RSS from the observed RSS to perform
the bootstrap method. They established that under balanced RSS along with perfect
rankings, BRSS consistently estimates the distribution of the standardized sample
mean, i.e., BRSS estimator of the distribution of the standardized sample mean con-
verges to its true distribution almost surely as n → ∞. However, BRSS may not be
appropriate for unbalanced RSS as it may introduce some bias (Modarres et al. 2006).
The other resampling method MRBRSS is not an appealing resampling method for
RSS since it does not provide a consistent estimator of the distribution of the standard-
ized sample mean (Modarres et al. 2006). The BCa confidence intervals constructed
here are therefore based on BRSSR.

3.1 Construction of bootstrap confidence intervals

Confidence intervals for μ based on RSS can be easily constructed by extending
Efron’s (1979) bootstrap percentile method in the case of RSS. This method has
some attractive features, such as it is invariant to monotone transformations, but
it suffers from poor coverage probabilities. Efron (1987) proposed a correction to
the percentile-method that reduces the coverage error while retaining the invari-
ance property. The resulting confidence interval method is known as bias-corrected
and accelerated (BCa) bootstrap. To facilitate the construction of BCa confidence
intervals based on RSS, let {X∗

(1),1, . . . X
∗
(1),m1

}, . . . , {X∗
(k),1, . . . X

∗
(k),mk

} denote k
bootstrap samples drawn independently and randomly with replacement from the k
sets, {X(1),1, . . . X(1),m1}, . . . , {X(k),1, . . . X(k),mk }, respectively. Then, the resulting
bootstrap sample X ∗

RSS = {X∗
(r), j , r = 1, . . . , k; j = 1 . . . ,mr } is known as BRSSR.

Let us denote X̄∗
r = m−1

r
∑mr

i=1 X
∗
(r),i and S∗2

r = m−1
r

∑mr
i=1(X

∗
(r),i − X̄∗

r )
2. The

bootstrap versions of X̄ RSS and τ̂ 2 are then

X̄∗
RSS = k−1

k∑

r=1

X̄∗
r and τ̂ ∗2 = k−2

k∑

r=1

S∗2
r

mr
.

Define

ûξ = sup{u : P(X̄∗
RSS ≤ u|XRSS) ≤ ξ}.

Then, I0,BP = [û1−α,∞), I1,BP = (−∞, ûα] and I2,BP = [û(1−α)/2, û(1+α)/2] are
the respective lower, upper and both-sided percentile-method confidence intervals for
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μ. It can be shown that

P{μ ∈ I0,BP } = P{μ ∈ I1,BP } = α + O(n−1/2) and P{μ ∈ I2,BP } = α + O(n−1).

For constructing BCa confidence intervals for μ based on RSS, let us define

Ĝ RSS(x) = P(X̄∗
RSS ≤ x |XRSS),

the bootstrap distribution of X̄∗
RSS . Put

d̂ = �−1{Ĝ RSS(X̄ RSS)}, (3.1)

lâ(α) = �[d̂ + (d̂ + zα){1 − â(d̂ + zα)}−1], (3.2)

where d̂ and â are called bias-correction and acceleration constant, respectively. We
now define Efron’s (1987) BCa method confidence intervals for μ based on RSS as
follows:

I0,BCa = [ûlâ(1−α),∞),

I1,BCa = (−∞, ûlâ(α)]

and

I2,BCa = [ûlâ((1−α)/2), ûlâ((1+α)/2)],

respectively. The bootstrap percentile and the bias-corrected methods can be viewed
as special cases of BCa , which can be obtained by letting d̂ = â = 0 and â = 0,
respectively. In particular, the non-zero values of d̂ and â change the quantiles used
for BCa . In practice, d̂ is computed as

d̂ = �−1
(
#{X̄∗

RSS ≤ X̄ RSS}
B

)

,

where B is the number of bootstrap samples. The acceleration constant â can be
computed using the jackknifemethod (for details, seeEfron 1987; Efron andTibshirani
1993), which becomes computationally burdensome as the set size in RSS increases.
This computational burden involved in BCa method for RSS can be substantially
reduced by letting

â = 1

6
n−1/2η̂

−3/2
1 η̂2 = 1

6
n−1/2

(
k∑

r=1

σ̂ 2
r

λr

)−3/2 k∑

r=1

γ̂r

λ2r
.

The above formula for â is obtained by extending Hall’s (1988) finding to the case
of RSS. Then, I ∗

0,BCa
, I ∗

1,BCa
and I ∗

2,BCa
are versions of I0,BCa , I1,BCa and I2,BCa

based on the above expression for â. The following result establishes the second-order
accuracy of I ∗

0,BCa
, I ∗

1,BCa
and I ∗

2,BCa
.
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Theorem 3.1 Under the assumptions of Theorem 2.1,

P{μ ∈ I ∗
0,BCa

} = P{μ ∈ I ∗
1,BCa

} = P{μ ∈ I ∗
2,BCa

} = α + O(n−1).

This result shows that BCa method-based lower and upper confidence intervals are
more accurate than those based on normal approximation and bootstrap percentile-
method, which provide a coverage error of order O(n−1/2). However, for two
sided-confidence intervals, normal approximation and bootstrap percentile methods
are similar to BCa method in terms of the coverage probability, as they all result in a
coverage error of order O(n−1). It is important to note that the normal approximation
confidence intervals do not respect transformation.

4 Confidence intervals based on monotone transformations

Considerable work has been done on obtaining a simple and accurate approximation to
the distribution of a statistic or a pivot. Many researchers (Johnson 1978; Hall 1992a;
Zhou and Gao 2000; Cojbasic and Loncar 2011) have investigated the effects of a
monotone transformation on the distribution of an asymptotic pivot for simple random
samples. Such a transformation is useful in reducing the effects of skewness of data
on the distribution of an asymptotic pivot. That is, the distribution of the transformed
pivot becomes more symmetric than that of the original asymptotic pivot. Johnson
(1978) proposed a modified one-sample t test based on a quadratic transformation
that is less affected by the population skewness than the conventional t test. However,
Hall (1992a) noticed that this transformation has some drawbacks in that it is not
monotone and fails to correct adequately for skewness. For this reason, Hall (1992a)
proposed a monotone transformation based on a cubic polynomial that has a simple
inverse function. In our case, Hall’s (1992a) cubic transformation can be defined as

g1(x) = x + n−1/2 1

3
η̂x2 + n−1 1

27
η̂2x3 + n−1/2 1

6
η̂,

where η̂ = η̂
−3/2
1 η̂2. Under the assumption of Theorem 2.1, it can be shown that

P{g1(TRSS) ≤ x} = �(x) + O(n−1); that is, the distribution of the transformed
pivot, g1(TRSS), is more symmetric than that of TRSS .

Let zζ be the ζ th quantile of the standard normal distribution and define

I0,g1 = [X̄ RSS − g−1
1 (zα)τ̂ ,∞),

I1,g1 = (−∞, X̄ RSS − g−1
1 (z1−α)τ̂ ]

and

I2,g1 = [X̄ RSS − τ̂g−1
1 (zγ ), X̄ RSS − τ̂g−1

1 (z1−γ )],

where γ = 1
2 (1 + α). Then, I0,g1 , I1,g1 and I2,g1 are the lower, upper and two-

sided confidence intervals for μ, based on the transformation g1(.) with g−1
1 (x) =
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n1/2( 13 η̂)−1[{1+η̂(n−1/2x− 1
6n

−1η̂)}1/3−1]. Hall (1992a) also proposed exponential-
type transformation which is monotone and has a simple inverse function, and for RSS
it is given by

g2(x) =
(
2

3
n−1/2η̂

)−1 {

exp

(
2

3
n−1/2η̂x

)

− 1

}

+ 1

6
n−1η̂.

Then, in this case, we have

I0,g2 = [X̄ RSS − τ̂g−1
2 (zα),∞),

I1,g2 = (−∞, X̄ RSS − τ̂g−1
2 (z1−α)]

and

I2,g2 = [X̄ RSS − τ̂g−1
2 (zγ ), X̄ RSS − τ̂g−1

2 (z1−γ )],

as the respective lower, upper and two-sided confidence intervals for μ, based on the
transformation g2(.), with g−1

2 (x) = ( 23n
−1/2η̂)−1 log{1 + 2

3n
−1/2η̂(x − n−1 1

6 η̂)}.
The following result shows that the intervals I0,gi , I1,gi and I2,gi are second-order
accurate, for i = 1, 2.

Theorem 4.1 Under the assumptions of Theorem 2.1,

P{μ ∈ I0,gi } = P{μ ∈ I1,gi } = P{μ ∈ I2,gi } = α + O(n−1), i = 1, 2.

Theorem 4.1 follows from the fact that P{gi (TRSS) ≤ x} = �(x) + O(n−1),
i = 1, 2. The above results show that the coverage error associated with the intervals
I0,gi and I1,gi are of order O(n−1) and hence these intervals are improvements over
the intervals I0,N and I1,N in terms of coverage errors. Theorems 3.1 and 4.1 imply
that the bias-corrected and accelerated and transformation methods are asymptotically
equivalent in terms of coverage errors. But, the bias-corrected and accelerated method
is transformation-respecting, while the transformation methods are easy to apply.

5 Simulation study

Simulation studies are performed to compare the proposed confidence interval meth-
ods in Sects. 3 and 4 with three conventional confidence interval methods, namely,
the bootstrap percentile method, the bootstrap percentile-t method, and the normal
approximation method. Lower, upper and two-sided confidence intervals were con-
structed based on each of these methods.

To facilitate the discussion of our simulation results, the lower, upper and two-sided
confidence intervals are denoted by LCL, UCL and TCL, respectively. The symbols
N, BP, BT, BCa stand for normal approximation method, bootstrap percentile method,
bootstrap percentile-t method, and bias-corrected and accelerated method. Moreover,
Ng1 and Ng2 denote the normal approximation along with transformations g1 and
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g2, respectively. We also consider the confidence interval method proposed by Ahn
et al. (2014) as a competing procedure. This method uses t critical values based
on the Welch-type approximation and we denote this procedure by tALW . All these
different confidence interval methods are then compared with respect to their coverage
probabilities, average lower confidence limits, average upper confidence limits, and
average interval widths. We also compare RSS and simple random sampling (SRS)
with respect to all these methods.

We now describe in detail the setting of our simulation study. The RSS were gener-
ated based on several balancedRSS and unbalancedRSS designswith different sample
sizes when the set sizes were chosen to be k = 2, 3 and 5. Data were generated from
three underlying distributions with various degrees of skewness and kurtosis: a chi-
square distribution with d f = 1(χ2

1 ); the standard exponential distribution (Exp(1)),
and the half normal distribution denoted by HN (0, 1). The means are, respectively,
1, 1 and

√
(2/π) for these three distributions.

For every distribution and sample size combination, we generated 5000 simulated
samples. The coverage probability for each method for each combination was then
estimated by the proportion of times the method covered the true parameter of the
underlying distribution. Different bootstrap confidence intervals were constructed
by using 3000 bootstrap samples. The obtained simulation results are presented in
Tables 1, 2, 3, 4, 5 and 6 for k = 2, 3. The simulation results for k = 5 are pro-
vided in the supplement. Based on the results in these tables, we have the following
findings:

(i) The BCa method gives most accurate coverage probabilities of LCL for χ2
1 and

Exp(1)when n ≤ 20.However, for these distributions, the coverage probabilities
of LCL based on BCa , Ng1 and Ng2 are comparable for n > 20. We also observe
that the LCL based on BP, BT, tALW and N methods gives over-coverage in
most cases for χ2

1 and Exp(1). The methods BCa , Ng1 and Ng2 give similar
coverage probabilities for the lower confidence interval for most of the cases
when data are generated from HN (0, 1). The coverage probabilities for the lower
confidence interval corresponding to all methods, except N, are also similar for
HN (0, 1) when n ≥ 30. BCa method provides most accurate average lower
limits compared to all other methods when n ≤ 20 for χ2

1 and Exp(1). However,
for n > 20, average lower limits are comparable for all the methods. Average
lower limits of all methods corresponding to HN (0, 1) are also comparable, but
BCa method provides the most accurate average lower limits for n = 10. Based
on our simulation study, BCa is the onewewould recommend for the construction
of lower confidence intervals.

(ii) For UCL, BT method gives best coverage accuracy among all the methods when
n ≤ 20. However, the coverage probability of UCL corresponding to the BT
method is far removed from the nominal coverage for χ2

1 and Exp(1) when
n ≤ 20. For large n(> 30), the methods BT, BCa , tALW , Ng1 and Ng2 all give
similar coverage probabilities for χ2

1 and Exp(1). For the case of HN (0, 1), the
methods BT, BCa , tALW , Ng1 and Ng2 all give similar coverage probabilities for
UCL when n ≥ 20. This may be due to the fact that HN (0, 1) is less skewed as
compared to χ2

1 and Exp(1). The N and BP methods undercover consistently for
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all sample sizes. Also, when n is small, tALW method produces better coverage
probabilities compared to BCa , Ng1 and Ng2 methods for UCL. Overall, BT
method appears to be the best in terms of coverage accuracy for UCL when
n ≤ 30.

(iii) For two-sided confidence intervals, BTmethod performs best in terms of coverage
accuracy with very wide confidence intervals for small to moderate sample sizes.
For large sample sizes (n = 60), all methods provides very similar coverage
probabilities. But, Ng1 and tALW give better coverage probabilities for TCL than
N, BP, BCa and Ng2 methods for small to moderate sample sizes. In summary,
we find BTmethod to give best coverage for TCL and produces wider confidence
intervals for small to moderate samples sizes. For large sample sizes, Ng1 , Ng2
and tALW all give comparable coverage as BT in addition to being simple to
compute and also requiring less computational effort.

(iv) The simulation results show that the SRS scheme produces better coverage proba-
bilities for the methods N, BP, BT, BCa , Ng1 and Ng2 than the RSS when n ≤ 20.
However, both sampling methods give similar coverages for all methods when
n ≥ 30. The most important observation is that for each distribution and sam-
ple size combination that we have considered, all confidence interval methods
give more accurate average lower and upper limits, and shorter average interval
widths for LCL, UCL and TCL under the RSS scheme as compared to the SRS
scheme.

(v) Simulation results (see the supplement) for set size k = 5 provide similar con-
clusions as for set sizes k = 2, 3.

5.1 Imperfect ranking

Throughout this work, we have assumed the RSS scheme under perfect ranking. How-
ever, in practice, it may involve ranking errors. Therefore, it will be of natural interest
to evaluate the performance of all these interval estimation methods under imper-
fect ranking. Several nonparametric tests have been proposed by Li and Balakrishnan
(2008) to test the assumption of perfect ranking in RSS. In order to simulate imperfect
RSS samples, we employ themodel proposed byDell and Clutter (1972). Consider the
model Yi = Xi + εi , where εi represents the error involved in the judgment ranking.
This model can be implemented by generating n independent realizations Xi from a
given distribution F(x) and n independent normally distributed random errors with
zero mean and variance σ 2. We compute Yi ’s and order them. Let Y(r) denote the mea-
surement corresponding to the true r th order statistic. Then, the corresponding X value
represents the r th judgment order statistic, X[r ]. The variance component attached to
the error term, σ 2, controls the degree of judgment error. In particular, the correlation
coefficient between Y and X can be expressed as ρ = φ/

√
φ2 + σ 2, where φ2 is the

variance of X . It is quite evident that the RSS scheme involves perfect ranking when
ε has a degenerate distribution. We consider ρ to be 0.5 and 0.75 and the values of
σ 2 are selected accordingly. The obtained simulation results under imperfect ranking
are presented in Tables 7, 8 and 9. For brevity, simulation results below highlights our
findings based on a set size of k = 2 with the balanced design. All these different
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1712 S. Ghosh et al.

confidence interval methods appeared to be robust under imperfect ranking. That is,
we have similar conclusions as reported under the perfect ranking scenario. We also
observe that, given a sample size, as the correlation increases these methods result in
a shorter interval.

6 Illustrative example

In this section, we use a data from a study involving 46 shrubs. The dataset was first
reported in Muttlak and McDonald (1990). First three transect lines were laid out
across the area and all shrubs intersecting each transect were sampled. Finally, the
size of each shrub was measured. This technique is good for sampling a very large
area relatively quickly. These data were further used by Ghosh and Tiwari (2004) to
construct an RSS. The original sample was broken into 15 groups, each containing 3
shrubs (leaving one out). The 3 shrubs in the first group were ranked based on their
sizes, and the shortest of all was included in the sample. This process was repeated 5
times, which resulted in 5 replicates. For the next 5 groups, the ones with the second
smallest size were included in the sample. Finally, from each of the remaining five
groups, the largest shrubs were chosen. This process resulted in a balanced RSS with
set size 3 and cycle size 5. The data so obtained are presented in Ghosh and Tiwari
(2004). Figure 1 presents the density plot of shrub sizes and it shows that the sample
has a bimodal skewed distribution. The resulting confidence intervals for the mean
shrub size are presented in Table 10.

It can be seen that BPmethod gives largest lower limit for the 90% lower confidence
interval for mean size of shrubs. The lower limit corresponding to the BCa method
is close to that of BP method. Method N is similar to the methods Ng1 and Ng2 , but
their lower limits are smaller than those of BP and BCa methods. BTmethod gives the
smallest lower limit. Based on our simulation study, BCa method should be chosen
for the lower confidence interval for mean size of shrubs.

For the 90% upper confidence limit, BP method produces smallest upper limit
which is close to that of BCa method. Ng1 and Ng2 methods give same upper limits
for mean size of shrubs and their upper limits are bigger than those of BP and BCa

methods, but close to the upper limit based on N method. BT method gives largest
upper limits for mean size of shrubs, but very similar to that of tALW method. The
results of the simulation study suggest that the BT method often has the best coverage
error for upper confidence intervals. Therefore, BT method should be chosen for the
upper confidence interval for mean size of shrubs.

For the 90% two-sided confidence interval, BCa and BP methods have shortest
interval width compared to other methods. BT method produces the widest 90% two-
sided confidence interval for mean size of shrubs. Our simulation study shows BT
method to have best coverage probabilities for small to moderate sample sizes, but it
produces widest two-sided confidence intervals. tALW gives the next best coverage for
two-sided confidence intervals. Hence, tALW or BT method should be chosen for the
two-sided confidence interval for mean size of shrubs.
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Fig. 1 Estimated density function for shrub sizes

Table 10 Summary of 90% LCL, UCL and TCL for mean shrub size

Methods LCL UCL TCL Interval length

N [0.891,∞) (−∞, 1.268] (0.838, 1.321) 0.483

BP [0.906,∞) (−∞, 1.235] (0.858, 1.291) 0.433

BT [0.847,∞) (−∞, 1.301] (0.606, 1.387) 0.781

tALW [0.865,∞) (−∞, 1.293] (0.788, 1.371) 0.583

BCa [0.900,∞) (−∞, 1.239] (0.851, 1.282) 0.432

Ng1 [0.884,∞) (−∞, 1.261] (0.838, 1.311) 0.473

Ng2 [0.884,∞) (−∞, 1.261] (0.826, 1.311) 0.485

7 Discussion and concluding remarks

We have developed bias-corrected and accelerated method along with transformation
methods, Ng1 and Ng2 , for constructing confidence intervals for the population mean
based on Ranked set samples.We have studied asymptotic properties of these methods
and have shown that they are second-order accurate. Thesemethods are asymptotically
equivalent to bootstrap percentile-t in terms of coverage errors. From the simulation
studies carried out, it is evident that for a right skewed distribution, the bias-corrected
method gives best coverage probability in the case of lower confidence intervals,
whereas bootstrap percentile-t method results in smallest average lower limits among
all methods. On the other hand, when the population distribution is right skewed,
the bootstrap percentile-t method gives best finite sample coverage for the upper
and two-sided intervals. This behavior can be substantiated by the empirical results
suggesting largest average upper limits and the widest two-sided confidence intervals
associated with bootstrap percentile-t method. Performances of all methods improve
as sample size increases, as one would expect. Hence, for large sample sizes, bias-
corrected and accelerated, bootstrap percentile-t , tALW , Ng1 and Ng2 methods all
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give similar coverage probabilities for all three intervals. However, tALW , Ng1 and
Ng2 require less computing in terms of bootstrap resampling. Though our proposed
confidence interval methods are developed under the assumptions of perfect ranking,
our simulation studies show that they are robust even in the presence of judgment
error. In this research, we did not consider iterated bootstrap method. Even though
this method is known to be effective in reducing coverage errors for SRS, it becomes
computationally demanding as set sizes in RSS scheme increases. A reduction in
the computational burden of the iterated bootstrap method in RSS may be possible
by applying some analytical approximations to the nominal level. Work is currently
under progress on this problem and we hope to report these findings in a future paper.

Acknowledgements We express our sincere thanks to the Associate Editor and the anonymous reviewers
for their useful comments and suggestions on an earlier versions of this manuscript which led to this
improved one.

Appendix A: Proofs

Proof of Theorem 2.1: Let us define Y(r),i = X(r),i−μr
σr

, for r = 1, 2, . . . , k. Then,
TRSS can be expressed as

TRSS = n
∑k

r=1 σr Ȳr
√

∑k
r=1 σ 2

r
s2r,Y
λr,n

,

where s2r,Y = m−1
r

∑mr
i=1(Y(r),i − Ȳr )2. We can express

k∑

r=1

σ 2
r

s2r,Y
λr,n

= an

[

1 +
k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1) −

k∑

r=1

ar,nȲ
2
r

]

, (7.1)

where ar,n = λ−1
r,nσ 2

r
an

and an = ∑k
r=1 λ−1

r,nσ
2
r . Using (7.1), TRSS can be expressed as

TRSS = a−1/2
n T1, (7.2)

where

T1 = √
n

k∑

r=1

σr Ȳr

[

1 − 1

2

k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1) + 1

2

k∑

r=1

ar,nȲ
2
r

+3

8

{
k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}2

+3

4

{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

} k∑

r=1

ar,nȲ
2
r

]

+ Op(n
−2). (7.3)
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In order to obtain the Edgeworth expansion of TRSS given in Theorem 2.1, we first
need to derive asymptotic expansions for the first three cumulants of TRSS , which are
given in the following lemma. 	


Lemma 7.1 Under the assumptions of Theorem 2.1, we have:

(1) E(TRSS) = − 1
2n

−1/2
(

∑k
r=1

σ 2
r

λr

)−3/2 ∑k
r=1

γr
λ2r,n

+ O(n−3/2),

(2) E(T 2
RSS) = 1 + 2

(
∑k

r=1
σ 2
r

λr

)−3[∑k
r=1

γr
λ2r,n

]2
+

(
∑k

r=1
σ 2
r

λr

)−2[∑k
r=1

3σ 4
r

λ3r,n
+

∑k
r=1

∑
r ′

>r

σ 2
r σ 2

r
′

λ2r λ
2
r
′
(λr + λr ′ )

]

+ O(n−2),

(3) E(T 3
RSS) = − 7

2n
−1/2

(
∑k

r=1
σ 2
r

λr

)−3/2 ∑k
r=1

γr
λ2r,n

+ O(n−3/2).

Proof of (1) Note that λr,n → λr , and so λ−1
r,n = O(1) and ar,n = O(1).

Now, ar,nm−1
r

∑mr
i=1(Y

2
(r),i − 1) = ar,nm

−1/2
r Op(1) = ar,n(λ−1

r,n )
1/2Op(n−1/2) =

Op(n−1/2), and similarly we have Ȳ 2
r = Op(n−1). These facts imply that

{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

} k∑

r=1

ar,nȲ
2
r = Op(n

−3/2).

From (7.3), we have

E(T1) = −1

2
E

[√
n

k∑

r=1

σr Ȳr

{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}]

+1

2
E

[√
n

k∑

r=1

σr Ȳr

k∑

r=1

ar,nȲ
2
r

]

+3

8
E

[√
n

k∑

r=1

σr Ȳr

{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}2]

+ O(n−3/2). (7.4)

Since E(Y
(r ′

),i (Y
2
(r),i − 1)) = 0 for r �= r

′
, we have

E

[√
n

k∑

r=1

σr Ȳr

{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}]

= √
n

k∑

r=1

σr ar,n
m2

r

mr∑

i=1

E(Y 3
i,r )

= n−1/2a−1
n

k∑

r=1

γr

λ2r,n
, (7.5)
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where the last part follows from the fact that a−1
n = (

σ 2
r

λr,n
)−1ar,n and E{Y 3

(r),i } =
σ−3
r γr . Using arguments similar to those above, we have

E

[√
n

k∑

r=1

σr Ȳr

k∑

r=1

ar,nȲ
2
r

]

= √
n

k∑

r=1

ar,nσr E(Ȳ 3
r ) = n−3/2

k∑

r=1

ar,nσr
λr,n

E(Y 3
r )

= O(n−3/2), (7.6)

since λ−1
r,n = O(1) and ar,n = O(1). For notational simplification, set U(r),i =

Y 2
(r),i − 1. Then,

E

[√
n

k∑

r=1

σr Ȳr

{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}2]

= √
nE

[ k∑

i, j,l=1

σi a j,nal,nȲi Ū j Ūl

]

= √
nE

[ k∑

r=1

σr a
2
r,nȲr Ū

2
r

]

, (7.7)

where the last part follows from the fact that for other choices of (i, j, l), E(Ȳi Ū j Ūl) =
0. Further, we have

E

[ k∑

r=1

σr a
2
r,nȲr Ū

2
r

]

=
k∑

r=1

σr a
2
r,n

1

m2
r
E

(

Y(r)(Y(r) − 1)2
)

= O(n−2).

Now, from (7.7), we have

E

[√
n

k∑

r=1

σr Ȳr

{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}2]

= O(n−3/2). (7.8)

Hence, Eqs. (7.4)–(7.6) and (7.8) imply that
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E(TRSS) = a−1/2
n E(T1) = −n−1/2

2

( k∑

r=1

σ 2
r

λr,n

)−3/2 k∑

r=1

γr

λ2r,n
+ O(n−3/2).

	

Proof of (3): From (7.3), we have

E(T 3
1 ) = n3/2E

[( k∑

r=1

σr Ȳr

)3[

1 − 3

2
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ar,nm
−1
r
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(r),i − 1) − 3

2

k∑

r=1

ar,nȲ
2
r

− 9

8

{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}2]

+ O(n−3/2)

= n3/2
[

A − 3

2
B − 3

2
C − 9

8
D

]

+ O(n−3/2),

(7.9)

where

A = E

( k∑

r=1

σr Ȳr

)3

, B = E

{( k∑

r=1

σr Ȳr

)3 k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}

, C

= E

{( k∑

r=1

σr Ȳr

)3 k∑

r=1

ar,nȲ
2
r

}

and

D = E

[( k∑

r=1

σr Ȳr

)3{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}2]

.

Now,

A = E

( k∑

r=1

σ 3
r Ȳ

3
r + 3

k∑

r=1

σr Ȳr

k∑

r ′ �=r=1

σ 2
r ′ Ȳ 2

r ′ +
k∑

r �=r ′ �=r ′′=1

σrσr ′ σr ′′ Ȳr Ȳr ′ Ȳr ′′
)

=
k∑

r=1

σ 3
r m

−2
r E(Y 3

(r)) = n−2
k∑

r=1

γr

λ2r,n
. (7.10)

Let us recall U(r),i = Y 2
(r),i − 1, and so Ūr = m−1

r
∑mr

i=1(Y
2
(r),i − 1). Now,

B = E

{( k∑

r=1

σr Ȳr

)3 k∑

r=1

ar,nŪr

}

= E

( k∑

r=1

σ 3
r ar,nȲ

3
r Ūr

)

+3
k∑

r=1

σr ar,n E

(

Ȳr Ūr

) k∑

r ′ �=r=1

σ 2
r ′

mr ′
. (7.11)
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Again, after some algebraic manipulations, we obtain

E

(

Ȳ 3
r Ūr

)

= m−4
r

∑

i= j=l=q=1

E

{

Y(r),i Y(r), j Y(r),l(Y
2
(r),q − 1)

}

= m−3
r E(Y 5

(r)) + 3
(mr − 1)

m3
r

E(Y 3
(r))

= 3n−2 σ−3
r γr

λ2r,n
+ O(n−3) (7.12)

and

k∑

r=1

σr ar,n E

(

Ȳr Ūr

) k∑

r ′ �=r=1

σ 2
r ′

mr ′
=

k∑

r=1

σr ar,n
σ−3
r γr

mr

k∑

r ′ �=r=1

σ 2
r ′

mr ′

= n−2
k∑

r=1

ar,n
σ−2
r γr

λr,n

k∑

r ′ �=r=1

σ 2
r ′

λr ′
,n

. (7.13)

From Eqs. (7.11)–(7.13), we obtain

B = 3n−2
( k∑

r=1

ar,n
γr

λ2r,n
+

k∑

r=1

ar,n
σ−2
r γr

λ2r,n

k∑

r ′ �=r=1

σ 2
r ′

λr ′

)

+ O(n−3) = 3n−2
k∑

r=1

γr

λ2r,n

+O(n−3), (7.14)

where the last part follows from the fact that
∑k

r=1 ar,n = 1. Similarly, it can be shown
that C = O(n−3) and D = O(n−3). Hence, Eqs. (7.9), (7.10) and (7.14) imply

E(T 3
RSS) = a−3/2

n E(T 3
1 ) = −n−1/2 7

2

( k∑

r=1

σ 2
r

λr,n

)−3/2 k∑

r=1

γr

λ2r,n
+ O(n−3/2).

	


Proof of (2): Now, from (7.3), we have

E(T 2
1 ) = E

[

n

( k∑

r=1

σr Ȳr

)2{

1 −
k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}]

+ O(n−1)

= nE

[{ k∑

r=1

σ 2
r Ȳ

2
r + 2

k∑

r ′
>r=1

σrσr ′ Ȳr Ȳr ′
}{

1 −
k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}]

+O(n−1). (7.15)
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It is easy to prove that

E

( k∑

r ′
>r=1

σrσr ′ Ȳr Ȳr ′
)

= 0 and E

[{ k∑

r ′
>r=1

σrσr ′ Ȳr Ȳr ′
}

k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

]

= 0.

From (7.15) and after performing some tedious algebraic manipulations, we obtain

E(T 2
1 ) =

[

nE

( k∑

r=1

σ 2
r Ȳ

2
r

)

− nE

{ k∑

r=1

σ 2
r Ȳ

2
r

}{ k∑

r=1

ar,nm
−1
r

mr∑

i=1

(Y 2
(r),i − 1)

}]

+O(n−1)

= an − n−1
k∑

r=1

σ 2
r ar,n
λ2r

(κr,Y + 2) + O(n−1) = an + O(n−1), (7.16)

where κr,Y = E(Y 4
r ). Equations (7.2) and (7.16) imply that E(T 2

RSS) = 1 + O(n−1).
Now, Lemma 7.1 together with some algebraic calculations, give the following asymp-
totic expansions for the first three cumulants, κ1(TRSS), κ2(TRSS) and κ3(TRSS), of
TRSS :

κ1(TRSS) = −1

2
n−1/2

( k∑

r=1

σ 2
r

λr

)−3/2 k∑

r=1

γr

λ2r,n
+ O(n−3/2),

κ2(TRSS) = E(T 2) − E(T )2 = 1 + O(n−1)

and

κ3(TRSS) = −7

2
n−1/2

( k∑

r=1

σ 2
r

λr

)−3/2 k∑

r=1

γr

λ2r,n
+ O(n−3/2).

The characteristic function of TRSS is

E(eiTRSS ) = exp

{

i tκ1(T ) + 1

2
(i t)2κ2(T ) + 1

6
(i t)3κ3(T )

}

(7.17)

and so substituting the above asymptotic formulae for the cumulants in (7.17) and
expanding the right-hand side as

e− t2
2

{

1 + n−1/2 p1(i t) + O(n−1)

}
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for polynomial p1 and inverting the Fourier transformation (for details, see Section
2.3 of Hall 1992b), we get the Edgeworth expansion of P(TRSS ≤ x) as given in
Theorem 2.1.

The derivation of the Edgeworth expansion of P(SRSS ≤ x) is straightforward,
hence omitted. 	

Proof of Theorem 3.1: To facilitate the proof of Theorem 3.1, let S∗

RSS = (X̄∗
RSS −

X̄ RSS)/τ̂ be the bootstrap version of SRSS . Analogous to Theorem 2.1, we have

P

{

S∗
RSS ≤ x |XRSS

}

= �(x) + n−1/2 p̂1(x)φ(x) + Op(n
−1),

P

{

T ∗
RSS ≤ x |XRSS

}

= �(x) + n−1/2q̂1(x)φ(x) + Op(n
−1), (7.18)

respectively, where p̂1(x) and q̂1(x) are as given in Theorem 2.1 except that population
moments are now replaced by samplemoments. Let tξ , sξ , t̂ξ and ŝξ be the ξ th quantiles
of P(TRSS ≤ x), P(SRSS ≤ x), P(T ∗

RSS ≤ x |XRSS) and P(S∗
RSS ≤ x |XRSS),

respectively. Then, the Cornish–Fisher expansions of these quantiles are given by

tξ = zξ + n−1/2q11(zξ ) + O(n−1),

sξ = zξ + n−1/2 p11(zξ ) + O(n−1),

t̂ξ = zξ + n−1/2q̂11(zξ ) + Op(n
−1),

ŝξ = zξ + n−1/2 p̂11(zξ ) + Op(n
−1); (7.19)

see the review of Cornish–Fisher expansion in Hall (1992b). The quantities q̂11(x)
and p̂11(x) are the sample versions of q11(x) = −q1(x) and p11(x) = −p1(x),
respectively. We now provide the proof for P(μ ∈ I1,BCa ). Equation (7.18) implies
that

Ĝ RSS(X̄ RSS) = P

{

S∗
RSS ≤ 0|XRSS

}

= �(0) + n−1/2 p̂1(0)φ(0) + Op(n
−1). (7.20)

Therefore, from Eqs. (3.1) and (7.20), we have

d̂ = �−1
{

�(0) + n−1/2 p̂1(0)φ(0) + Op(n
−1)

}

= n−1/2 p̂1(0) + Op(n
−1), (7.21)

with the last line following from Taylor series expansion. Equation (7.19) implies that

ûlâ (α) = X̄ RSS + ŝlâ(α)τ̂ = X̄ RSS + τ̂

{

zlâ(α) + n−1/2 p̂11(zlâ(α)) + n−1 p̂21(zlâ(α))

}

+Op(n
−3/2). (7.22)
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Equations (3.2) and (7.20) imply that

zlâ(α)2d̂ + zα + â(d̂2 + 2d̂zα + z2α) + Op(n
−1) = zα + n−1/2(2 p̂1(0) + ĉz2α)

+Op(n
−1), (7.23)

where â = n−1/2ĉ and ĉ = η̂
−3/2
1 η̂2. From (7.21) and (7.22), upon using Taylor series

expansion, we get

ûlâ (α) = X̄ RSS + τ̂

[

zα + n−1/2{2 p̂1(0) + ĉz2α + p̂11(zα)}
]

+ Op(n
−1)

= X̄ RSS + τ̂ [zα + n−1/2q̂1(zα)] + Op(n
−1), (7.24)

since 2 p̂1(0) + ĉz2α + p̂11(zα) = q̂1(zα). So, from (7.24), we have

P(μ ∈ I ∗
1,BCa

) = P{τ̂−1(X̄ RSS − μ) + Op(n
−1) ≥ −zα − n−1/2q1(zα)}

= P{τ̂−1(X̄ RSS − μ) ≥ z1−α − n−1/2q1(z1−α)} + O(n−1),

where the last line is obtained by the delta method (see Section 2.7, Hall 1992b) and
by using the fact that −zα = z1−α . From Theorem 2.1, we then get

P(μ ∈ I ∗
1,BCa

) = 1 −
[

P

{

τ̂−1(X̄ RSS − μ) ≤ z1−α − n−1/2q1(z1−α)

}

+ O(n−1)

]

= 1 − 1 + α + O(n−1)

= α + O(n−1).

In a similar manner, we can show that P(μ ∈ I ∗
0,BCa

) = P(μ ∈ I ∗
2,BCa

) = α +
O(n−1). 	


References

Ahn S, Lim J,Wang X (2014) The Students t approximation to distributions of pivotal statistics from ranked
set samples. J Korean Stat Soc 43:643–652

Al-OmariAI, BouzaCN (2014)Reviewof ranked set sampling:modifications and applications. Rev Investig
Oper 35:215–240

Bohn LL, Wolfe DA (1992) Nonparametric two-sample procedures for ranked-set samples data. J Am Stat
Assoc 87:552–561

Chen Z (2007) Ranked set sampling: its essence and some new applications. Environ Ecol Stat 14:355–363
Chen Z, Bai Z, Sinha B (2004) Ranked set sampling theory and applications. Springer, New York
Chen H, Stasny EA, Wolfe DA (2006) Unbalanced ranked set sampling for estimating a population propor-

tion. Biometrics 62:150–158
Dell TR, Clutter JL (1972) Ranked set sampling theorywith order statistics background. Biometrics 28:545–

555
Cojbasic V, Loncar D (2011) One-sided confidence intervals for population variances of skewed distribu-

tions. J Stat Plan Inference 141:1667–1672
Drikvandi R, Modarres R, Hui TP (2006) A bootstrap test for symmetry based on ranked set samples.

Comput Stat Data Anal 55:1807–1814
Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

123



Nonparametric confidence intervals for ranked set samples 1725

Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82:171–185
Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York
Fligner MA,MacEachern SN (2006) Nonparametric two-sample methods for ranked-set sample data. J Am

Stat Assoc 101:1107–1118
Frey J (2007) Distribution-free statistical intervals via ranked-set sampling. Can J Stat 35:585–596
Frey J (2014) Bootstrap confidence bands for the CDF using ranked-set sampling. J Korean Stat Soc

43:453–461
Ghosh K, Tiwari R (2004) Bayesian density estimation using ranked set samples. Environmetrics 15:711–

728
Hall P (1988) Theoretical comparison of bootstrap confidence intervals. Ann Stat 16:927–953
Hall P (1992a) On the removal of skewness by transformation. J R Stat Soc B 54:221–228
Hall P (1992b) The bootstrap and edgeworth expansion. Springer, New York
Hui TP, Modarres R, Zheng G (2004) Bootstrap confidence interval estimation of mean via ranked set

sampling linear regression. J Stat Comput Simul 75:543–553
Johnson N (1978) Modified t-tests and confidence intervals for asymmetrical populations. J Am Stat Assoc

73:536–554
Li T, Balakrishnan N (2008) Some simple nonparametric methods to test for perfect ranking in ranked set

sampling. J Stat Plan Inference 138:1325–1338
Linder D, Samawi H, Yu L, Chatterjee A, Huang Y, Vogel R (2015) On stratified bivariate ranked set

sampling for regression estimators. J Appl Stat 42:2571–2583
McIntyre GA (1952) Amethod for unbiased selective sampling, using ranked sets. Aust J Agric Res 2:385–

390
Modarres R, Hui TP, Zheng G (2006) Resampling methods for ranked set samples. Comput Stat Data Anal

51:1039–1050
MuttlakHA,McDonaldLL (1990)Ranked set samplingwith size-biasedprobability of selection.Biometrics

46:435–445
Ozturk O, Balakrishnan N (2009) An exact control-versus-treatment comparison test based on ranked set

samples. Biometrics 65:1213–1222
Patil GP, Sinha AK, Taillie C (1999) Ranked set sampling: a bibliography. Environ Ecol Stat 6:91–98
Samawi H, Rochani H, Linder D, Chatterjee A (2017)More efficient logistic analysis usingmoving extreme

ranked set sampling. J Appl Stat 44:753–766
Takahasi K, Wakimoto K (1968) On unbiased estimates of population mean based on the sample stratified

by means of ordering. Ann Inst Math Stat 20:1–31
Zhou XH, Gao S (2000) One-sided confidence intervals for means of positively skewed distributions. Am

Stat 54:100–104

123


	Nonparametric confidence intervals for ranked set samples
	Abstract
	1 Introduction
	2 Ranked set sample
	3 Bootstrap for ranked set samples
	3.1 Construction of bootstrap confidence intervals

	4 Confidence intervals based on monotone transformations
	5 Simulation study
	5.1 Imperfect ranking

	6 Illustrative example
	7 Discussion and concluding remarks
	Acknowledgements
	Appendix A: Proofs
	References




