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Abstract Multivariate survival analysis comprises of event times that are generally
grouped together in clusters. Observations in each of these clusters relate to data
belonging to the same individual or individuals with a common factor. Frailty models
can be used when there is unaccounted association between survival times of a clus-
ter. The frailty variable describes the heterogeneity in the data caused by unknown
covariates or randomness in the data. In this article, we use the generalized gamma dis-
tribution to describe the frailty variable and discuss the Bayesian method of estimation
for the parameters of the model. The baseline hazard function is assumed to follow
the two parameter Weibull distribution. Data is simulated from the given model and
the Metropolis–Hastings MCMC algorithm is used to obtain parameter estimates. It is
shown that increasing the size of the dataset improves estimates. It is also shown that
high heterogeneity within clusters does not affect the estimates of treatment effects
significantly. The model is also applied to a real life dataset.

Keywords Generalized gamma distribution · Gauss–Laguerre quadrature ·
Metropolis–Hastings algorithm · MCMC algorithm · Credible intervals

B Kanchan Jain
jaink14@gmail.com

Sukhmani Sidhu
sukhmani.15@gmail.com

Suresh Kumar Sharma
ssharma643@yahoo.co.in

1 Department of Statistics, Panjab University, Chandigarh 160014, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-017-0728-0&domain=pdf


278 S. Sidhu et al.

1 Introduction

In survival studies, we often come across data that occurs in clusters or groups that
arise due to some common factor associated with each group. For example, a cluster
may refer to a set of event times for the same individual or event times belonging to
related individuals (parent–child, siblings or twins). Sometimes there may be a set of
event times belonging to individuals suffering from a particular disease in the same
community or being treated in the same hospital under similar conditions like exposure
to the same environment or treatment. In all of these cases, there is reason to group
together certain event times. This stratification helps to analyse time to event data in
a more effective way.

Proportional Hazards models introduced by Cox (1972) assumed that the study
population is homogeneous given some observed covariates. However, this may not
be true in general and individuals may differ in many aspects. For instance, two indi-
viduals at the same stage of disease progression, receiving same treatment, having no
significant difference in the covariates may respond to the same treatment in a signifi-
cantly different manner. This can be attributed to different individuals having different
frailties. In general, more frail individuals in a population die earlier than those who
are less frail. Hence, heterogeneity due to unknown factors can be attributed to an indi-
vidual’s frailty and is incorporated in the model as a randomness factor. It modifies
the hazard function for each individual and hence increases the precision with which
we study the effect of the known covariates.

In particular, shared frailty models assume that the value of frailty is same for each
observation in a cluster and frailty levels of different clusters are independent of each
other. In other words, there is dependence between event times in a cluster but there
is independence between observations from different clusters.

Frailty (named as such by Vaupel et al. 1979) was studied by Greenwood and
Yule (1920) for recurrent data and by Clayton (1978) for bivariate data. Shared frailty
models have been extensively studiedwith different choices of distribution viz: gamma
distribution (Clayton 1978; Vaupel et al. 1979; Klein 1992; Yashin et al. 1995), log-
normal distribution (McGilchrist and Aisbett 1991; Xue and Brookmeyer 1996; Yau
and McGilchrist 1997; Ripatti and Palmgren 2000; Vaida and Xu 2000), and positive
stable distribution (Hougaard 1986a, b; Oakes 1994; Hougaard 1995; Lam and Kuk
1997).

In order to obtain efficient estimators for the regression coefficients and also to
recognize covariates which are significantly affecting the event times, it is important
tomake themost appropriate choice for the frailty distribution. For this reason, flexible
distributions have been used to describe the frailty variable. Some of the flexible frailty
distributions that have been studied in literature are the positive stable distribution
(Hougaard 1986a), generalized gamma distribution (Balakrishnan and Peng 2006;
Pengcheng et al. 2013), compound Poisson distribution (Aalen 1992; Wienke et al.
2003) and log-skew normal distribution (Callegaro and Iacobelli 2012).

In this paper, we consider the generalized gamma distribution (GGD) to describe
the frailty term effect. This distribution has many sub models as its special cases.
Four popular sub-models of the GGD are the Weibull, exponential, log-normal and
gamma distribution. Fitting a flexible distribution helps in improving the accuracy of
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the estimates obtained and also saves time and cost incurred in fitting survival data to
each of these distributions independently to come upwith themost efficient model.We
apply a Monte Carlo Markov Chain (MCMC) procedure to obtain Bayesian estimates
of the parameters of the model. We perform a simulation study to observe the effect of
sample size, cluster size and frailty variance on the efficiency of the estimates obtained
in terms of their biases and mean squared errors.

Similar methodology has been successfully applied to survival studies previously
(Clayton 1991; Zeger and Karim 1991; Dellaportas and Smith 1993; Ducrocq and
Casella 1996; Golightly andWilkinson 2008). Bayesian estimation methods have also
found use in the study of random effects model inmany other fields. Khoshravesh et al.
(2015) apply Bayesian regression to study evapotranspiration in three arid environ-
ments. In econometric studies, similar methodology has been applied to longitudinal
data by Koop et al. (1997) to make inference about firm specific inefficiencies and
by Allenby and Rossi (1998) to model consumer heterogeneity. Bayesian estimation
procedures have also been applied inmeta analysis whereinmultiple studies have been
combined (Bodnar et al. 2017; Higgins et al. 2009; Pullenayegum 2011; Turner et al.
2015).

Earlier work done on the generalized gamma shared frailty model (Balakrishnan
and Peng 2006; Pengcheng et al. 2013) makes use of the Newton Raphson algorithm
or the EM algorithm to obtain Maximum Likelihood estimates. These methods are
computationally lengthy especially when the number of treatment effects is large and
convergence for such methods may take a long time if initial parameter values in the
algorithm are far from the true parameter values. Also, it is never certain whether
convergence will happen. MCMC methods like Metropolis–Hastings algorithm can
be run for shorter durations and problems like multiple modes and non-convergence
etc. can be diagnosed earlier. Bayesian estimation also allows us to incorporate any
prior information that may be available about treatment effects from previous studies.
Hence,weuseMCMCalgorithm toobtainBayesian estimates of themodel parameters.

In Sect. 2, the general shared frailty model is defined. Some basic properties of the
GGD and its special cases are presented in Sect. 3. In Sect. 4, the generalized gamma
shared frailty model is proposed and an estimation method formulated in Sect. 5.
Simulations have been carried out in Sect. 6 followed by a real life illustration in
Sect. 7 wherein we fit the model to exercise times data set of coronary heart patients
(Danahy et al. 1977).

2 Shared frailty model with censoring

Consider a case where continuous random variable T is the lifetime of an individual
and random variable C is the censoring time. Let random variable Z be the frailty
variable, X = (X1, X2, . . . , Xr )

′
denote a vector of ’r’ known covariates and δ be the

censoring indicator.
Suppose there are M clusters each having ni observations (i = 1, 2, …, M) and

associated with each cluster is the unobserved frailty zi . The clusters can represent
hospitals, schools or cities and ni survival times in the i th cluster can represent time to
event (death or recovery) of patients suffering from a particular disease, time to event
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(completing a test or passing a grade) for a student, or time to demographical events
(marriage or divorce) for the urban population.

The survival data are right censored such that ti j=min {Ti j ,Ci j}denotes the survival
time and

δi j =
{
1 if Ti j ≤ Ci j , that is, event is not censored

0 if Ti j > Ci j , that is, event is censored.

denotes the censoring indicator.
The shared frailty model assumes that all the event times in a cluster are condi-

tionally independent given the frailties and event times from different clusters are
independent. In case of censoring and for given frailty Z = zi , the conditional hazard
function for i th cluster at time ti j > 0 is written as

h(ti j |zi ,Xi j ) = zi h0(ti j )e
X′
i jβ (1)

j = 1, 2, …, ni and i = 1, 2, …, M
where,
h0(ti j ) is the baseline hazard function;
Xij are r x 1 column vectors of known covariates of the j th subject in the i th
cluster;
β is a r x 1 column vector of regression coefficients.

The conditional survival function for a given frailty at time ti j > 0 is

S(ti j |zi ,Xi j ) = e− ∫ ti j0 h(u|zi ,Xi j )du

= e− ∫ ti j0 zi h0(u)e
X′
i j βdu

= e−zi e
X′
i j β
∫ ti j
0 h0(u)du

= e−zi H0(ti j )e
X′
i j β

(2)

where H0(ti j ) is the cumulative hazard function.

3 Generalized gamma distribution

A random variable Z > 0 is said to follow generalized gamma distribution with
parameters b, d, and k (GGD(b,d,k)) if its probability density function is given by

f (z : b, d, k) = d

Γ (k) b

( z
b

)dk−1
e−( zb )d (3)

where d > 0, k > 0 are the shape parameters and b > 0 is the scale parameter.
Although the GGD is complex to handle in its likelihood form, it could be quite

useful since it includes other distributions as special cases (Khodabin andAhmadabadi
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Fig. 1 Density functions of GGD for different parametric combinations

2010) based on the values of the parameters. For example, the distribution reduces to
exponential distribution when d = k = 1, gamma distribution when d = 1, Weibull
distribution when k = 1, log-normal distribution as a limiting case when k → ∞.
Also by setting d = 2, we can obtain another sub-family known as the generalized
normal distribution which itself being a flexible distribution includes the half-normal
(k = 1/2, b2 = 2σ 2), Rayleigh (k = 1, b2 = 2σ 2), Maxwell–Boltzmann (k = 3/2),
and chi square (k = n/2, n = 1, 2, ...).

Figure 1 shows the shapes of the probability density function of GGD for different
parametric values. The distribution is suitable for a variety of cases. As Hougaard
(1995, 2000) shows, the tails of the frailty distribution can determine the type of
dependence among correlated observations. A strong early (late) dependence is indi-
cated by a long right (left) tail. As indicated by Fig. 1, generalized gamma distribution
when chosen as a distribution to model frailty, can handle varying degrees of early
dependencies.

The mean and variance of the GGD(b,d,k) are

E (z) = bΓ
(
k + 1

d

)
Γ (k)

V (z) = b2Γ (k + 2
d )

Γ (k)
−
(
bΓ (k + 1

d )

Γ (k)

)2

.

In order to make the parameters of the model identifiable, we need to set the mean of
the frailty distribution to one. Hence,

E (z) = 1 ⇒ b = Γ (k)

Γ
(
k + 1

d

) .
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The variance of the frailty distribution obtained after replacing the value of b is given
by

V (z) = Γ (k) Γ
(
k + 2

d

)
Γ
(
k + 1

d

)2 − 1.

4 The generalized gamma shared frailty model

4.1 Baseline distribution

Weibull distribution is one of the most widely used distributions in life time data
analysis. Its versatility comes from the various shapes of the hazard function for
different values of the shape parameter ψ . The hazard rate of the Weibull distribution
decreases with time (early life or infantile high mortality) when shape parameter is
less than 1. It is fairly constant (useful or mid life) for shape parameter equal to or
close to 1 and increases with time (wear out or old age) for shape parameter greater
than 1. These three sections comprise the “bath tub curve” and are indicative of human
survival rates from birth to death. Its probability density function is defined by

f (t) = ψωtψ−1e−ωtψ ,

where ψ > 0 is the shape parameter and ω > 0 is the scale parameter.
The baseline hazard function is given by

h0(t) = ωψ tψ−1. (4)

The cumulative baseline hazard function is given by

H0(t) = ωtψ. (5)

4.2 Likelihood function

The full conditional likelihood function for the generalized gamma frailty model is
given by the following equation

Lc =
M∏
i=1

ni∏
j=1

[
h(ti j |zi ,Xi j )

]δi j S(ti j |zi ,Xi j ), (6)

where the baseline hazard function and the conditional survival function are given by
(1) and (2) respectively.

The full unconditional likelihood function obtained by integrating the likelihood
function over the entire range of the random variable Z, is given by
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L =

∫ ∞

0

M∏
i=1

ni∏
j=1

[
h(ti j |zi ,Xi j )

]δi j S(ti j |zi ,Xi j ) f (zi )dzi .

Using Eqs. (1) and (2) and writing ηi j = eX
′
i jβ , we have

L =
M∏
i=1

⎧⎨
⎩
∫ ∞

0

⎛
⎝ ni∏

j=1

[
zi h0(ti j )e

X′
i jβ
]δi j

e−zi H0(ti j )e
X′
i j β

⎞
⎠ f (zi )dzi

⎫⎬
⎭

=
M∏
i=1

⎧⎨
⎩
⎛
⎝ ni∏

j=1

[
h0(ti j )ηi j

]δi j
⎞
⎠∫ ∞

0

⎛
⎝ ni∏

j=1

z
δi j
i e−zi H0(ti j )ηi j

⎞
⎠ f (zi )dzi

⎫⎬
⎭

=
M∏
i=1

⎧⎨
⎩
⎛
⎝ ni∏

j=1

[
h0(ti j )ηi j

]δi j
⎞
⎠∫ ∞

0
z
∑ni

j=1 δi j

i e−zi
∑ni

j=1 H0(ti j )ηi j f (zi )dzi

⎫⎬
⎭

=
M∏
i=1

⎧⎨
⎩
⎛
⎝ ni∏

j=1

[
h0(ti j )ηi j

]δi j
⎞
⎠∫ ∞

0
zDi
i e−zi Ai f (zi )dzi

⎫⎬
⎭ , (7)

where Di =
ni∑
j=1

δi j and Ai =
ni∑
j=1

H0(ti j )ηi j .

Writing the integral in (7) as Ii and putting ti = zi Ai , we have

Ii =
∫ ∞

0

(
ti
Ai

)Di

e−ti f

(
ti
Ai

)
1

Ai
dti ,

= 1

ADi+1
i

∫ ∞

0
ti
Di e−ti f

(
ti
Ai

)
dti

≈ 1

ADi+1
i

∑
n

wnun
Di f

(
un
Ai

)
, (8)

using the Gauss-Laguerre quadrature rule, where wn and un are the n weights and
nodes of the Laguerre polynomial.

Hence the full unconditional likelihood function reduces to

L =
M∏
i=1

⎧⎨
⎩
⎛
⎝ ni∏

j=1

[
h0(ti j )ηi j

]δi j
⎞
⎠ Ii

⎫⎬
⎭ , (9)

where Ii is as given in (8).
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5 Estimation procedure

Often methods likeMaximumLikelihood (ML) and Expectation–Maximization (EM)
have been used in frailty models. However, in our case, the integral is not in a
closed form and this complicates the estimation procedure. Earlier, authors have
approximated the integral using Monte Carlo simulations and used Newton Raph-
son algorithm to obtain ML estimates (Balakrishnan and Peng 2006) or used EM
algorithm for estimation with MCMC Metropolis algorithm to calculate conditional
expectations (Pengcheng et al. 2013). In this paper, the Random Walk Metropolis–
Hastings algorithm, one of the MCMC methods, is used to obtain Bayesian estimates
of the parameters of the model.

In the Bayesian approach, the parameters of themodel θ = (ψ, ω, β1, . . . , βr , d, k)
are treated as random variables. A prior distribution p(θ) is used to describe the
currently available information about the parameter of interest, θ . Data collected from
a study independent of this information is then incorporated into the model to draw
conclusions about θ . Ideally the prior distribution should cover all reasonable values
that θ can take, but the distribution need not play a significant role in the posterior
distribution. This is because information from the data collected in the study will far
outweigh any prior information available or guesses made about θ , in the form of
prior probabilities specified. Hence, we use “reference priors ”, that can be described
as vague, diffused, or flat, non-informative priors (Gelman et al. 2013). The rationale
for this is to let the data play a more significant role so that the inferences made are
driven by the data.

A gamma prior, G(φ, φ) is used for ψ , ω, d and k whereas a normal prior N(0,
ε2) is used for regression coefficients βi . For simulations, we set the hyperparameters
φ = 0.001 and ε2 = 1000, such that the variance is very large. Similar types of prior
distributions have been used earlier (Ibrahim et al. 2001; Sahu et al. 1997; Santos and
Achcar 2010; Hanagal and Dabade 2013).

Hence, using the full likelihood function L(θ |x) with the prior distribution, we
obtain the updated posterior distribution of the parameters as

π(θ |x) ∝ L(θ |x)p(θ). (10)

Under the assumption that all the parameters of the model, ψ,ω, β1, . . . , βr , d, and k
are independently distributed, the joint posterior density is

π(ψ,ω,β, d, k) ∝ L(ψ, ω,β, d, k)g1(ψ)g2(ω)g3(d)g4(k)
r∏

i=1

pi (βi ), (11)

where g(.) is the prior density function of ψ , ω, d and k with known hyperparameters.
pi (.) is the prior density function with known hyperparameters of βi . The likelihood
function is as given by Eq. (9).

Given the likelihood and priors, we can obtain the full conditional distribution of
these parameters by considering only those terms which include that parameter. For
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example, for ψ we have

π(ψ |ω,β, d, k) ∝ L(ψ, ω,β, d, k)g1(ψ). (12)

Using Eq. (9),

π(ψ |ω,β, d, k) ∝
M∏
i=1

⎧⎨
⎩

ni∏
j=1

[
h0(ti j )ηi j

]δi j
⎫⎬
⎭ Ii g1(ψ).

Hence, ignoring the terms that do not involve ψ we have,

π(ψ |ω,β, d, k) ∝
M∏
i=1

⎧⎨
⎩

ni∏
j=1

h0(ti j )
δi j

⎫⎬
⎭ Ii g1(ψ).

Similarily

π(ω|ψ,β, d, k) ∝
M∏
i=1

⎧⎨
⎩

ni∏
j=1

h0(ti j )
δi j

⎫⎬
⎭ Ii g2(ω),

π(d|ψ,ω,β, k) ∝
M∏
i=1

Ii g3(d),

π(k|ψ,ω,β, d) ∝
M∏
i=1

Ii g4(k),

π(βi |ψ,ω,βi , d, k) ∝
M∏
i=1

⎧⎨
⎩

ni∏
j=1

η
δi j
i j

⎫⎬
⎭ Ii pi (βi ) for i = 1, 2, . . . , r. (13)

where βi = (β1, β2, . . . , βi−1, βi+1, . . . , βr ) represents a vector of regression coeffi-
cients except βi .

Using the Random Walk Metropolis–Hastings Algorithm, a sample is drawn from
each of the populations with the conditional posterior distributions given by (13). The
algorithm was first described by Metropolis and Ulam (1949) and Metropolis et al.
(1953) and later generalized by Hastings (1970). The algorithm can be summarized
as follows:

1. Start with an initial set of values for the parameters θ(0) = (ψ(0), ω(0),β(0),

d(0), k(0)).
2. Set iteration counter at i = 1.
3. Generate a proposal value θ∗ from the normal transition kernel. For example, ψ∗

is generated from N (ψ(i−1), c).
4. Calculate the acceptance ratio, say for ψ∗ we have α = min{

1,
π(ψ∗|ω,β, d, k)

π(ψ(i−1)|ω,β, d, k)

}
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5. Generate a random number r from U(0,1).
6. Accept ψ∗ as ψ(i) if r ≤ α else ψ(i) = ψ(i−1)

7. Repeat steps 3–6 for remaining parameters ω, β, d and k each time updating θ (i)

with the previous point accepted in the chain. These steps are repeated N times to
get N samples from π(θ).

The standard deviation of the transition kernel ‘c’ is chosen independently for each
parameter (after a few trial runs) such that the chain has an acceptance ratio of 25 %
(Gelman et al. 1996) i.e. 25% of the new proposed values are accepted and others are
rejected.

In implementations of this type, it is common to run the chain for an initial period
of time (the burn-in period) and to store every lth iteration (l > 1) thereafter until
some pre-specified stopping time. This is referred to as thinning the chain and it
reduces dependence among the sample points from the posterior distribution. The
remaining iterations are used to obtain the posterior summaries. We use the squared
error loss function for which the Bayes estimator is the posterior mean. Convergence
and stationarity of the Markov chain is studied using the Geweke (Geweke 1992)
and the Heidelberger–Welch tests (Heidelberger and Welch 1983). More information
about convergence tests in MCMC algorithms can be found in Cowles and Carlin
(1996). We also study the Inefficiency Factor (proposed by Kim et al. 1998) which is
the ratio of the variance of the sample mean of the correlated draws to the variance
of the sample mean of hypothetical i.i.d. draws, to give us a measure of the factor
by which the number of iterations needs to be increased (Kohn et al. 2001; Chib and
Kang 2016).

Our main interest lies in finding an estimate of variance of the frailty distribution
and this is done by using the estimates of the parameters d and k at each iteration of the
chain. The estimates of variance of the frailty distribution form another chain, which
is subjected to testing for convergence and stationarity.

6 Simulation study

The survival times are simulated from the model given in (1). To observe the effect of
cluster size, sample size, and frailty variance on the performance of the model and the
estimation procedure, nine datasets consisting of 25, 50 and 100 clusters, each with
cluster sizes 2, 4 and 8 have been considered. Clusters of equal size have been chosen
for computational convenience although the model can be used for unequal cluster
sizes as well.

The survival times for the same cluster are considered to be correlated, having the
same frailty described by zi . In set-up I, the z′i s follow log-normal distribution with
mean 1 and variance 0.5. Set-up II and III assume gamma distribution for zi with mean
1 and variance 2 and 4 respectively. Weibull distribution with both shape and scale
parameters equal to 2 is chosen to be the baseline distribution. Two treatment effects
are considered i.e. the number of covariates r equals 2 with X = (X1, X2)

′ generated
from N2(0, I2) and β = (1.5, 1.25)′. For censoring the survival times, it is assumed
that the censoring variable follows U(0,a) where a is chosen so as to obtain a censoring
of around 10%.
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Table 1 Percentage of the chains converging as per the Geweke Test

M ni Set-up I Set-up II Set-up III

ψ β1 β2 σ 2
FR ψ β1 β2 σ 2

FR ψ β1 β2 σ 2
FR

25 2 89.4 90.8 91.2 89.6 89.2 92.6 92.0 85.2 90.8 90.6 92.0 71.2

4 91.8 92.2 92.4 91.0 92.2 90.6 91.6 78.0 89.8 92.0 90.6 77.6

8 89.8 89.6 90.8 90.4 91.6 90.6 91.4 79.6 90.6 91.8 91.6 78.4

50 2 90.8 89.6 89.6 87.2 89.0 91.6 89.2 77.2 88.2 88.0 89.4 75.2

4 91.2 90.4 91.8 89.4 91.0 91.4 93.0 76.4 89.2 90.2 91.6 72.4

8 91.4 93.4 90.4 88.8 93.8 90.8 89.6 76.4 91.4 88.8 91.2 80.0

100 2 89.6 91.6 88.8 89.2 83.8 85.4 88.4 74.2 85.0 89.6 89.2 69.8

4 90.6 90.8 91.6 90.4 92.2 89.8 87.8 75.4 89.6 91.8 91.2 74.8

8 90.6 89.2 90.4 91.4 89.6 92.4 92.6 76.8 91.6 91.4 89.8 79.8

500 datasets are generated under the different scenarios with M = 100, 50, 25 and
n = 2, 4, 8. These datasets are then fit to the generalized gamma shared frailty model
with Weibull baseline distribution using the estimation method described in Sect. 5.
The algorithm described in the previous section is used to estimate the parameters.
The integral (8) is computed using 32 point Gauss-Laguerre quadrature rule. The
computations are performed using the R statistical software.

The convergenceof themethod is firstmonitoredgraphically using cumulativemean
plots. Considering that the state of the chain for the first few iterations is dependent
on the starting point, these plots are used to decide the number of iterations that need
to be discarded as burn-in.

The trace plots of the chains are studied to determine whether the chain is exploring
the parametric space well.

Auto Correlation Function (ACF) plots study the autocorrelation in the data. Since
adjacent points in the Markov chain are correlated, it is expected that the autocorre-
lation will decrease as the lag increases. After discarding the first few iterations as
burn-in, every lth value is chosen to arrive at a sample of draws from the chain.

Since it was not possible to see the plots individually for all 500 datasets under each
scenario, the burn-in and lag were fixed after studying 50 plots under each setting.
Geweke and Heidelberger–Welch (H–W) tests are used to study the convergence and
stationarity of the chains. Tables 1 and 2 report the percentage of the datasets for which
the chains converged ( p-value of the Geweke test statistic> 0.05) and stationarity was
achieved (p-value of H–W test statistic> 0.05) and Table 3 reports inefficiency factor
for each parameter. These tests help us to decide a suitable length of theMarkov chain,
that is, the number of iterations required. This number varies for different models and
although the same model is used for estimation in our simulation study, the data sizes
and frailty variances differ. Hence, we use a standard length of 45,000 iterations with
a burn-in of 10,000 and a lag of 150 for all estimations (though these numbers can be
changed for quicker estimation in less complex models).

The resulting samples are then used to obtain posterior summaries. The squared
error loss function is the mean square error (MSE) in our case since the posterior mean
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Table 2 Percentage of the chains achieving stationarity as per the H–W Test

M ni Set-up I Set-up II Set-up III

ψ β1 β2 σ 2
FR ψ β1 β2 σ 2

FR ψ β1 β2 σ 2
FR

25 2 99.0 98.0 98.2 97.8 98.6 99.2 98.0 97.4 98.2 98.8 98.6 95.6

4 99.8 98.8 99.0 98.6 99.0 98.6 98.6 96.2 99.2 98.2 99.8 97.4

8 98.8 99.0 99.6 98.2 99.0 98.0 99.2 97.2 99.8 98.6 98.8 93.6

50 2 98.8 99.6 99.0 98.4 98.2 98.6 98.8 97.0 98.2 98.8 98.0 93.6

4 98.8 99.2 99.4 98.4 99.0 98.8 98.6 96.8 99.2 99.0 100.0 95.0

8 98.8 99.4 98.8 98.6 98.8 99.4 99.0 96.0 98.8 99.4 99.4 96.4

100 2 98.6 98.8 99.0 98.2 96.8 98.6 98.2 95.8 96.4 98.8 98.4 95.2

4 98.8 98.4 98.2 98.8 98.4 99.2 98.6 96.8 97.8 98.8 98.2 96.0

8 99.4 98.8 99.0 99.0 99.2 99.4 98.2 94.2 98.6 98.6 99.2 96.2

Table 3 Inefficiency factors for the Markov chains for each parameter

M ni Set-up I Set-up II Set-up III

ψ β1 β2 σ 2
FR ψ β1 β2 σ 2

FR ψ β1 β2 σ 2
FR

25 2 52.8 40.8 36.9 54.3 51.5 37.2 33.5 80.8 46.1 33.7 28.4 85.4

4 37.6 31.2 28.1 34.9 34.8 26.1 23.0 71.3 31.8 25.1 22.0 88.9

8 29.5 24.0 21.6 28.1 28.9 24.4 21.7 72.3 27.5 22.6 20.1 96.5

50 2 58.2 44.4 39.7 61.2 44.4 31.6 28.0 86.3 42.6 30.1 25.7 95.3

4 33.9 27.0 24.1 46.4 30.7 24.7 21.9 96.6 27.3 21.9 19.7 96.4

8 27.9 22.8 20.6 34.4 29.2 23.9 21.3 96.2 27.4 22.9 20.4 99.2

100 2 52.8 40.0 35.7 62.7 44.1 30.7 27.1 101.0 40.4 27.3 23.6 105.4

4 35.5 28.1 25.1 49.2 29.1 23.3 20.8 101.1 29.0 23.4 20.9 116.5

8 27.6 22.3 19.9 31.7 26.2 22.3 19.9 94.9 27.5 23.5 20.9 107.9

is the Bayes estimator. The MSEs, biases and Monte Carlo Standard Errors (MCSE)
are displayed in Tables 4.

On the basis of Tables 1, 2, 3 and 4, it can be concluded that

1. as the cluster size or the number of clusters increases, the percentage of converging
or stationary chains is not affected significantly.

2. as the frailty variance of the generated datasets increases, the convergence and
stationarity of theMarkov chains for the baseline shape parameterψ and treatment
effects β do not get affected significantly. However, for the estimate of frailty
variance, the percentage of chains converging and achieving stationarity reduces.

3. decreasing inefficiency factors as cluster size increases indicates that more itera-
tions are required when the cluster size is small. Also, to estimate frailty variance
with better precision, more iterations would be required if the frailty variance is
high.
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4. sinceMCSEs reduce with increasing cluster size, the efficiency of the algorithm to
simulate draws from each posterior distribution improves as cluster size increases.

5. in general, the bias andmean squared error (MSE) reduces as the number of clusters
increases or the cluster size increases. This is due to the increase in the number of
data points in the study. Hence, larger studies would give better results.

6. the method is sensitive to the frailty variance. As the variance of the frailty term
increases, the MSEs also increase. This indicates that increasing heterogeneity in
event times within a cluster can affect the estimates of frailty variance. However,
estimates of covariates are unaffected with heterogeneity in the clusters.

Since, the cost of data collection is an important factor that decides the sample size,
the researchers should look at the trade-off between improving results or reducing
costs of data collection. Also, in case the model indicates high heterogeneity in the
data (high frailty variance), it may be worthwhile to look for covariates that have not
been considered in the model or consider multiple populations with vastly different
hazard rates.

7 Real life data study

Danahy et al. (1977) studied the effect of high dose oral isosorbide dinitrate (ISDN)
on heart rate, blood pressure and exercise time until angina pectoris on 21 patients
with coronary atherosclerotic heart disease. The patients were studied for 5 days in
the hospital where they were given exercise tests lasting until the onset of angina pec-
toris. The exercise times were recorded for each patients after sublingual nitroglycerin
(SLTNG) and sublingual placebo (SLP), at 1, 3 and 5 hours after oral placebo and its
control period (OP1, OP2, OP3 and OPC) and at 1, 3 and 5 hours after oral ISDN and
its control period (OI1, OI3, OI5 and OIC) as well.

The data set has 10 exercise times for each of the 21 patients with some observations
considered to be censored if the patient was too exhausted to complete the test. The
data can be analysed using a shared frailty model considering that the observations
from a single cluster are coming from the same patient and are hence correlated. The
generalized gamma frailty model as described in the previous sections is applied to
the exercise data set with baseline distribution as Weibull distribution.

The nine treatment effects alongwith the baseline and frailty distribution parameters
are to be estimated. The algorithm is run for fewer iterations (10,000 to 20,000) to set
the standard deviations of the transition kernels in order to have an acceptance rate of
approximately 25% for each parameter. Subsequently, the algorithm is run twice for
1,20,000 iterations using two distinct set of initial values.

The trace plots in Fig. 2 indicate whether the chain is exploring the parametric
space well.

Observing the burn-in period of the chains from the Cumulative Mean (CM) plots
given in Fig. 3, the initial 20,000 iterations for each parameter are discarded. The
CM plot also shows the two chains obtained as a result of using two different starting
points. This indicates that the estimates are independent of the initial values given to
the algorithm. Use of distinct starting values can also check for multiple modes of the
likelihood function.
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Fig. 2 Trace plots of Markov chains for treatment effects

Fig. 3 Cumulative mean plots of two chains for the initial 20,000 iterations
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Fig. 4 The ACF plots

Fig. 5 The density plots for treatment effects

The ACF plots shown in Fig. 4 indicate a sufficient reduction in auto-correlation
(<0.1) at a lag of 150.

The density plots of the posterior sample (Fig. 5) obtained for the treatment effects
indicate a symmetric sample. Hence, we take the mean of the thinned sample to obtain
an estimate for each treatment effect.
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Table 5 Estimated treatment effects when compared with SLP

Treatment β̂ Geweke test H–W test Credible intervals

p-value p-value Lower Upper

SLTNG −1.5820 0.44 0.91 −2.3443 −0.7842

OPC 0.8496 0.78 0.90 0.1814 1.5170

OP1 0.2351 0.99 0.89 −0.4282 0.9559

OP3 0.4007 0.53 0.52 −0.2893 1.1280

OP5 0.7926 0.60 0.50 0.1263 1.5351

OIC 0.2302 0.69 0.57 −0.4177 0.8584

OI1 −2.8340 0.84 0.66 −3.7322 −1.9999

OI3 −1.4120 0.67 0.54 −2.1882 −0.7419

OI5 −0.3117 0.87 0.54 −1.0295 0.4274

ψ 5.397 0.77 0.94 4.750 6.085

Frailty variance 9.045 0.90 0.28 2.6725 25.7461

Table 5 gives the results based on the estimation procedure. The values in Table 5
lead us to the following conclusions.

1. Treatments SLTNG and ISDN (OI1, OI3, OI5) are beneficial to the patients as
they reduce the risk of angina pectoris (β̂ < 0).

2. Use of an oral placebo increases the risk of heart disease as the corresponding β̂

is positive.
3. Treatment effects SLTNG, OI1, and OI3 are significant as the credible intervals

do not contain zero. Hence, there is a significant reduction in the risk of angina
pectoris with the use of SLTNG and ISDN with the most benefit at one hour and
three hours after the ISDN treatment.

4. Credible intervals of treatment effects OPC and OP5 also do not contain zero
indicating a significant increase in risk of heart disease on using an oral placebo
specially at the time of treatment and five hours after treatment.

5. The estimate of the shape parameter of the baseline distribution is greater than
one, indicating an increasing hazard function with respect to time.

6. The frailty variance is estimated to be around 9.045 which indicates heterogeneity
among clusters.

8 Conclusions

Bayesian estimation procedure is applied to the generalized gamma shared frailty
model. The Random Walk Metropolis–Hastings algorithm (a Markov Chain Monte
Carlo method) has been used to estimate the parameters. Each simulated data set of
100 clusters of size 8 each took approximately 20 minutes on a Dell Vostro 360, Intel
i5-2400S processor with 4GB RAM.

In simulation study, it is observed that the Bayesian method performs well with
generalized gamma frailty distribution with Weibull baseline distribution. However,
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the model is sensitive to the variance of the frailty distribution. As the heterogeneity in
the data increases, the squared error loss also increases. The estimation method is also
applied to the exercise data set given by Danahy et al. (1977) and Bayesian estimates
of the treatment effects are obtained. Convergence and stationarity of the Monte Carlo
Markov Chains is studied using graphical methods viz. cumulative mean plots and
trace plots, and through diagnostic tests such as Geweke and Heidelberger–Welch
tests. The credible intervals obtained for each treatment effect are used to identify
significant treatment effects.

In this model, one of the basic assumptions is that all treatment effects are inde-
pendent. However, this may not be true in real life data. One possible way to handle
multicollinearity problems is to check for correlation between the covariates prior to
analysis. To this end, use of factor analysis method to arrive at a list of the more impor-
tant independent covariates, may be explored as a part of future research. Use of other
baseline distributions will also be explored. There is scope for improving computation
times involved in calculations for which the performance of block updation ofMCMC
algorithm will be looked into.
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