
Comput Stat (2017) 32:1241–1283
DOI 10.1007/s00180-017-0733-3

ORIGINAL PAPER

An ‘apples to apples’ comparison of various tests
for exponentiality

J. S. Allison1 · L. Santana1 · N. Smit1 ·
I. J. H. Visagie2

Received: 24 October 2016 / Accepted: 8 May 2017 / Published online: 20 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract The exponential distribution is a popular model both in practice and in
theoretical work. As a result, a multitude of tests based on varied characterisations
have been developed for testing the hypothesis that observed data are realised from this
distribution. Many of the recently developed tests contain a tuning parameter, usually
appearing in a weight function. In this paper we compare the powers of 20 tests for
exponentiality—some containing a tuning parameter and some that do not. To ensure
a fair ‘apples to apples’ comparison between each of the tests, we employ a data-
dependent choice of the tuning parameter for those tests that contain these parameters.
The comparisons are conducted for various samples sizes and for a large number of
alternative distributions. The results of the simulation study show that the test with the
best overall power performance is the Baringhaus and Henze test, followed closely by
the test by Henze and Meintanis; both tests contain a tuning parameter. The score test
by Cox and Oakes performs the best among those tests that do not include a tuning
parameter.

Keywords Bootstrap · Exponential distribution · Goodness-of-fit testing ·
Tuning parameter

B L. Santana
leonard.santana@nwu.ac.za

I. J. H. Visagie
jaco.visagie@up.ac.za

1 Unit for Business Mathematics and Informatics, North-West University, Potchefstroom Campus,
Potchefstroom, South Africa

2 Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria,
Pretoria, South Africa

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-017-0733-3&domain=pdf


1242 J. S. Allison et al.

1 Introduction and motivation

The exponential distribution is a popular choice of model both in practice and in
theoretical work. For this reason a great deal of research has been dedicated to the
large number of ways in which it can be uniquely characterised. This has ultimately
lead to a multitude of tests for testing the hypothesis that observed data are realised
from the exponential distribution.

Several authors have written review papers on this topic, describing and comparing
a number of tests, see, for example, Spurrier (1984), Ascher (1990) and Henze and
Meintanis (2002). However, the most recent review paper on this topic was written
more than 10 years ago by Henze and Meintanis (2005). Since then, a number of
new tests have been proposed, see for example Jammalamadaka and Taufer (2006),
Haywood and Khmaladze (2008), Mimoto and Zitikus (2008), Wang (2008), Volkova
(2010), Grané and Fortiana (2011), Abbasnejad et al. (2012), Baratpour and Habibi
Rad (2012), Volkova and Nikitin (2013), Meintanis et al. (2014) and Zardasht et al.
(2015). Furthermore, many of the tests for exponentiality contain a tuning parameter,
often appearing in a weight function. The fact that the powers of these tests are func-
tions of the tuning parameter complicates the comparisons between tests. In many
papers the authors evaluate the power of the test over a grid of possible values of
this parameter, but the problem with this approach is that the optimal choice of the
tuning parameter is unknown in practice. In these papers the authors often provide a
so-called ‘compromise’ choice; this is a choice of the tuning parameter that provides
reasonably high power for the majority of the alternatives considered in their finite
sample studies. Examples of papers that contain these compromise choices include
Henze and Meintanis (2002, 2005) and Meintanis et al. (2014). However, while these
fixed choices of the parameter are able to produce high powers against a number of
alternatives, they can also produce abysmally low powers against other alternatives.
Naturally, in practice, the distribution of the realised data is unknown, meaning that
the power of tests employing the compromise choice might be suspect.

Amethod to choose the value of the tuning parameter data-dependently is proposed
in Allison and Santana (2015). This approach removes the practical problem of choos-
ing the tuning parameter and also allows one to directly compare the powers achieved
by various goodness-of-fit tests.

The aim of this paper is to objectively compare the powers of various tests for
exponentiality. Where applicable, the methodology detailed in Allison and Santana
(2015) is used in order to choose the value of the tuning parameter data-dependently;
this allows a fair ‘apples to apples’ comparison between the tests containing a tuning
parameter and those without one.

The remainder of the paper is organised as follows: In Sect. 2 we introduce and
provide details of the various tests for exponentiality that form part of the simulation
study. The data-dependent choice of the tuning parameter is discussed in Sect. 3.
Section 4 presents the results of an extensive Monte Carlo study of the empirical
powers of the tests against numerous alternatives to the exponential distribution (a
distinction is made between alternative distributions with increasing, decreasing, and
non-monotone hazard rates). In Sect. 5 we apply all the tests to a real-world data set
and the paper concludes in Sect. 6 with some final remarks.
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2 Tests for exponentiality

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed contin-
uous realisations of a random variable X . Denote the exponential distribution with
expectation 1/λ by Exp (λ). The composite goodness-of-fit hypothesis to be tested is

H0: the distribution of X is Exp (λ) ,

for some λ > 0, against general alternatives.
The majority of the test statistics that we consider are based on the scaled values

Y j = X j λ̂, where λ̂ = 1/X̄n with X̄n = 1
n

∑n
j=1 X j . The use of scaled values is

motivated from the invariance property of the exponential distribution with respect to
scale transformations. Since X follows an exponential distribution if and only if cX is
exponentially distributed for every c > 0, we would not expect a scale transformation
to influence the conclusion drawn regarding the exponentiality of X . As a result, the
test statistic depends on the data only through scaled versions of the original data, and
the conclusions drawn regarding the exponentiality of X1, . . . , Xn and Y1, . . . , Yn

should be the same. In the remainder of the paper we denote the order statistics of X j

and Y j by X(1) < X(2) < · · · < X(n) and Y(1) < Y(2) < · · · < Y(n) respectively.
In this section we provide short descriptions of the 20 tests for exponentiality that

we compare to one another in theMonte Carlo study in Sect. 3. These tests are arranged
according to the characteristics of the exponential distribution that the test is based
on. These tests are chosen because they provide a diverse selection of established tests
(tests that have been shown to perform well in terms of power) and newly developed
tests, and simultaneously considering tests that contain a tuning parameter as well as
those that do not. In addition to the tests presented in this section, we also provide
references to numerous other tests for exponentiality not included in this study.

2.1 Tests based on the empirical characteristic function

In recent years many goodness-of-fit tests have been developed which are based on
the characteristic function (CF). Typically in these tests the CF of a random variable
X , given by

φ(t) = E
[
eitX] ,

is estimated by the empirical characteristic function (ECF) of the data X1, . . . , Xn ,
defined as

φn(t) = 1

n

n∑

j=1

eitX j .

Standard methods for testing that employ the ECF utilise the L2-type distance

∫ ∞

−∞
|φn(t) − φ(t)|2wγ (t)dt,
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1244 J. S. Allison et al.

which incorporates theCF,ECFand aparametricweight functionwγ (· ),which usually
satisfy the conditions

∫∞
−∞ t2wγ (t)dt < ∞, wγ (t) = wγ (−t), and wγ (t) ≥ 0, ∀ t ,

and depends on some tuning parameter γ .
There has been considerable discussion in the literature on the choice of wγ (t).

Popular choices are wγ (t) = e−γ |t | or wγ (t) = e−γ t2 . Both of these correspond
to kernel-based choices with e−γ |t | being a multiple of the standard Laplace density
as kernel with bandwidth equal to 1/γ and e−γ t2 a multiple of the standard normal
density as kernel with bandwidth equal to 1/(γ

√
2).

For various tests for exponentiality that incorporate the ECF, the interested reader
is referred to Henze and Meintanis (2002) and Henze and Meintanis (2005) and the
references therein. However, for the purposes of this paper we will only focus on the
‘Epps and Pulley’ test proposed in Epps and Pulley (1986) and amore recent test based
on the concept of the probability weighted empirical characteristic function (PWECF)
proposed in Meintanis et al. (2014).

2.1.1 Epps and Pulley (1986) test (EPn)

The test proposed in Epps and Pulley (1986) is based on the difference between the
ECF, φn(t), of X1, X2, . . . , Xn and the CF of the exponential distribution, φ0(t, λ) =
λ/(λ−i t). If the data are exponentially distributedwith parameter λ, thenφn(t) should
be close to φ0(t, λ).

Estimating λ by λ̂ = 1/X̄n , the test is based on the idea that the quantity

∫ ∞

−∞
(
φn(t) − φ0(t, 1/X̄n)

)
w(t)dt,

should be small under the null hypothesis, where

w(t) = 1

2π(1 + i X̄nt)
.

The normalised Epps and Pulley test statistic simplifies to

EPn = √
48n

∫ ∞

0

(

φn(t) − 1

1 − i X̄nt

)
X̄n

2π(1 + i X̄nt)
dt

= √
48n

⎡

⎣1

n

n∑

j=1

e−Y j − 1

2

⎤

⎦ .

This test rejects H0 for large values of |EPn|. The null distribution of this test statistic
was shown to be standard normal in Epps and Pulley (1986). Furthermore, the test
was also shown to be consistent against absolutely continuous alternative distributions
with monotone hazard rates, strictly positive supports and finite expected values. In
a number of studies it has been shown that this test is reasonably powerful, see for
example Henze and Meintanis (2005).
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2.1.2 PWECF (PW1
n,γ and PW2

n,γ )

There has been a lot of discussion regarding the formof theweight functionwhen using
goodness-of-fit tests based on theECF andCF. Fortunately,Meintanis et al. (2014) pro-
vides a statisticallymeaningful way to choose theweight function. This choice reduces
the problem to only choosing a tuning parameter γ , typically still contained in the
weight function. Theprobabilityweighted characteristic function (PWCF) is defined as

χ(t; γ ) = E
[
W (X; γ t)eitX] =

∫ ∞

−∞
W (x; γ t)eitxdFλ(x),

where the probability weight function is given by

W (x, β) = [Fλ(x)(1 − Fλ(x))]|β| , β ∈ R, x ∈ R, (1)

and where Fλ(· ) denotes the exponential distribution function with parameter λ. Note
that the weight function in (1) places more weight at the centre of the distribution than
in the tails. The probability weighted empirical characteristic function (PWECF) is
then defined as

χn(t; γ ) = 1

n

n∑

j=1

Ŵ (X j ; γ t)eitX j , t ∈ R, (2)

where the estimated probability weight is given by

Ŵ (X j ;β) = [
F̂λ(x)(1 − F̂λ(x))

]|β|
, β ∈ R, x ∈ R,

and where F̂λ(· ) denotes the exponential distribution function with estimated param-
eter λ̂.

Meintanis et al. (2014) employs these expressions and develops a test for exponen-
tiality based on the L2-norm between χn(t; γ ) and χ(t; γ ). The resulting test statistic
is given by

PW1
n,γ = n

∫ ∞

−∞
|χn(t; γ ) − χ(t; γ )|2dt. (3)

Note that the weight function that plagues other tests based on the ECF no longer
appears in the test statistic, since the weight function has been incorporated within the
PWECF and PWCF functions themselves. In Meintanis et al. (2014), the limiting null
distribution of the test statistic is derived and it is shown that this test is consistent for
a very large class of alternative distributions. In a finite sample simulation study, the
test was also found to be quite powerful against a variety of alternative distributions.

The test statistic in (3) can be simplified to

PW1
n,γ = − 2

n2

n∑

j=1

n∑

k=1

γ ln
[(
1 − Z j

)
Z j (1 − Zk) Zk

]

(X j − Xk)2 + γ 2 ln2
[(
1 − Z j

)
Z j (1 − Zk) Zk

]

+ 2

n

n∑

j=1

∫ 1

0

γ ln
[(
1 − Z j

)
Z j (1 − u) u

]

[
X j + ln (1 − u)

]2 + γ 2 ln2
[(
1 − Z j

)
Z j (1 − u) u

]du,
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where Z j = exp(−Y j ). In the Monte Carlo simulation study presented in Meintanis
et al. (2014) the power of this test was evaluated over a grid of possible choices of
the tuning parameter γ . However, for practical applications the authors suggest using
γ = 1, because this choice fared well for the majority of the alternatives considered
in their paper. We will henceforth refer to this type of recommended choice of the
parameter as the compromise choice.

In Meintanis et al. (2014), the weight function is chosen to give more weight to the
centre of the distribution. In this paper we also consider a weight function that places
greater weight on the tails. This alternative choice for the weight function appearing
in (2) is given by

W̃ (X j ;β) =
[
1

4
− F̂λ(x)(1 − F̂λ(x))

]|β|
, β ∈ R, x ∈ R,

and the test statistic resulting from (3) when employing this weight function is denoted
by PW2

n,γ . Based on some preliminary Monte Carlo studies, we recommend using
γ = 0.1 as the compromise choice.

Both PW1
n,γ and PW2

n,γ reject for large values.

2.2 Tests based on the empirical Laplace transform

In general, the Laplace transform (LT) of a random variable X is defined as E
[
e−t X

]
.

For a standard exponential random variable, Y , the Laplace transform is given by

ψ(t) = E
[
e−tY

]
= 1

1 + t
.

Employing the scaled data Y1, . . . , Yn , ψ(t) can be estimated by the empirical
Laplace transform (ELT),

ψn(t) = 1

n

n∑

j=1

e−tY j .

We consider two test statistics based on the ELT, namely the ‘Baringhaus andHenze
(1991)’ test and the ‘Henze and Meintanis (2002)’ test.

2.2.1 Baringhaus and Henze (1991) test (BHn,γ )

Baringhaus and Henze (1991) developed a test based on the following differential
equation that characterises the exponential distribution: (1+ t)ψ ′(t) + ψ(t) = 0, for
all t ∈ R.

Their test makes use of the following weighted L2-norm

BHn,γ = n
∫ ∞

0

[
(1 + t)ψ ′

n(t) + ψn(t)
]2 exp(−γ t)dt, (4)

where γ > 0 is a constant tuning parameter. It is easy to show that the statistic in (4)
simplifies to
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BHn,γ = 1

n

n∑

j=1

n∑

k=1

[
(1 − Y j )(1 − Yk)

Y j + Yk + γ
− Y j + Yk

(Y j + Yk + γ )2

+ 2Y j Yk

(Y j + Yk + γ )2
+ 2Y j Yk

(Y j + Yk + γ )3

]

.

Baringhaus and Henze (1991) showed that the test statistic has a nondegenerate lim-
iting null distribution and also that the test is consistent against a class of alternative
distributions with strictly positive, finite mean. The compromise choice for γ sug-
gested in Baringhaus and Henze (1991) is γ = 1. This test rejects exponentiality for
large values of BHn,γ .

2.2.2 Henze and Meintanis (2002) test (Ln,γ )

The natural idea of creating a test for exponentiality by measuring the L2-distance
between theELTand theLT for the standard exponential distributionwas first proposed
in Henze (1993). The proposed test statistic has the following form:

Hn,γ = n
∫ ∞

0

(

ψn(t) − 1

1 + t

)2

exp(−γ t)dt. (5)

This test statistic should produce a value close to zero if the null hypothesis is true.
However, the equation in (5) does not simplify to a simple closed-form expression and
requires numerical integration. To overcome this issue Henze and Meintanis (2002)
proposes the following form of the test statistic:

Ln,γ = n
∫ ∞

0

[

ψn(t) − 1

1 + t

]2
(1 + t)2 exp(−γ t)dt, (6)

where γ > 0. The statistic in (6) simplifies to the following closed-form expression:

Ln,γ = 1

n

n∑

j=1

n∑

k=1

[
1 + (Y j + Yk + γ + 1)2

(Y j + Yk + γ )3

]

− 2
n∑

j=1

[
1 + Y j + γ

(Y j + γ )2

]

+ n

γ
.

Two possible compromise choices for the parameter γ are suggested for practical
applications in Henze and Meintanis (2002); γ = 0.75 and γ = 1. For the purpose
of this paper, we will make use of γ = 0.75. This test rejects H0 for large values of
Ln,γ .

2.3 Tests based on the empirical distribution function

The use of distance measures based on the empirical distribution function (EDF) is
one of the earliest approaches to goodness-of-fit testing. The EDF based on the scaled
data Y1, . . . , Yn is defined as
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1248 J. S. Allison et al.

Fn(x) = 1

n

n∑

j=1

I (Y j ≤ x),

where I (· ) denotes the indicator function and x ∈ R. The tests considered measure
the discrepancy between the standard exponential distribution function and the EDF.
The most famous of these include the Kolmogorov–Smirnov and Cramér–von Mises
tests (see, for example, D’Agostino and Stephens 1986), which are discussed below.
Another test, based on the integrated EDF, can be found in Klar (2001), but is not
discussed here.

2.3.1 Kolmogorov–Smirnov (KSn)

The Kolmogorov–Smirnov test statistic is given by:

KSn = sup
x≥0

∣
∣Fn(x) − (

1 − e−x)∣∣ . (7)

The test statistic in (7) can be simplified to

KSn = max
{
KS+

n , KS−
n

}
,

where

KS+
n = max

1≤ j≤n

[
j

n
−
(
1 − e−Y( j)

)]

,

KS−
n = max

1≤ j≤n

[(
1 − e−Y( j)

)
− j − 1

n

]

.

This test rejects the null hypothesis for large values of KSn .

2.3.2 Cramér–von Mises (CMn)

The Cramér–von Mises test statistic for testing exponentiality is given by

CMn =
∫ ∞

0

[
Fn(x) − (

1 − e−x)]2 e−x dx. (8)

The test statistic in (8) can be simplified to

CMn = 1

12n
+

n∑

j=1

[(
1 − e−Y( j)

)
− 2 j − 1

2n

]2
.

Large values of CMn will lead to the rejection of the null hypothesis.
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2.4 Tests based on mean residual life

In reliability theory and survival analysis the mean residual life (MRL) of a non-
negative random variable X at time t , defined as the expected value of the amount of
life time remaining after time t , is expressed as

m(t) = E [X − t |X > t] =
∫∞

t S(x)dx

S(t)
,

where S(t) = 1− F(t) is the survival function. It was shown in Shanbhag (1970) that
the exponential distribution is characterised by a constantMRL, i.e., for the exponential
distribution we have that

m(t) = E(X) = 1

λ
, ∀t > 0. (9)

It can be shown that the characterisation in (9) is equivalent to

E (min {X, t}) = F(t)

λ
, ∀t > 0, (10)

or ∫ ∞

t
S(x)dx = S(t)

λ
, ∀t > 0. (11)

Tests based on the MRL (and the various forms of the characterising properties
given in (9) to (11)) to test for exponentiality can be found in Baringhaus and Henze
(2000), Jammalamadaka and Taufer (2006) and Taufer (2000). A generalisation of the
test in Baringhaus and Henze (2000) which includes a more general weight function
can be found in Baringhaus and Henze (2008). The two tests considered in this paper,
namely the Jammalamadaka and Taufer test from Jammalamadaka and Taufer (2006)
and the Baringhaus and Henze test from Baringhaus and Henze (2000), employ the
characterisations in (9) and (10), respectively. The test proposed by Taufer (2000),
however, makes use of the characterisation in (11). This test is not considered in this
study.

2.4.1 Baringhaus and Henze (2000) (KSn and CMn)

InBaringhaus andHenze (2000), aKolmogorov–Smirnov andCramér–vonMises type
tests based on the MRL is introduced. The test statistic of the Kolmogorov–Smirnov
version of the test is given by

KSn = √
n sup

t≥0

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

min{Y j , t} − 1

n

n∑

j=1

I
(
Y j ≤ t

)
∣
∣
∣
∣
∣
∣
= √

n max
{

KS
+
n , KS

−
n

}
,

where
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KS
+
n = max

j∈{0,1,...,n−1}

[
1

n

(
Y(1) + · · · + Y( j)

)+ Y( j+1)

(

1 − j

n

)

− j

n

]

,

KS
−
n = max

j∈{0,1,...,n−1}

[
j

n
− 1

n

(
Y(1) + · · · + Y( j)

)− Y( j)

(

1 − j

n

)]

.

The Cramér–von Mises type test statistic is:

CMn = n
∫ ∞

0

⎡

⎣1

n

n∑

j=1

min {Y j , t} − 1

n

n∑

j=1

I
(
Y j ≤ t

)
⎤

⎦

2

e−t dt

= 1

n

n∑

j=1

n∑

k=1

[
2 − 3 exp

(−min{Y j , Yk}
)− 2min{Y j , Yk}

(
e−Y j + e−Yk

)

+ 2 exp
(−max{Y j , Yk}

)]
.

The null hypothesis is rejected for large values of KSn and CMn . The asymptotic
null distributions of KSn and CMn are identical to the asymptotic null distributions of
KSn and CMn when used to test for a standard uniform distribution. Baringhaus and
Henze (2000) showed that these two tests are consistent against each fixed alternative
distribution with positive mean.

2.4.2 Jammalamadaka and Taufer (2006) (Jn,γ )

In Jammalamadaka and Taufer (2006), a test based on the characterization in (9) is
developed by first defining what they call the ‘sample MRL after X(k)’ as follows:

X̄>k = 1

n − k + 1

n+1∑

j=k+1

(
X( j) − X(k)

)

= 1

n − k + 1

n+1∑

j=k+1

(n − j + 2)
(
X( j) − X( j−1)

)
.

Under exponentiality it follows that

E
[
X̄>k

] = E
[
X̄n
] = 1

λ
, k = 1, 2, . . . , n. (12)

Using (12), a Kolmogorov–Smirnov type statistic is proposed in Jammalamadaka
and Taufer (2006) as a possible test for exponentiality:

J ′
n = max

1≤k≤n

∣
∣X̄n − X̄>k

∣
∣

X̄n
.

Unfortunately, it was shown that this version of the test statistic does not converge
to zero even under the null hypothesis of exponentiality. To overcome this problem
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An ‘apples to apples’ comparison of various tests… 1251

and some other issues plaguing the statistic J ′
n , Jammalamadaka and Taufer (2006)

constructs a trimmed test statisticwhereby some of the last residualmeans are removed
from the calculation. The resulting test statistic has the form

Jn,γ = max
1≤k≤n−	nγ 


n
γ
2
∣
∣X̄n − X̄>k

∣
∣

X̄n
, γ ∈ (0, 1), (13)

where 	x
 = f loor(x) and γ is the trimming parameter which indicates how many
of the last residual means are discarded. This test rejects the null hypothesis for large
values of Jn,γ .

In Jammalamadaka and Taufer (2006), the authors derive the asymptotic null distri-
bution of Jn,γ and also prove that the test is consistent for every fixed non-exponential
alternative distribution with finite mean. In addition, it is shown that the powers of the
test are highly sensitive to the choice of γ , but that a compromise choice of γ = 0.9
(i.e., when a large proportion of the last mean residuals are trimmed) produces the
highest powers for the majority of the alternatives considered.

2.5 Tests based on entropy

For a non-negative continuous random variable X with density function f (x), the
entropy (sometimes referred to as the differential entropy) is given by

DE(X) = −
∫ ∞

0
f (x) ln f (x)dx. (14)

Initial attempts (see, for example, Grzegorzewski and Wieczorkowski 1999;
Ebrahimi et al. 1992) to construct tests for exponentiality based on the entropy
exploited the characterisation that, among all distributions with support [0,∞) and
fixed mean, the quantity DE(X) is maximised if X follows an exponential distribu-
tion. However, these tests are not explored further in this paper, instead we focus on
two more recent tests based on the cumulative residual entropy (CRE). The CRE,
introduced in Rao et al. (2004), is an alternative information measure which replaces
the density function in (14) with the survival function, and is defined as

CRE(X) = −
∫ ∞

0
S(x) ln S(x)dx,

where S(x) = 1 − F(x) is the survival function.

2.5.1 Zardasht et al. (2015) (ZPn)

The first test for exponentiality based on the CRE information measure considered
is found in Zardasht et al. (2015). Let X and Z be non-negative random variables
with distribution functions F and G, respectively. The test is based on the CRE of the
so-called comparison distribution function, D(u) = F(G−1(u)) (Parzen 1998). Cal-
culating the CRE of a random variable with distribution function D(u) and simplifying
the following expression is obtained
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1252 J. S. Allison et al.

C(X, Z) = −
∫ ∞

0
S(x) ln S(x)dG(x). (15)

If W is exponentially distributed with parameter λ > 0, then (15) can be expressed
as

C(W, Z) =
∫ ∞

0
xλe−xλdG(x),

which is a measure used to compare the distribution function of Z to that of the
exponential distribution. If Z is also exponentially distributed, then it easily follows
that C(W, Z) = 1

4 . The authors of Zardasht et al. (2015) based their test statistic on
the difference between an estimator for C(W, Z) and 1

4 . The resulting test statistic is
thus

ZPn = 1

n

n∑

j=1

Y j e
−Y j − 1

4
.

This test rejects exponentiality for both small and large values of ZPn . Zardasht

et al. (2015) go on to show that
√

nZPn
D→ N (0, 5/382), but did not formally prove

the consistency of the test.

2.5.2 Baratpour and Habibi Rad (2012) (BRn)

The next test considered is based on the cumulative Kullback–Leibler (CKL) diver-
gence (and indirectly on the CRE) introduced in Baratpour and Habibi Rad (2012). If
W1 and W2 are two non-negative continuous random variables with distribution func-
tions H and G, respectively, then the CKL divergence between these two distributions
is defined as

CKL(H, G) =
∫ ∞

0
(1 − H(x)) ln

1 − H(x)

1 − G(x)
dx − [E(W1) − E(W2)] .

Note that the CKLdivergence is somewhat similar to the classical Kullback–Leibler
divergence, with the density functions replaced by survival functions.

The authors make use of the fact that, if the null hypothesis is true, then
CKL(F, F0) = 0. Rewriting the CKL measure in terms of the CRE measure, and
plugging in the necessary estimates, they arrive at the following test statistic

BRn =
∑n−1

j=1
n− j

n

(
ln n− j

n

) (
X( j+1) − X( j)

)+
∑n

j=1 X2
j

2
∑n

j=1 X j
∑n

j=1 X2
j

2
∑n

j=1 X j

.

The asymptotic distribution under the null hypothesis is not derived in Baratpour
and Habibi Rad (2012), however it is shown that the test is consistent.

This test rejects H0 for large values of BRn .
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2.6 Tests based on normalised spacings

It has been shown (see, for example, Jammalamadaka and Goria 2004) that trans-
forming the data can increase the power of tests for exponentiality against certain
alternatives. A widely used transformation is to convert the data to the so-called nor-
malized spacings, defined as

D j = (n − j + 1)
(
X( j) − X( j−1)

)
, j = 1, . . . , n,

with X(0) = 1. To find tests for exponentiality that use normalised spacings, the reader
is referred to Epstein (1960), Jammalamadaka and Taufer (2003) and Jammalamadaka
and Goria (2004), and for a test where these spacings are used to test for exponentiality
in the presence of type-II censoring, see Balakrishnan et al. (2002). We consider
two other tests based on spacings; one found in Gail and Gastwirth (1978) and a
modification of a test in Gnedenko et al. (1969) which is found in Harris (1976).

2.6.1 Gini test (Gn)

A test statistic that employs normalised spacings for testing exponentiality is described
in D’Agostino and Stephens (1986) and is given by:

DSn =
n−1∑

j=1

U j = 2n − 2

n

n∑

j=1

jY( j), (16)

where

Uk =
∑k

j=1 D j
∑n

j=1 X j
, for k = 1, . . . , n − 1,

and follows a standard uniform distribution under H0.
This test rejects H0 for both small and large values of DSn .
An additional test based on the so-calledGini index, proposed inGail andGastwirth

(1978), makes use of the following test statistic

Gn =
∑n

j=1
∑n

k=1

∣
∣Y j − Yk

∣
∣

2n(n − 1)
. (17)

It is easy to see that the following relationship holds between the test statistics in
(16) and (17):

Gn = 1 − DSn

n − 1
.

Similar to DSn , this test rejects the null hypothesis for both small and large values.
Unfortunately, both of these tests have been shown not to be universally consistent.
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2.6.2 Harris’ modification of Gnedenko’s F-test (HMn,r )

In Gnedenko et al. (1969) a test is proposed for exponentiality involving ordering a
sample of size n and then splitting the n elements into two groups; the first containing
the r smallest elements and the second containing the remaining n − r elements. The
test statistic, given by

GDn,r =
∑r

j=1 D j/r
∑n

j=r+1 D j/(n − r)
, (18)

follows an F distribution with 2r and 2(n − r) degrees of freedom under H0.
Amodification of the test in (18) was introduced inHarris (1976). Thismodification

can be used to accommodate testing for exponentiality in the presence of hypercensor-
ing and is referred to as Harris’ modification of Gnedenko’s F-test. For this test, the
sample spacings are split into three groups: The first group contains the first r spacings,
the last group contains the last r last spacings, and the remaining n −2r spacings form
the second group. The test is based on the elements in the second group and the test
statistic is given by

HMn,r =
(∑r

j=1 D j +∑r
j=n−r+1 D j

)
/2r

(∑n−r
j=r+1 D j

)
/(n − 2r)

.

In Harris (1976), it is recommended that r is chosen to be equal to n/4, and this is
also the value of r used in the simulation study presented Sect. 4.

The null hypothesis is rejected for small and large values of both GDn,r and HMn,r .

2.7 A test based on a score function

The score function, defined as the gradient of the log likelihood function, is a powerful
tool that can be used to test statistical hypotheses. We consider one test, developed
in Cox and Oakes (1984), that employs this score function to test for exponential-
ity.

2.7.1 Cox and Oakes (1984) (COn)

A score test is introduced in Cox and Oakes (1984) that, when applied to censored
data, has the following form

COn = d +
n∑

j=1

ln
(
X j
)− d

∑n
j=1 X j ln

(
X j
)

∑n
j=1 X j

,
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where d ≤ n is the number of uncensored data points. However, when d = n (i.e., in
the uncensored case) and one uses the scaled data Y1, . . . , Yn , the statistic becomes

COn = n +
n∑

j=1

(1 − Y j ) ln(Y j ).

The test rejects H0 for both large and small values ofCOn and it is shown using finite
sample simulation studies in both Ascher (1990) and Henze andMeintanis (2005) that
the test is quite powerful against a wide variety of non-exponential alternatives.

It follows that
√
6/n(COn/π) has a standard normal asymptotic null distribu-

tion and the test is consistent against alternative distributions with E(X) < ∞ and
E(X ln X − ln X) �= 1, as discussed in, for example, Henze and Meintanis (2002).

2.8 Tests based on other characterizations and properties

Over the years, a multitude of tests for exponentiality have been developed by utilising
a number of interesting and varied characterisations and properties of the exponen-
tial distribution, but it would not be possible to address all of them in a single study.
These tests utilise characterisations such as the memoryless property (see, for exam-
ple, Ahmad and Alwasel 1999; Alwasel 2001; Angus 1982), the Arnold–Villasenor
characterisation (see Jovanović et al. 2015), the Rossberg characterisation (Volkova
2010), and various other characterisations (see, for example, Abbasnejad et al. 2012;
Noughabi and Arghami 2011a). Other tests for exponentiality, not included in this
paper, include tests for exponentiality based on the analysis of variance (see Shapiro
and Wilk 1972), tests based on order statistics (see Bartholomew 1957; Hahn and
Shapiro 1967; Jackson 1967; Wong and Wong 1979), tests based on transformations
to uniformity (see Hegazy and Green 1975; Seshadri et al. 1969), and tests based on
maximum correlations (see Grané and Fortiana 2011), to name but a few. However,
for the purposes of the simulation study conducted in this paper, we consider the
following four tests: the Ahsanullah test (Volkova and Nikitin 2013), a test based on
likelihood ratios (Noughabi 2015), a test based on transformed data (Noughabi and
Arghami 2011b), and the Atkinson test (Mimoto and Zitikus 2008). The Ahsanullah
test is chosen because no finite sample results for this test are available in Volkova and
Nikitin (2013), whereas the remaining three are chosen because of their good power
performance in finite sample studies found in the literature.

2.8.1 Tests based on Ahsanullah’s characterisation (AH1
n and AH2

n )

Assume that the distribution F belongs to a class of distributions F that are all
strictly monotone and whose hazard rate function, f (x)/S(x), is either increasing
or decreasing monotonically. Ahsanullah proved the following characterisation of the
exponential distribution in Ahsanullah (1978): Let X1, X2, . . . , Xn be non-negative
iid random variables with distribution function F .A necessary and sufficient condition
for F to be exponential is that for some j and k, the statistics (n − j)(X( j+1) − X( j))

and (n − k)(X(k+1) − X(k)) are identically distributed for 1 ≤ j < k < n.
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InVolkova andNikitin (2013), the following specific settings of this characterization
is considered: n = 2, j = 0 and k = 1. Under these settings, the characterization
takes the following form: Let X and Y be non-negative iid random variables from the
classF . X is then exponentially distributed if |X −Y | and 2min {X, Y } are identically
distributed.

The test statistic suggested in Volkova and Nikitin (2013), derived from this char-
acterization, is

AH1
n =

∫ ∞

0
[Hn(t) − Gn(t)] dFn(t),

where

Hn(t) = 1

n2

n∑

j=1

n∑

k=1

I
(|X j − Xk | < t

)
, t > 0,

Gn(t) = 1

n2

n∑

j=1

n∑

k=1

I
(
2min {X j , Xk} < t

)
, t > 0.

If the null hypothesis is true, then Hn and Gn should be close to one another. The
test therefore rejects H0 for small or large values of AH1

n . The authors showed that

√
nAH1

n
D→ N

(

0,
647

42,525

)

,

and calculated localBahadur efficiencies under commonparametric alternatives.How-
ever, the finite sample performance of their test statistic was not investigated. In
addition, we also consider the more common Cramer–von Mises type distance where
the squared difference between Hn and Gn is used; the corresponding statistic is
denoted by

AH2
n =

∫ ∞

0
[Hn(t) − Gn(t)]2 dFn(t).

This new form of the test will reject H0 for large values of the test statistic.

2.8.2 A test based on likelihood ratios (ZAn)

Consider the following two generic statistics,

Z =
∫ ∞

−∞
Z(t)dw(t) (19)

and
Zmax = sup

t∈(−∞,∞)

{Z(t)w(t)}, (20)
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where Z(t), dw(t) and w(t) are appropriately chosen functions. It is easy to show
(see, for example, Zhang 2002) that if one chooses Z(t) = X2(t), where

X2(t) = n[Fn(t) − F0(t)]2
F0(t)[1 − F0(t)]

is the Pearson chi-squared statistic, then the statistics in equations (19) and (20) become
the traditional Anderson–Darling, Cramer–vonMises, and Kolmogorov–Smirnov test
statistics for specific choices of dw(t) and w(t), and where F0(x) = 1 − exp(−λx).

However, Zhang (2002) suggests using the likelihood ratio statistic G2(t) instead
of the X2(t) statistic, where G2(t) is defined as

G2(t) = 2n

{

Fn(t) log

(
Fn(t)

F0(t)

)

+ [1 − Fn(t)] log
(
1 − Fn(t)

1 − F0(t)

)}

.

Choosing Z(t) = G2(t), the authors obtain the following easy-to-calculate versions
of the tests statistics for certain choices of dw(t) and w(t):

– Setting dw(t) = Fn(t)−1{1 − Fn(t)}−1dFn(t) in (19), the following statistic is
obtained:

ZAn = −
n∑

j=1

(
log(1 − exp(−Y( j)))

n − j + 0.5
− Y( j)

j − 0.5

)

.

– Setting dw(t) = F0(t)−1{1− F0(t)}−1d F0(t) in (19), the following approximate
statistic is obtained:

ZCn =
n∑

j=1

(

log

{
(1 − exp(−Y( j)))

−1 − 1

(n − 0.5)/( j − 0.75) − 1

})2

.

– Setting w(t) = 1 in (20), the following statistic is obtained:

ZKn = max
1≤ j≤n

(

( j − 0.5) log

{
j − 0.5

n(1 − exp(−Y( j)))

}

+ (n − j + 0.5) log

{
n − j + 0.5

n(exp(−Y( j)))

})

.

All of these tests reject H0 for large values of the test statistics.
The finite sample performance of these three new tests for testing the hypothesis

of normality are investigated in Zhang (2002), where it is found that the ZAn and
ZCn versions of these statistics perform well, even when compared to traditionally
powerful tests for normality, such as the Shapiro–Wilk test. In Noughabi (2015) the
finite sample performance of these tests is investigated when testing for exponentiality.
The authors conclude that, among these three tests, ZAn performs best. As a result
we include only ZAn in our own Monte Carlo study. Note that while the finite sample
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performance of these tests were extensively studied in Noughabi (2015), the derivation
of the asymptotic null distribution and consistency of these tests were not discussed.

2.8.3 A test using transformed data (NAn)

The test proposed in Noughabi and Arghami (2011b) employs the rather simple idea
that, for a uniform distribution, the quantity x fU (x) will be equal to FU (x), where
x ∈ [0, 1], fU (· ) is the uniform density function and FU (· ) is the uniform distribution
function. Therefore, given data V1, V2, . . . , Vn , a test statistic proposed to test for
uniformity is

Tn = 1

n

n∑

j=1

∣
∣Vj f̂ (Vj ) − FU (Vj )

∣
∣ , (21)

where f̂ (· ) is the kernel density estimator defined as

f̂ (x) = 1

nh

n∑

j=1

K

(
x − Vj

h

)

,

with K (· ) the standard normal density function and h the bandwidth chosen using
Silverman’s normal rule of thumb, h = 1.06sn−1/5 (see Silverman 1986), where s is
the sample standard deviation.

The test for exponentiality proceeds by exploiting the following characterisation
of exponentiality (see Alzaid and Al-Osh 1992): For two independent random obser-
vations W1 and W2 from a distribution G, the random variable W1/(W1 + W2) is
uniformly distributed if, and only if, G is the exponential distribution.

Subsequently, given the order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n), construct the
transformed data set

Zi j = X(i)

X(i) + X( j)
, i �= j, i, j = 1, 2, . . . , n.

Under the hypothesis of exponentiality, these newly transformed values will have
a uniform distribution. The test statistic given in (21) can consequently be used to test
deviations from exponentiality for these transformed data:

NAn = 1

n(n − 1)

∑∑

i �= j

∣
∣Zi j f̂ (Zi j ) − FU (Zi j )

∣
∣ .

The test rejects the null hypothesis for large values of NAn .
In Noughabi and Arghami (2011b) the authors investigate the finite sample perfor-

mance of their newly proposed test, but do not derive any asymptotic results.
Another test using transformed data can be found in Dhumal and Shirke (2014),

but we will not discuss this test further in this paper.

123



An ‘apples to apples’ comparison of various tests… 1259

2.8.4 The Atkinson test (ATn,γ )

In Lee et al. (1980) the authors propose tests for exponentiality based on the ratio

QF (γ ) = E[Xγ ]
(E[X ])γ ,

for γ > 0, which is equal to Γ (1 + γ ) if X is exponentially distributed.
However, an approach whereby the quantity QF (γ ) is raised to the power 1/γ to

create the following ratio

RF (γ ) = E[Xγ ]1/γ
E[X ] ,

is adopted in Mimoto and Zitikus (2008). Naturally, if X is exponentially distributed,
then RF (γ ) equals Γ (1+ γ )1/γ for γ �= 0, and equals exp(−ε) when γ → 0, where
ε = 0.577215 . . . is the Euler constant. The test statistic proposed in Mimoto and
Zitikus (2008), called the Atkinson statistic, is based on the difference between an
empirical estimator of RF (γ ) and Γ (1 + γ )1/γ , for γ values between −1 and 1, but
γ �= 0. The test statistic is given by

ATn,γ = √
n
∣
∣
∣Rn(γ ) − Γ (1 + γ )1/γ

∣
∣
∣ , (22)

where

Rn(γ ) = 1

X̄n

⎡

⎣1

n

n∑

j=1

Xγ

j

⎤

⎦

1/γ

.

In the limit where γ → 0 the quantity RF (γ ) has the form

RF (0) = exp (E[log(X)]))
E[X ] ,

the numerator of which is consistently estimated by the geometric mean Gn =
∏n

j=1 X1/n
j . Therefore, when γ = 0, the resulting test statistic, called the Moran

statistic for exponentiality, has the form

ATn,0 = √
n

∣
∣
∣
∣
Gn

X̄n
− exp(−ε)

∣
∣
∣
∣ ,

see Moran (1951). For all choices of γ , the test rejects the null hypothesis for large
values.

Extensive Monte Carlo power studies are presented in Mimoto and Zitikus (2008)
where it is found that values of γ close to 0 and close to 0.99 produce the highest
power for most alternatives considered. For the purposes of this paper, a compromise
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choice of γ = 0.01 is selected. In addition, the authors of Mimoto and Zitikus (2008)
establish the asymptotic null distribution and consistency of the test statistic ATn,γ .

3 A data-dependent choice of the tuning parameter

Manyof the testsmentioned in Sect. 2 contain a tuning parameter γ typically appearing
in a weight function (see for example the test statistics in (4), (6), and (13)). As
stated in the introduction, authors typically approach the selection of this parameter
by evaluating the power performance of their tests across a grid of values of the tuning
parameter and then suggesting a compromise choice for the parameter by selecting a
value that fares well for the majority of the alternatives considered. However, there
is general agreement that a data-dependent choice of this parameter is required for
practical implementation.

Consider a generic test statistic which contains a tuning parameter γ denoted Tn,γ ,
whose critical values, denoted by C̃n,γ (α), can be obtained through Monte Carlo
simulation. A possible data-dependent choice of the parameter γ proposed by Allison
and Santana (2015) can be obtained by maximising the bootstrap power of the test as
follows:

γ̂ = γ̂ (Xn) = arg sup
γ∈R

P∗ (Tn,γ

(
Y∗

n

) ≥ C̃n,γ (α)
)

,

where Y∗
n = (Y ∗

1 , Y ∗
2 , . . . , Y ∗

n ) denotes a bootstrap sample taken with replacement
fromYn , and P∗ is the law ofY∗

n givenYn . InAllison and Santana (2015) the following
algorithm used to approximate the ideal bootstrap estimator γ̂ is provided:

1. Fix a grid of γ values: γ ∈ {γ1, γ2, . . . , γk}.
2. Obtain a bootstrap sample Y∗

n by sampling with replacement from Yn .
3. Calculate Tn,γ j

(
Y∗

n

)
, j = 1, 2, . . . , k.

4. Repeat steps (2) and (3) a large number of times (say B times) and denote the
resulting test statistics by T ∗

n,γ j ,1
, T ∗

n,γ j ,2
, . . . , T ∗

n,γ j ,B , j = 1, 2, . . . , k.
5. Calculate

P̂boot,γ j = 1

B

B∑

b=1

I
(

T ∗
n,γ j ,b ≥ C̃n,γ j (α)

)
, j = 1, 2, . . . , k.

6. Calculate
γ̂B = γ̂B (Xn) = arg max

γ∈{γ1,γ2,...,γ k} P̂boot,γ . (23)

The numerical results reported in Tables 2, 3, 4, 5, 6 and 7 in Sect. 4 relating to
test statistics containing a tuning parameter are obtained using the estimated tuning
parameter obtained in (23). The estimated powers obtained using the compromise
choice of γ are reported in parentheses in these tables. The details related to the
choice of the grid used for each test are discussed in the next section.
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4 Monte Carlo methodology and results

In this section Monte Carlo simulations are used to evaluate the power of the various
tests discussed in Sect. 2.

4.1 Simulation setting

Throughout the simulation study we use a significance level of 5% and the critical
values of all tests are calculated based on 10 000 independentMonteCarlo replications.
All calculations are done in R (R Core Team 2013).

Power estimates are calculated for sample sizes n ∈ {10, 20, 30, 50, 75, 100}
using 5000 independent Monte Carlo replications for various alternative distribu-
tions. These alternative distributions, given in Table 1, are chosen since they are
commonly employed alternatives to the exponential distribution, which has a con-
stant hazard rate (CHR). The distributions considered include those with increasing
hazard rates (IHR), decreasing hazard rates (DHR), as well as non-monotone hazard
rates (NMHR).

In order to determine the power of the six tests containing a tuning parameter
(BHn,γ , Ln,γ , PW1

n,γ , PW2
n,γ , Jn,γ , ATn,γ ) when using the data-dependent choice

of the parameter (discussed in Sect. 3), we first need to approximate the empirical
powers of these tests for each value of γ in a sequence of γ values. The empirical
power based on the data-dependent choice is then calculated as described in Allison
and Santana (2015). In each case B = 250 bootstrap replications are used to evaluate
the bootstrap power of the tests. The following grids of values of the parameter are
used for the respective tests:

– For BHn,γ , Ln,γ , PW1
n,γ , and PW2

n,γ the grid of γ values is given by

γ ∈ {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 5}.

– For Jn,γ , the grid of γ values is

γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

– The grid of γ values used for ATn,γ is

γ ∈ {−0.99,−0.75,−0.5,−0.25,−0.01, 0.01, 0.25, 0.5, 0.75, 0.99}.

4.2 Simulation results

Tables 2, 3, 4, 5, 6 and 7 show the estimated powers of the various tests discussed in
Sect. 2 for sample sizes n ∈ {10, 20, 30, 50, 75, 100} against each of the alternative
distributions given in Table 1. The entries in these tables are the percentage of 5000
independent Monte Carlo samples that resulted in the rejection of H0 rounded to the
nearest integer. Note that, for the tests containing a tuning parameter, the primary
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Table 1 Various choices of the alternative distributions

Alternative f (x) Notation

Gamma
1

Γ (θ)
xθ−1e−x Γ (θ)

Weibull θxθ−1 exp(−xθ ) W(θ )

Power
1

θ
x(1−θ)/θ , 0 < x < 1 PW(θ )

Lognormal exp

{

− 1

2
(log(x)/θ)2

}

/
{
θx

√
2π
}

LN(θ )

Dhillon
θ + 1

x + 1
exp

{
− (log(x + 1))θ+1

}
(log(x + 1))θ DH(θ )

Chen 2θxθ−1 exp
{

xθ + 2
(
1 − exp

(
xθ
))}

CH(θ )

Linear failure rate (1 + θx) exp(−x − θx2/2) LF(θ )

Extreme value
1

θ
exp

(

x + 1 − ex

θ

)

EV(θ )

Half normal

(
2

π

)2
exp

(
−x2

2

)

HN

Beta
Γ (θ1 + θ2)

Γ (θ1)Γ (θ2)
xθ1−1(1 − x)θ2−1 B(θ1, θ2)

Exponential power exp
{
1 − exp

(
xθ
)}

exp
{

xθ
}

θxθ−1 EP(θ )

Exponential logarithmic
1

− ln θ

(1 − θ)e−x

1 − (1 − θ)e−x EL(θ )

Exponential Nadarajah Haghighi (1)a
θ(1 + x)−0.5e1−(1+x)0.5

2
[
1 − e1−(1+x)0.5

]1−θ
ENH1(θ )

Exponential Nadarajah Haghighi (2)a
2θ(1 + x)e−x2−2x

[
1 − e−x2−2x

]1−θ
ENH2(θ )

Beta exponential θe−x (1 − e−x )θ−1 BEX(θ )

Exponential geometric
(1 − θ)e−x

(1 − θe−x )2
EG(θ )

a See Lemonte (2013)

entry is the approximate power for the test based on the data-dependent choice of
the parameter, γ̂ , while the approximate power of the test based on the compromise
choice appears in parentheses along-side it. To ease comparisons between the results,
the highest power for each alternative distribution is highlighted.

The primary aim of this paper is to compare the power of these tests against a
wide range of alternative distributions. Below we present some general conclusions
relating to the reported estimated powers of the various tests. For the second part of
the analysis of the results we consider only the tests containing tuning parameters.
Here we compare the powers achieved by tests employing the data-dependent choice
proposed in Allison and Santana (2015) with those associated with the compromise
choice of the parameter.
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The performance of the tests are greatly affected by the shape of the hazard rate of
the alternative distribution considered. Consequently, we discuss the overall results,
as well as the results categorised according to the shape of the hazard rate classified
as increasing, decreasing, or non-monotone.

4.3 Power comparisons

For the purposes of the comparison between the power of the various tests we use the
data-dependent choice (and not the compromise choice) of the tuning parameter for
the tests containing such a parameter.

Consider the performance of the tests in general against all alternatives. The powers
of HMn do not compare favourably to those of the other tests; this test reveals lower
powers against the majority of the alternatives. For small samples, AH2

n , BRn and
NAn also exhibit lower powers against the majority of the alternatives. The tests that
generally perform well are COn , ZAn , ATn,γ̂ , BHn,γ̂ and Ln,γ̂ . The CMn and CMn

also perform relatively well against themajority of the alternatives, especially for large
samples.

We now consider the results pertaining to the alternatives with increasing hazard
rates. Against these alternatives HMn , KSn , AH1

n , Jn,γ̂ , PW 1
n,γ̂ and PW 2

n,γ̂ exhibit
lower powers for all sample sizes considered. BRn has higher power in the case of
small sample sizes, but its power relative to the other tests decreases with sample
size. The opposite is true for Ln,γ̂ , which reveals a relative increase in power with
sample size. The two tests based on mean residual life, KSn and CMn , perform rela-
tively well for all sample sizes. The Cramér–von Mises type statistic for Ahsanullah’s
test, AH2

n , and NAn also perform well, especially for small sample sizes. The follow-
ing tests exhibit high powers in the case of large sample sizes: Gn , EPn , ZAn and
BHn,γ̂ .

We now turn our attention to the alternatives with decreasing hazard rates. HMn ,
AH2

n , BRn and NAn perform poorly for all sample sizes. In turn, the tests for which
large powers are observed are COn , BHn,γ̂ and Ln,γ̂ . Furthermore, CMn , Gn , EPn

and ATn,γ̂ perform well, especially for large samples, while PW 2
n,γ̂ provides higher

relative powers in the case of small samples.
The results pertaining to the alternatives with non-monotone hazard rates are as

follows. The tests generally demonstrating the lowest powers are HMn , BRn and NAn .
For small sample sizes AH2

n performs poorly, whileGn , andEPn exhibit relatively low
powers in the case of large samples. However, ZAn , ATn,γ̂ , BHn,γ̂ and Ln,γ̂ generally
perform well for all sample sizes. The original probability weighted characteristic
function test, PW 1

n,γ̂ , where the weights emphasise the centre of the distribution, does
well in the case of larger samples. On the other hand, the alternative formulation of
this test with the weight function allocating the majority of the weight to the tails of
the distribution, PW 2

n,γ̂ , exhibits relatively high power, especially for small samples.
The same is true for COn .

In summary, the powers achieved by HMn are generally substantially lower than
those of the remaining tests. Other tests that do not generally achieve good results are
AH2

n , BRn , and ZAn . The tests that perform well are BHn,γ̂ , Ln,γ̂ , ATn,γ̂ and COn .

123



1276 J. S. Allison et al.

The test that performs the best overall is BHn,γ̂ , closely followed by Ln,γ̂ . Note that
only one of the tests reported to perform relatively poorly contain a tuning parameter,
while only one of the tests reported to achieve high powers do not contain such a
parameter; COn performs the best among those tests that do not include a tuning
parameter.

4.4 Comparisons based on the choice of the tuning parameter

Six of the goodness-of-fit test statistics considered contain tuning parameters. Below
we compare the powers achieved by these tests using two different values of the tun-
ing parameter. The first value is chosen data-dependently using the method detailed in
Allison and Santana (2015), while the second is the compromise choice recommended
in the relevant literature. As was the case above, the discussion below does not only
refer to the overall performance of the tests; the performance of the tests against alter-
natives with increasing, decreasing and non-monotone hazard rates are also discussed
separately.

We consider the overall results first. For smaller sample sizes there is little to choose
between the powers obtained using ATn,γ based on the choices of the tuning parame-
ter. However, as the sample size increases, use of the data-dependent choice generally
results in a slight increase in relative power. On the other hand, when using Jn,γ

the choice between the tuning parameters is unimportant for large samples, but for
smaller samples the data-dependent choice leads to slightly higher powers. For both
BHn,γ and Ln,γ the data-dependent choice leads to higher powers than the compro-
mise choice. Interestingly, the compromise choice outperforms the data-dependent
choice in the case of the original PWECF test, PW 1

n,γ , by a small margin, while
the data-dependent choice leads to vast improvements in the powers associated with
PW 2

n,γ (giving more weight towards the tails of the distribution), especially for larger
samples.

Next we consider alternative distributions with increasing hazard rates. In this case
the use of either method for the choice of the tuning parameter leads to little difference
in powers obtained using the ATn,γ , BHn,γ , PW 1

n,γ and Ln,γ tests. The performance
of Jn,γ is slightly improved by using the compromise choice, while the performance
of PW 2

n,γ is greatly improved when using the data-dependent choice of the tuning
parameter.

Turning our attention to the alternative distributions with decreasing hazard rates,
we see that the observed powers are not substantially affected by the choice of tuning
parameter in the case of the following tests: ATn,γ , BHn,γ and Ln,γ . For both PW 1

n,γ

and PW 2
n,γ the compromise choice of the tuning parameter outperforms the data-

dependent choice. The power of Jn,γ is substantially improved when using the data-
dependent choice, especially for small samples.

Finally, we consider the performance of the tests against alternatives with non-
monotone hazard rates. When using PW 1

n,γ the powers can be increased by using
the compromise choice, especially for small samples. However, substantial improve-
ments in the power of PW 2

n,γ are realised when the data-dependent choice is
used, especially in the case of larger samples. The powers of BHn,γ and Ln,γ
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Fig. 1 Powers for Ln,γ for n = 20 for various alternatives

are higher when the data-dependent choice is used than is the case for the com-
promise choice. The performance of ATn,γ is not substantially affected by the
choice of the tuning parameter for small samples, but using the data-dependent
choice leads to improved power in the case of larger samples. When using Jn,γ

the data-dependent choice outperforms the compromise choice for small sam-
ples.

It is interesting to note that in the cases where the compromise choice of the tuning
parameter outperforms the data-dependent choice the difference in realised power
is usually small. However, there are cases where the power associated with the data-
dependent choice vastly outperforms the compromise choice. As an example, consider
the power of PW 2

n,γ against samples of size 75 generated from a lognormal distribution
with parameter 0.8. The power using the compromise choice is estimated to be 0%,
while the estimated power associated with the data-dependent choice is estimated to
be 96%. Various other instances of this phenomenon can be observed in the reported
powers.

To conclude this section, we provide a short illustration of how the choice of the
tuning parameter affects the power of two of the tests considered in the study. For
this purpose we consider the tests Ln,γ and Jn,γ for sample size n = 20. In order to
more easily visualise the behaviour of the powers across the γ values Figs. 1 and 2
present the powers obtained for tests Ln,γ and Jn,γ , respectively, for each choice of γ

in the grid of selected γ values. The powers are calculated for five different alternative
distributions. For each test, the compromise choice of the tuning parameter is indicated
by a vertical dashed line in the relevant figure.
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Fig. 2 Powers for Jn,γ for n = 20 for various alternatives

It is clear from thefigures that the power of the tests is highly dependent on the choice
of γ . The compromise choice performs moderately well in many of the alternatives,
but in some cases it produces low powers relative to other choices of γ (see, e.g., Ln,γ

for alternative PW(2) and Jn,γ for alternatives LN(1.5) and PW(1)). Furthermore,
the main entries in Tables 8 and 9 correspond to the powers presented in the figures,
whereas the values stated in parentheses in these tables denote the percentage of times
(out of 5000 independent Monte Carlo simulations) that the data-dependent procedure
selected the γ value that corresponds to the γ value given in the column heading. These
tables are provided to show that the procedure for obtaining the data-dependent choice
of the tuning parametermost frequently selects the value of γ that produces the highest
power for a given alternative. Consider, for example, Ln,γ for the alternative PW(2),
where the maximum power of 53% is obtained at γ = 0.1. The percentage of times
that the procedure chose γ = 0.1 is 68%, and the power of the test based on the
data-dependent choice is 43%. In contrast, the power associated with the compromise
choice is only 21%.

5 Practical application

In this section we apply all of the tests considered in Sect. 2 to a real-world data set: the
‘Leukemia’ data set given in Table 10 (see Kotze and Johnson 1983, for a discussion
of the original data set). These data display the survival times (days) of 43 patients
diagnosed with a certain type of Leukemia.
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Table 8 Percentage of 5000 samples that resulted in the rejection of H0 (main entries) and the percentage
of times that the procedure selected the specific value of γ (in parentheses) based on test Ln,γ for n = 20

γ 0.1 0.25 0.5 0.75 1 1.5 2 2.5 5 γ̂

LN(1.5) 39(4) 51(5) 57(7) 60(6) 62(9) 64(9) 65(12) 66(15) 67(33) 63

PW(1) 4(3) 25(5) 38(3) 46(3) 51(2) 58(5) 61(10) 63(15) 66(54) 59

PW(2) 53(68) 40(10) 28(2) 21(3) 17(1) 12(2) 10(3) 8(3) 5(8) 43

PW(3) 93(83) 89(11) 82(3) 75(2) 70(1) 62(0) 56(0) 51(0) 37(0) 91

EV(1.5) 3(5) 20(6) 29(5) 34(4) 38(6) 42(10) 43(13) 44(17) 45(34) 39

Table 9 Percentage of 5000
samples that resulted in the
rejection of H0 (main entries)
and the percentage of times that
the procedure selected the
specific value of γ (in
parentheses) based on test Jn,γ

for n = 20

γ 0.1 0.3 0.5 0.7 0.9 γ̂

LN(1.5) 62(18) 66(17) 69(33) 64(29) 16(3) 64

PW(1) 0(0) 0(0) 49(23) 65(50) 48(27) 57

PW(2) 0(0) 1(0) 9(24) 15(48) 16(28) 14

PW(3) 9(0) 17(1) 32(10) 50(39) 64(50) 55

EV(1.5) 0(0) 0(0) 12(8) 33(43) 38(49) 34

Table 10 Survival times in days after diagnosis

7 47 58 74 177 232 273 285 317 429 440 445

455 468 495 497 532 571 579 581 650 702 715 779

881 900 930 968 1077 1109 1314 1334 1367 1534 1712 1784

1877 1886 2045 2056 2260 2429 2509

Table 11 lists the names of the 20 different tests discussed in this paper along
with the value of the test statistic calculated from these data, the p-value for test-
ing the hypothesis of exponentiality, as well as the time (s) taken to compute the
p-value and critical value for each test (based on MC = 10000 replications).
Where applicable, the data-dependent choice of γ used is also displayed in the
table. The number of bootstrap replications in the calculation of the data-dependent
choice of the tuning parameter is set to B = 1000. The final column in the table
indicates whether the test is available in the software package R (R Core Team
2013); these tests are primarily available in the package exptest (Novikov et al.
2013).

All of the tests except Jn,0.9 and BRn do not reject the null hypothesis of exponen-
tiality at a significance level of α = 0.05.

As shown in Table 11, none of the tests containing a tuning parameter appear in
R. These tests are rather powerful and therefore it might be a worthwhile avenue for
future work to create an R package that includes these tests along with the procedure
to obtain the tuning parameter data-dependently.

123



1280 J. S. Allison et al.

Table 11 Summary of results for the Leukaemia data set

Test γ̂ value Test statistic value p-value Time Available in R?

EPn 1.714 0.081 0.64 Y

PW1
n,γ̂ 0.10 −1.872 0.309 1377.19 N

PW2
n,γ̂ 0.25 −1.167 0.069 1363.20 N

BHn,γ̂ 2.50 0.079 0.086 24.94 N

Ln,γ̂ 5.00 0.003 0.081 16.96 N

KSn 0.162 0.054 1.72 Y

CMn 0.150 0.148 1.67 Y

KSn 1.274 0.069 3.79 Y

CMn 0.331 0.108 107.28 Y

Jn,γ̂ 0.90 1.198 0.040 92.35 N

ZPn 0.160 0.079 1.47 N

BRn 0.098 0.038 1.92 N

Gn 0.426 0.951 0.98 Y

HMn 1.336 0.181 1.06 Y

COn 12.171 0.076 0.61 Y

AH1
n 0.113 0.081 2301.30 Y

AH2
n 0.016 0.112 2051.38 N

ZAn 0.160 0.085 2.11 N

NAn 0.090 0.069 4235.27 N

ATn,γ̂ 0.99 0.009 0.086 7.23 N

6 Conclusions

In this paper we consider a large number of tests for exponentiality based on a wide
variety of characteristics of this distribution. Below we briefly mention these charac-
teristics as well as the tests associated with them.

The tests based on the characteristic function are the Epps and Pulley test (EPn)
as well as tests based on the probability weighted empirical characteristic function.
We consider two forms of this test; the first uses the original test statistic proposed in
Meintanis et al. (2014) (PW 1

n,γ ). The weight function used in this test statistic assigns
the majority of the weight to the centre of the distribution. The second formulation
of the test statistic considered (PW 2

n,γ ) gives more weight towards the tails of the
distributions.

The tests based on the empirical Laplace transform are those of Baringhaus and
Henze (BHn,γ ) as well as Henze and Meintanis (Ln,γ ).

Another characteristic of the exponential distribution that some of the tests are
based on is the distribution function. The tests associated with this characteristic are
the Kolmogorov–Smirnov (KSn) and Cramér–von Mises (CMn) tests.

Next we consider the tests based on the mean residual life of the data. The tests con-
sidered include those of Baringhaus and Henze. We consider two test statistics based
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on mean residual life introduced in Baringhaus and Henze (2000); a Kolmogorov–
Smirnov type test (KSn) and a Cramér–von Mises type test (CMn). The test of
Jammalamadaka and Taufer (Jn,γ ) is also based on this characteristic.

Another characteristic used to test for exponentiality is entropy. We consider two
tests based on entropy; the test of Zardasht et al. (ZPn) and that of Baratpour and
Habibi Rad (BRn).

Furthermore, we consider two tests based on the normalised spacings of the
observed data. The first of these is the Gini test (Gn) and the second is Harris’ modi-
fication of Gnedenko’s F-test (HMn).

The Cox and Oakes test (COn) is also included in the study. This test is based on a
score function.

Various other characteristics are also used. We consider two tests based on Ahsan-
ullah’s characterisation. The first (AH1

n ) uses the original test statistic proposed in
Volkova and Nikitin (2013). The second test (AH2

n ) utilizes a Cramér–von Mises type
test statistic. Zhang’s test (ZAn), based on likelihood ratios, is included in the study as
well as the Noughabi and Arghami test (NAn) which uses transformed data. Finally,
the Atkinson test (ATn,γ ), based on the Atkinson statistic, is considered.

Based on the results of the Monte Carlo study conducted in this paper, we make
some brief conclusions regarding the powers of the tests considered. Generally, HMn

achieves powers substantially lower than the remaining tests. In addition, the AH2
n ,

BRn , andZAn tests are also relatively poor performers in terms of power.However, tests
that do perform well are BHn,γ̂ , Ln,γ̂ , ATn,γ̂ and COn . BHn,γ̂ has the best overall
performance, closely followed by Ln,γ̂ . Note that only one of the tests reported to
perform relatively poorly contain a tuning parameter, while only one of the tests
reported to achieve high powers do not contain such a parameter; COn performs the
best among those tests that do not include a tuning parameter.

In light of the results discussed above, we would advise using the data-dependent
choice of the tuning parameter; this choice generally outperforms the compromise
choice. It is important to note that power associated with the data-dependent choice of
the tuning parameter can conceivably be increased further by evaluating the powers
over finer grids of tuning parameters than the grids used in the paper. Because of the
large number of Monte Carlo replications required for the numerical results shown in
the paper, finer grids would substantially increase the computational burden. However,
in the case where the hypothesis of exponentiality is to be tested on a single dataset
the computational time required is substantially less.
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