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Abstract This paper examines the implications of the seasonal adjustment by an
ARIMA model based (AMB) approach in the context of seasonal fractional integra-
tion. According to the AMB approach, if the model identified from the data contains
seasonal unit roots, the adjusted series will not be invertible that has serious impli-
cations for the posterior analysis. We show that even if the ARIMA model identified
from the data contains seasonal unit roots, if the true data generating process is sta-
tionary seasonally fractionally integrated (as it is often found in economic data), the
AMB seasonal adjustment produces dips in the periodogram at seasonal frequencies,
but the adjusted series still can be approximated by an invertible process. We also per-
form a small Monte Carlo study of the log-periodogram regression with tapered data
for negative seasonal fractional integration. An empirical application for the Spanish
economy that illustrates our results is also carried out at the end of the article.
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1 Introduction

Given the seasonal nature of many macroeconomic time series, seasonal adjustment
is a widespread practice and millions of series are routinely adjusted, some of them
are not even publicly available in the nonadjusted version. Seasonal adjustment is
believed to remove undesirable fluctuations at seasonal frequencies without producing
significant changes at other frequencies (especially at the low part of the spectrum)
making the data easily tractable, thereby simplifying posterior modeling and analysis.
However, the properties of the adjusted series crucially depend on the method used
for the adjustment and the initial properties of the series, and they may result just as
unattractive for analysts as seasonality itself.

In this paper, we examine one of the important features of the adjusted data: dips
in the periodogram at seasonal frequencies and the resulting noninvertibility of the
adjusted series. The spectral dips (or zeros) are produced by all seasonal adjustment
methods used in practice, regardless of whether it is a naive adjustment by seasonal
dummies or a sophisticated ARIMA-model-based (AMB) signal extraction produced
by specialized programs. Ooms and Hassler (1997) point out that the regression on
seasonal dummies generates zeros in the periodogram at seasonal frequencies that can
lead to the singularities in the log-periodogram regression. Nerlove (1965) applies
Census X-11 and the modified ‘Hannan’ method and concludes that both methods
remove more than just the seasonal component. Grether and Nerlove (1970) show that
the phenomenon observed in Nerlove (1965), namely dips created near the seasonal
frequencies after adjustment, is obtained as a result of ‘optimal’ adjustment procedure
aswell. The consequent seasonal adjustment routines ofCensus,X-11-ARIMA, andX-
12 produce the same result by construction. Gomez andMaravall (2001) call attention
to the fact that TRAMO-Seats generates dips at seasonal frequencies whenever the
model identified for the data contains seasonal unit roots. According to Gomez and
Maravall (2001), the spectral zeros are the frequency counterpart of the unit MA roots
and therefore the adjusted series is not invertible and does not accept autoregressive
AR (or VAR) approximations to its Wold representation. Although often ignored, this
is, perhaps, the most important practical implication of AMB adjustment, since AR
(and VAR) approximations to seasonally adjusted data are typically carried out in the
applied econometric work.

In thisworkwe analyze in detail the dips at the seasonal frequencies and the apparent
noninvertibility produced by the AMB approach, within the fractional integration (FI)
framework, which admits a wider definition of the invertibility condition than the one
applied by Gomez and Maravall (2001). In particular, a fractionally integrated (FI)
process is (seasonally) invertible whenever the FI coefficients at seasonal frequencies
are higher than −0.5. In addition, notice that the negative seasonal FI parameters
correspond to the spectral zeros at seasonal frequencies. Thus, the process can have
spectral zeros at seasonal frequencies but still remain invertible.

We chooseTRAMO-Seats forWindows (TSW) as the representativeAMBseasonal
adjustment program. TSW is a pair of the data adjustment programs developed by
the Bank of Spain that have been intensively employed by Eurostat since 1994, and
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nowadays their use has been extended to various European countries (Gomez and
Maravall 2001; Eurostat 2009).1

To check for the invertibility of the series adjusted by TSW,we produce simulations
for a set of processes. We do not restrict the analysis to processes with integer orders
of integration at zero and the seasonal frequencies since it has been shown by many
authors that FI at seasonal frequencies is a widespread phenomenon in economics
(Porter-Hudak 1990; Gil-Alana and Robinson 2001; etc.). However, we also make
simulations for a set of Airline models, which are the default models in TSW. For each
model, we simulated 500 series, we adjust them by TSW and then, we estimate the
fractional differencing parameters at the seasonal frequencies in the adjusted series
with the log-periodogram regression with tapered data.

We find that if the data generating process (DGP) follows the default Airline model,
TSW always identifies seasonally nonstationary ARIMA models for the data, and the
adjusted series produced by TSW are indeed noninvertible, which is in line with the
results of Gomez and Maravall (2001). However, if the original series is FI at the sea-
sonal frequencies, which is less restrictive and very plausible in many cases according
to the empirical evidence, the adjusted series may be approximated by an invertible
process depending on the stationarity of the original series. If the DGP is a seasonally
stationaryFImodel, TSWis less prone to identifying a seasonally nonstationarymodel.
Moreover, even if the model chosen by the program is a seasonally nonstationary, the
adjusted series does contain dips at the seasonal frequencies but these dips correspond
to negative seasonal FI with coefficients greater than −0.5. Hence the adjusted series
still can be approximated by an invertible process. On the contrary, the adjustment of
a series generated from a model with nonstationary FI seasonality results in nonin-
vertible negative FI coefficients. Note that this last result is not straightforward since
overdifferencing is expected to be larger for data generated from seasonal stationary
models when a nonstationary model is employed for adjustment.

The paper is organized as follows. Section 2 describes the problem. Section 3
briefly introduces the ideas behind the concept of seasonal FI. The simulation set-up
and the results are presented in Sect. 4. Section 5 contains a small empirical application
illustrating the results reported in Sect. 4. Section 6 concludes the paper.

2 The problem

SEATS is an “ARIMA-model-based” (AMB) seasonal adjustment routine. Within the
AMB approach, the program TSW starts by identifying an ARIMA model to the
observed data

�(B)xt = �(B)at , (1)

where B is backward shift operator, Bi xt = xt−i , at is an iid N
(
0, σ 2

)
innovation, the

polynomial �(B) = F(B) (1 − B)D (1 − Bτ )Dτ contains nonseasonal and seasonal
roots respectively, τ is the number of observations per year, D is the (integer) order of
integration at frequency zero,while Dτ is the (integer) seasonal order of differentiation.

1 Recently, Eurostat has harmonised seasonal adjustment practices with the development of Demetra+
which currently includes both X-12-ARIMA and TRAMO-Seats.
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The polynomials F(B) and �(B) are finite in B, the first one includes stationary
seasonal and nonseasonal AR roots and the second is an invertible MA polynomial.

If the aim of the application of the TSW is the seasonal adjustment, the observed
series xt is decomposed into the mutually orthogonal seasonally adjusted (SA) com-
ponent nt and seasonal component st :

xt = nt + st

The processes for the SA (or signal) and the seasonal components follow ARIMA
processes:

�n(B)nt = �n(B)ant , ant ∼ niid(0, σ 2
n ) (2)

�s(B)st = �s(B)ast , ast ∼ niid(0, σ 2
s ) (3)

such that �(B) = �n (B)�s (B) and �(B)at = �n (B) �s (B) ast + �s (B)�n

(B) ant .
Thus, the seasonal component captures the peaks around the seasonal frequencies,

which may be subtracted by the filter.
For the seasonal adjustment, the purpose is, given xt , to obtain the estimator of n̂t

such that E
[(
nt − n̂t

)2 |xt
]
is minimized, i.e. the MMSE estimator of nt .

Denote nt = �n (B) ant , with �n (B) = �n (B)/�n (B); xt and st are defined in
the same way. As it is shown inWhittle (1963), n̂t is obtained by means of theWiener-
Kolmogorov (WK) filter as the MMSE estimator of the signal given the observed
series:

n̂t =
[
σ 2
n �n(B)�n(F)

σ 2�(B)�(F)

]
xt = ν(B, F)xt (4)

where F is a forward-shift operator (i.e. Fi xt = xt+i ). The estimator given by (4) is
called historical estimator. The WK filter can be expressed after simplification as

ν(B, F) = σ 2
n

σ 2

�n(B) �s(B)�n(F) �s(F)

�(B) �(F)
(5)

From (1), (4) and (5) it can be obtained

�n(B)n̂t = �n(B)
�n(F)�s(F)σ 2

n

�(F)σ 2 at . (6)

It is clear that the process for the SA component (2) is different from the process
for its historical estimator (6). If the process (1) is seasonally stationary, the seasonal
component (3) will not contain the seasonal unit roots and, as a result, the polynomial
�s (F) will be stationary. In this case n̂t given by (6) is going to be invertible. If
the seasonal component is a nonstationary I(1) process (i.e. it contains unit roots at
seasonal frequencies) �s (F) = 1 + F + F2 + · · · + Fr−1 = S (F), these unit roots
will show up as MA in the model generating n̂t and will produce spectral zeros for
the associated seasonal frequencies.
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Thus, if the seasonal component identified within AMB approach is nonstationary,
the historical estimator of the series will not be invertible. An important implication
of this result according to Gomez and Maravall (2001) is that the estimator of the
SA series“…will not accept, in general, an AR (or VAR) approximation to its Wold
representation”.2

3 Seasonal fractional integration

The AMB approach assumes that the data follows an ARIMA-type process. This
assumption restricts the DGP to be either stationary I(0) or, alternatively integrated of
order one, I(1), at zero and/or the seasonal frequencies. In this article, we extend the
seasonal I(1)/I(0) approach to the fractional case and examine cases where the original
series have noninteger orders of integration at seasonal frequencies. In such a case,
the process is said to be seasonally fractionally integrated or seasonal I(d).

For the purpose of the present work, we first define an I(0) process as a covariance
stationary process with a positive and bounded spectral density at all frequencies in
the spectrum. Then, we say that a process xt is seasonal I(d) if it can be represented
as:

(1 − Bτ )d xt = at , (7)

where Bτ is the seasonal lag operator (i.e., Bτ xt = xt−τ ) and τ represents the number
of periods per year (e.g., τ = 4 with quarterly data, τ = 12 in case of monthly
data, etc.), d is a real value and at is an I(0) process that may include seasonal and
nonseasonal weakly autocorrelated (e.g., ARMA) terms. If d > 0 in (7), xt is said
to be a seasonal long memory process, so-named because of the strong degree of
association between observations widely (seasonally) separated in time. However, the
specification in (7) is rather restrictive in the sense that it imposes the same degree of
integration at all frequencies, noting that (1−Bτ ) can be decomposed into (1−B)S(B)

where S(B) = 1+B+B2+· · ·+Bτ−1 refers exclusively to the seasonal frequencies.

Thus, for example, in the case of the polynomial
(
1 − B4

)d
, it can be expressed as

(1 − B)d
(
1 + B + B2 + B3

)d = (1 − B)d (1 + B)d
(
1 + B2

)d
, implying the same

degree of integration, d, at zero and the seasonal frequencies π, π/2 (3π/2) (of a
2π cycle). Extending this model, we may consider a more general specification that
permits different degrees of integration at each of the frequencies. In particular, for
the case of quarterly data, in the paper we will examine models of the form:

(1 − B)d0(1 + B)d2(1 + B2)d1xt = at , (8)

where d0 refers to the order of integration at the long run or zero frequency; d2 is the
order of integration at the semiannual frequency π , and d1 corresponds to the annual
frequencies π/2 and 3π/2. Applications using the flexible model (8) can be found in

2 It is applied to the historical or final estimator of the SA series. However, only the central observations of
the SA series are produced by the historical estimator. For the periods close to the beginning or the end, the
filter cannot be completed and some preliminary estimator has to be used. If the series is long its properties
are dominated by the final estimator. However, if it is short it will have a highly nonlinear structure.
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Arteche and Robinson (2000), Gil-Alana and Robinson (2001), Arteche (2003) and
Hassler et al. (2009).

If the true process for (quarterly) data is fractionally integrated and it is given by
(8), then TSW will find the best possible integer framework approximation to model
seasonality, which can be stationary or not.

Theoretically, the process for the historical estimator of the SA series has the fol-
lowing form:

∇d0 N̂t = σ 2
n

σ 2

�n(B)�s(B)

�(B)

�n(F)�s(F)

�(F)
(1 + B)−d2

(
1 + B2

)−d1
at (9)

where ∇ = 1 − B. If we separate seasonal and non-seasonal MA roots in the pro-
cess, TSW chooses for the data, �(k) = �SS (k)�NN (k) , k = B, F , then the terms
�s (B)
�SS(B)

and �s (F)
�SS(F)

are parts of the two-sided WK filter (with backward and for-
ward operators correspondingly) aimed to subtract the seasonal component given by

(1 + B)d2
(
1 + B2

)d1 . In other words, �s (B)
�SS(B)

is the TSW integer framework approx-
imation to the fractionally ingenerated seasonal component.

Note that the (pseudo) spectrum of the process in (9) is the same as that of

∇d0
	

Nt = σ 2
n

σ 2

�2
n(B)

�2
NN (B)

[
�s(B)

�SS(B)

]2
(1 + B)−d2

(
1 + B2

)−d1
αt

with var (at ) = var (αt ).3

If TSW chooses a nonstationary SARIMA to fit the data, then �s(B) =
(1 + B)

(
1 + B2

)
and therefore:

∇d0
	

Nt = σ 2
n

σ 2

�2
n(B)

�2
NN (B)

(1 + B)2−d2
(
1 + B2

)2−d1

�2
SS(B)

αt (10)

If d1, d2 < 1, the adjusted series should have a seasonal fractionally integrated MA
polynomial with coefficients larger than 1, thus being, hypothetically, not invertible.
In the following section, we investigate this issue in practice by means of simulations.

4 Simulation study

4.1 Simulation set-up

To study invertibility of the time series adjusted by TSW, we generate quarterly data
from different specifications of seasonal fractionally integrated ARIMA (SARFIMA)
models. The parameters for the simulated SARFIMA processes of the form as in (8)

3 We analyse the process (10) instead of (9) because of two reasons. First, in empirical econometrics, two-
sided processes are very rare and are not estimated in practice. Second, given that the estimation techniques
employed in the paper are based on the (pseudo) spectrum of a process, then (10) cannot be virtually
distinguished from (9).
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are d0 = {0.3, 0.7, 1, 1.5}, di = {0.1, 0.3, 0.5, 0.7}, i = {1, 2}, and σ2 = 1. For
d0 = 1 we simulate additionally di = 1. The choice of the values is justified by the
empirical evidence. The number of observations for each series is set T = 500.

To generate the data, the long memory polynomials in (8) have to be expanded.
We choose the lag truncation 1000 for each of the three polynomials (1 − B)d0 ,(
1 + B2

)d1 , and (1 + B)d2 . Thereafter, we multiply the expanded long memory poly-
nomials and, following Bhardwaj and Swanson (2006), we truncate the resulting
polynomial when the coefficients become smaller than 1.0e−004 (the truncation lag
is always smaller than 1000). All observations are generated using standard normal
errors. For each process and each replication, we generate 3000 observations and we
use just the last T observations to avoid the initial values problem, which is especially
important when taking into account the long-memory properties of the DGP.

To each simulated series,we applyTSW. If TSWchooses a seasonally nonstationary
ARIMAmodel for this series, we collect it for the future analysis. If the model chosen
by TSW contains stationary seasonality we discard the simulated series. We proceed
until we have I = 500 simulated series for each specification identified by TSW as
seasonally nonstationary.

In addition to SARFIMA, we produce simulations for a set of quarterly Airline
models of Box and Jenkins (1970) which are believed to approximate reasonably well
the stochastic properties of many series

(1 − B)(1 − Bτ )xt = (1 + Q1B)(1 + Qτ B
τ )at (11)

with τ = 4 and negative values for Q1 and Q4: Qi = {−0.8,−0.6,−0.3}, i =
1, 4 and [Q1, Q4] = {[−1,−0.8] , [−1,−0.6] , [−1,−0.3]}. In the same way as for
SARFIMA, we collect I = 500 series for each specification identified by TSW as
seasonally nonstationary.

Thereafter, each selected series for each specification is adjusted by TSW and coef-
ficients of FI at seasonal frequencies are estimated.4 It is important to remark that,
even if several series are simulated from the same SARFIMA specification, the TSW
may choose distinct SARIMA models for each of the simulated series. Moreover,
even if the model chosen is the same, the estimated SARIMA parameters may be
very different. Since the seasonal filters applied to the data are based on the identified
SARIMA model, different filters may be applied to each of the series simulated from
the same SARFIMA specification. In this way, the mean of the estimated parameters
of FI at seasonal frequencies of the adjusted series does not have statistical meaning.
Therefore, to build conclusions on the invertibility of the adjusted series we propose
the following testing procedure. After estimating the FI parameters at seasonal fre-
quencies, we test if we can reject the null hypothesis di ≥ −0.5 in favor of the
alternative di < −0.5 at least for one of the two parameters of seasonal FI. If this is
the case, we say that the adjusted series is statistically noninvertible. Also, we test if
the series is statistically invertible, i.e., if we can reject the null hypothesis di ≤ −0.5
in favor of the alternative di > −0.5 for both estimated parameters of seasonal FI.

4 We exclude 40 observations from the beginning and from the end of series to eliminate nonlinearities
produced by preliminary estimator of SA.
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As a result, for each Airline and SARFIMA specification, we can compute both the
percentage of statistically noninvertible and the percentage of statistically invertible
series (in the adjusted I = 500 series chosen by TSW to be seasonally nonstationary
before adjustment).

To estimate the coefficients of FI at the seasonal frequencies, we use the log-
periodogram regression with a complex-valued taper proposed by Hurvich and Chen
(2000):

ht = 0.5

[
1 − exp

{
i2π (t − 0.5)

T

}]
, t = 1, . . . , T .

The choice of the log-periodogram regression is justified by several reasons. Since
we do not knowwhat the correct specification after adjustment is, we avoid the param-
eterization of the whole spectrum by choosing a local estimation method. Tapering is
particularly suitable when the estimated coefficients of FI are expected to be negative,
possibly smaller than−0.5. In these circumstances, the estimation results based on the
nontapered data will have a strong positive bias, making themethod not appropriate for
the purposes of this work. As Hurvich and Ray (1995) and Velasco (1999) point out,
the use of a taper can alleviate the negative effects of overdifferencing, reducing the
bias in FI estimates. Finally, tapering also reduces the bias that appears due to contam-
ination of the periodogram from the short memory component of the spectral density
and allows for a less restrictive trimming of frequencies in presence of asymmetries,
as it happens at the frequency π/2. A comprehensive discussion of the performance
of the method for seasonal and cyclical time series with asymmetric long memory
properties is presented in Arteche and Velasco (2005). Nevertheless, we also perform
a small Monte Carlo study to check the performance of the estimation method in the
presence of negative seasonal fractional integration at seasonal frequencies in the fol-
lowing way. For each specification, after simulating the data and before applying the
TSW (i.e. when we still know the true DGP), we take yearly differences, making sure
that the resulting series are over-differenced at seasonal frequencies having negative FI
coefficients. We estimate these coefficients computing the mean for each specification
to assess the estimation bias.

Also, note that the classification of an adjusted series as statistically noninvert-
ible or statistically invertible requires the one-tailed testing of two different seasonal
FI parameters (one for each seasonal frequency), and thus is subject to a multiple-
testing problem. Given that independence of the estimates at different frequencies is
satisfied asymptotically, we can control for the experiment-wide type-I error.5 Statis-
tical noninvertibility requires the rejection of at least one of the two nulls, so it faces
the increase in type I error that occurs when statistical tests are used repeatedly. If
two independent tests are performed, the experiment-wide significance level is given

5 The construction of a joint test is difficult. Note that even if one assumes independence, the testing
procedures would still require a one-tailed joint test. Wald tests based on chi-squared distributions cannot
easily accommodate directional tests. More important, statistically invertibility requires the rejection of the
null H0 : di ≤ −0.5 for the two seasonal FI parameters. In a standard joint test, the alternative would
take the form H1 : d1 > −0.5 or d2 > −0.5 thus the rejection of the null does not guarantee statistical
invertibility.
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by ᾱ = 1 − (1 − α)2, being α the significance level employed testing at each fre-
quency (Sidak 1967). Thus, an ᾱ = 10% implies the use of the significance level
α = 5.01% ≈ 5% at individual tests. As for statistical invertibility, it requires the
rejection of exactly the two one-tailed nulls. Although the experiment-wide signifi-
cance level cannot be computed exactly, it can be bounded by α under independence.
Note that the process would be incorrectly classified as statistically invertible if the
two nulls are rejected when in fact, either both hypotheses are true or only one is
true. In the former case, the experiment-wide significance level under independence
is ᾱ = α2. In the latter case, the experiment-wide significance level can be bounded
as α2 ≤ ᾱ = α(1− β) ≤ α, where β is the probability of type II error. Therefore, we
remain conservative by testing each frequency at significance level α = 10%, ensuring
that the experiment-wide significance level ᾱ does not exceed 10%.

All the simulations and estimations were produced in Matlab. The programs are
available from the authors upon request. For seasonal adjustment, we use the last
release of the TSW for Matlab developed by the Bank of Spain.

4.2 Simulation results

The results of the simulation study for the different Airline and SARFIMA speci-
fications are presented in Tables 1 and 2 respectively. In both tables, the particular
specification, chosen as DGP, appears in the first column (i.e., the values for the MA
parameters Q1 and Q4 for the Airline model and the parameters of FI at seasonal
frequencies d1 and d2 for SARFIMA).

4.2.1 Monte Carlo results for the tapered log-periodogram regression for seasonal
frequencies with negative FI

The Monte Carlo study is presented in the columns 2 and 3 of Tables 1 and 2. The
coefficients in the table are d̂i = 1 + d̂∗

i , where d̂
∗
i denotes the mean of the estimates

obtained with yearly differenced data.6

The estimated parameters are slightly positively biased. The bias is higher when
the negative FI is greater in absolute value. Thus, the highest bias is observed for the
process {d0 = 0.3, d1 = 0.1, d2 = 0.1}. Recall that after taking yearly difference it
becomes {d∗

0 = −0.7, d∗
1 = −0.9, d∗

2 = −0.9}.
The simulation results for the Airline specifications are useful to study the per-

formance of the method in the presence of short memory components. Results are
presented in Table 1. The estimation method always detects seasonal unit roots. The
precision of the estimates depends on the value of the seasonal MA parameter Q4: the
larger this value in absolute terms, the larger is the bias.

6 Recall that the original data was yearly differenced in theMonte Carlo analysis to ensure that the resulting
series are overdifferenced at seasonal frequencies with negative coefficients of fractional integration. For
the processes with the fractional order of integration at zero d0 = 1.5, we take a first difference in addition
to the yearly difference. The same applies to the Airline model.
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Finally, note that no matter the specification, the coefficient d1 tends to be esti-
mated less precisely than the coefficient d2 due to the asymmetries presented in the
periodogram around frequency π/2.

Overall, the performance of the method at seasonal frequencies is similar to its per-
formance at frequency zero, documented in previous studies. The log-periodogram
regression with tapered data performs well for negative seasonal FI even for coeffi-
cients from the noninvertible region and also for the estimation of the parameter at
frequency π/2, where the spectrum is not symmetric. The method works also well in
the presence of short memory components, as shown in Table 1. Thus, the results from
the Monte Carlo study confirm that the log-periodogram regression with tapered data
is appropriate for the purposes of the present work.

4.2.2 Results on the invertibility of the adjusted series

The column four of Tables 1 and 2 presents the percentage of cases for which TSW
chooses a seasonally nonstationary model to fit the data for each of the simulated
processes (NS). As can be seen in Table 1, TSW always chooses a nonstationary
model when the true DGP follows the Airline model. As expected for the SARFIMA
specifications (Table 2) this percentage increases together with the magnitude of both
d1 and d2.

Next three columns of Tables 1 and 2 contain results of the statistical testing
described in the simulation set-up. Column five presents the percentage of cases in
which the seasonally adjusted processes are estimated invertible (I), i.e., with the two
estimated coefficients of FI at seasonal frequencies greater than −0.5. Thereafter we
compute the percentage of replications in which the SA series have at least one esti-
mated coefficient of seasonal FI statistically smaller than −0.5—that is to say, the
series is statistically noninvertible (SNI). Thereafter, we test statistical invertibility:
both estimated coefficients are statistically greater than −0.5. The percentage of sta-
tistically invertible results is given in column seven (SI). When the data are simulated
from the Airline model (Table 1), the estimated coefficients of FI at frequencies π/2
(3π/2) and π are almost always smaller than−0.5, which indicates the (possible) non-
invertibility of the corresponding SA series. Moreover, in a high percentage of cases,
this noninvertibility is statistically significant. This result is not surprising and it is
completely in line with the implications of the TSW for this class of models (Gomez
andMaravall 2001). For the SARFIMA specifications (Table 2), the result of the appli-
cation of TSW depends on the initial properties of the simulated data. Thus, if the two
coefficients of the seasonal FI are within the stationary region (di < 0.5, i = {1, 2}),
even if the TSW identifies a nonstationary seasonal model (this occurs in a relatively
small percentage of cases), the estimated coefficients of seasonal FI of the SA series
are greater than −0.5 in most of the cases. Only a very small percentage of series are
(possibly) statistically noninvertible. The percentage of statistically invertible results
decreases as the seasonal FI coefficients of the original series approach the nonstation-
ary region. For example, for d0 = 0.3, if the original series have both coefficients of
seasonal FI di = 0.1, TSWonly selects a seasonal nonstationary representation in 32%
of the cases. In addition, even if this is the case and a nonstationary SARIMA is chosen,
the estimated coefficients of the SA series almost always lie (99%) in the invertible
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region. Moreover, in 91% of the cases both parameters are statistically greater than
−0.5 and the series are statistically invertible. The percentage of statistically invertible
results decreases to 45% if d1 and d2 are equal to 0.3. Still, the estimated parameters
are greater than −0.5 in 92 % of the cases and the percentage of statistically invertible
results is 56%.

On the contrary, if one of the coefficients of seasonal FI in the DGP is greater
than 0.5, TSW fits a seasonally nonstationary model a higher percentage of times,
and for these cases, the SA series are often estimated to be noninvertible. Once more,
the percentage of statistically noninvertible results increases with the parameters of
seasonal FI of the original series. Thus, (again for d0 = 0.3) if di = 0.7 for the
two coefficients, TSW selects a nonstationary representation in almost 100% of the
cases. Only in 13.2% of the cases, the SA series are invertible (and only in 7.6% the
invertibility is statistically significant) whereas in 42% of the replicas the SA series
were found to be statistically noninvertible. It is also interesting to note that, although
the parameter of fractional integration at zero is not neutral, the same conclusions are
obtained for all simulated d0.

If d1 and d2 in the DGP are very different in magnitude, the TSW chooses the
model with nonstationary seasonality for the process with higher d1 more often. After
the adjustment, these processes present lower percentage of invertible and statistically
invertible cases. For example, if parameters in the DGP are d0 = 0.3, d1 = 0.1
and d2 = 0.5, the TSW chooses models with non-stationary seasonality 58.1% of
times, while this percentage reaches 96% when d1 = 0.5 and d2 = 0.1. The SA data
is invertible in 85% of the cases (and statistically invertible in 46%) for the initial
process with d1 = 0.1 and d2 = 0.5, and in 67% (26%) of the cases for data generated
with d1 = 0.5 and d2 = 0.1. Thus, we find that the TSW seems to react strongly to
long memory at the yearly frequency.

The previous results indicate that invertibility may not be a severe issue in many
circumstances. However, they contradict the theoretical findings derived in Sect. 3.
Recall that the simulations are based on data identified by TSW as seasonally non-
stationary and, according to the Eq. (10), the adjusted series should contain seasonal
unit MA roots. To aid in the explanation of this apparent puzzle, the columns eight
and nine in Tables 1 and 2 report the median with the 16th and 84th percentiles (68%
band) of the estimated seasonal FI parameters after adjustment. Several results emerge
from these columns:

1. If the DGP contains stationary seasonality with relatively low parameters of FI,
the adjusted series is not only usually estimated (statistically) invertible, but also
the estimated parameters of FI are indeed very small in magnitude, with no sign
of unit MA roots. For example, if the data is generated from an SARFIMA with
d0 = 0.3, d1 = 0.1 and d2 = 0.1, the median of the estimated values after
adjustment is d̃1 = −0.116 and d̃2 = −0.096.

2. If the DGP contains seasonal FI with equal parameters (d1 = d2), the medians of
parameter estimates after adjustment are also close to each other and very similar
to the values employed to generate the data but with opposite sign.

3. If d1 and d2 in the DGP are very different in magnitude, the median values after
adjustment are negative but smaller in magnitude than the larger parameter in the
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Table 3 Model for the signal and its approximation

SARFIMA:(1 − B)2−0.8−0.71/4 (1 + B)1−0.71/2
(
1 + B2

)1−0.71/4
xt = ε1,t ; var

(
ε1,t

) = 1,

Airline:∇∇4xt = (1 − 0.8B)
(
1 − 0.7B4

)
at , var (at ) = 1,

Models for the separate components

xt = nt + st
(
1 + B + B2 + B3

)
st = (1 − B) (1 + 0.8290B + 0.3519B) ast , var (ast ) = 0.0167

∇2nt = (1 − 0.9147B) (1 − 0.8000B) ant , var (ant ) = 0.7733

∇0.8	
Nt =

[
(1−0.9147B)(1−0.8000B)

(1−0.8B)
(
1−0.71/4B

)

]2 [
(1+B)

(
1+B2

)

(
1+0.71/4B

)(
1+0.71/2B2

)

]2

�

� = (1 + B)
−

(
1−0.71/2

) (
1 + B2

)−
(
1−0.71/4

)

0.7733
1 εt

Approximation

∇0.8	
N

∗
t =

[
(1−0.9147B)(1−0.8000B)

(1−0.8B)
(
1−0.71/4B

)

]2
(1 + B)1−0.71/2

(
1 + B2

)1−0.71/4 0.7733
1 ε′

t

DGP. For example, if parameters in the DGP are d0 = 0.3, d1 = 0.7 and d2 = 0.1,
the median estimated values after adjustment are d̃1 = −0.476 and d̃2 = −0.465.

Themost likely explanation for these results is that for a given data length, frequency
and bandwidth employed in the simulations, the integer framework process resulting
from TSW seasonal adjustment is difficult to distinguish from FI integration at sea-

sonal frequencies, i.e.,
[

�s (B)
�SS(B)

]2
(1 + B)−d2

(
1 + B2

)−d1 ≈ (1 + B)δ2
(
1 + B2

)δ1 .7

Therefore (10) can be approximated by:

∇d0
	

N
∗
t = σ 2

n

σ 2

�2
n(B)

�2
NN (B)

(1 + B)δ2
(
1 + B2

)δ1
αt (12)

To illustrate the approximation of (10) by (12), we provide a numerical example in
Table 3.

Consider that the true DGP is an SARFIMA model with stationary FI at seasonal
frequencies and that TSW identifies an Airline model to fit the data. The respective
parameterizations appear in the first part of Table 3.8 The table also shows the models
for the separate components and the model for the SA data derived by TSW if the
programuses theAirline specifications in the table for the seasonal adjustment. Finally,

7 The quality of the approximation depends on the DGP and the model chosen by TSW to fit the data.
According to the simulation results, this approximation is expected to be reliable for d1, d2 ∈ [0, 1], which
are the values employed in our study. For these values, δ1 and δ2 usually belong to the [0, 1] interval (see
Table 2).
8 We have selected the parameterizations of the SARFIMAandAirlinemodels for illustrative purposes. The
parameterization of the Airline selected by the TSW depends on the particular realization of the data. Thus,
there might be another parameterization of the Airline model that constitutes a better integer approximation
to the SARFIMA in the table.
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Fig. 1 (pseudo) Spectrums of the signal S (N ) and its approximation S
(
N∗)

of the process of the illustrative
example of Table 3

the last row of the table presents the approximation
	

N
∗
t to the historical estimator of

the SA series
	

Nt .

Figure 1 plots the (pseudo) spectrums of both,
	

Nt and
	

N
∗
t . Note that the (pseudo)

spectrum of
	

Nt presents strong dips at the two seasonal frequencies which correspond
to the MA roots of a noninvertible process. These dips are also present in the spectrum

of the approximation
	

N
∗
t . However, in this last case the dips correspond to invertible

negative seasonal fractional integration. To assess the quality of the approximation

of
	

Nt by
	

N
∗
t , we perform the following exercise. From the spectrum of the histori-

cal estimator of the SA series, S
(	

Nt , ω
)
, we draw k = 1, . . . , 1000 periodograms

I (k)
(	

N , ω j

)
= 1

2 S
(	

N , ω j

)
∗υk

j , where υ
(k)
j are independently and identically dis-

tributed χ2
2 errors, j = 1, . . . , T/2 − 1.9 If we fit

	

N
∗
t instead of

	

Nt to the simulated

periodograms, we can test the null hypothesis that 2I (k)
(	

N , ω j

)
/S

(
	

N
∗
, ω j

)
=

υ
(k)∗
j in the neighborhood of the two seasonal frequencies is distributed as χ2

2 . If for
a given sample size, frequency and bandwidth (T = 500, quarterly data, the same

bandwidth as we use in simulations), we cannot reject this null, the processes
	

Nt and
	

N
∗
t are statistically not distinguishable around the seasonal frequencies, that is to say

that the approximation of (10) by (12) is good. In this example, the null is rejected only
a 13% and a 6% of times for the frequencies π/2 and π respectively.10 This empiri-
cal example suggests that in many cases the noninvertible process resulting from the
seasonal adjustment by TSW may not be distinguished in practice from an invertible
process with seasonal fractional integration.

This explanation can also accommodate the second and third findings. Our results
show that the integer SARIMA framework where TSW operates is quite successful

9 For j = 0 and j = T/2, υ j is distributed χ2
1 . However frequencies zero and π are not required for this

test. See Berkowitz and Diebold (1998) for the details on the bootstrap in frequency domain.
10 These percentages depend both on T and the bandwidth. For larger T and smaller bandwidth, the null is
rejected more often. However, practical applications with T > 500 (more than 125years of data) are rare.
A smaller bandwidth implies fewer points for testing, which influences significantly the quality of the test.
Thus, it has sense only if T is very large.
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approximating processes with equal orders of FI at seasonal frequencies. However,
the integer framework is not flexible enough to correctly approximate SARFIMA
processes with different (and not related) orders of FI at seasonal frequencies. In
these cases, TSW reacts more to the FI coefficient at a frequency π/2 and selects an
SARIMA model with stronger seasonality for data simulated with d1 >> d2 than for
data simulated with d1 << d2. However, the main result still holds: if the true DGP is
stationary FI at seasonal frequencies, then the TSW adjusted data usually is virtually
not distinguishable from a process with invertible seasonal FI MA roots.

Overall, simulation results are in line with Gomez and Maravall (2001), but using
a more flexible definition of invertibility: if the process contains strong nonstationary
seasonality (including FI) then the SA series estimated by TSW will be in general
noninvertible. However, if the original series were stationary fractionally integrated
at seasonal frequencies, TSW will choose a nonstationary representation in a smaller
percentage of cases and, even if a nonstationary seasonal model is chosen, the resulting
SA series is likely to be not distinguishable from an invertible process.This result is
important because an econometrician never knows what the DGP for the real data is,
and always works with approximations which fit the data reasonably well according to
the results of statistical testing.We illustrate our results with real data in the following
section.

5 Empirical examples

To illustrate the simulation results, we consider several quarterly series of the Spanish
economy: Industrial Production Index (IPI), airline passengers (AIR), employment
(EMP) and three quarterly cyclical economic indicators, namely: cement consumption
(CC), car registrations (CR) and housing starts (HS). The IPI and these three indicators
are considered to be the cycle drivers for an economy in Leamer (2009) and have been
recently used by Bujosa et al. (2013) to construct a composite leading indicator for
the Spanish economy. All the series start in the late 60s or early 70s and they are non-
stationary in the mean and strongly seasonal. Monthly data for IPI, CC, CR, HS and
AIR are obtained from the Bank of Spain. To convert the IPI to quarterly, we use the
simple average of the monthly observations inside each quarter. The other series are
converted to quarterly by adding the observations inside the quarter. Employment has
been obtained from the OECD stats database. We apply a logarithmic transformation
to IPI, CR, and AIR to stabilize volatility.

Figure 2 (left panels) plots the original series and the series after adjustment by
TSW. A strong seasonal pattern is observed in all the original series. We exclude the
last years of data from the analysis to circumvent the strong nonlinearities consequence
of the late 2000s recession.11 This nonlinear pattern is clearly visible in Fig. 2 and
may disturb the interpretation of the results.

11 In particular the analysed series have the following lengths. HS: 1970:1-2006:4; CR: 1970:1-2007:4;
CC: 1970:1-2007:4; ln(IPI): 1975:1-2007:4; ln(AIR): 1970:1-2008:4; EMP: 1964:1-2007:4. Note that for
HS, an additional year is taken since the effects of the crisis manifest earlier. On the contrary, we have
been able to use an additional year for airline passengers (AIR) and employment (EMP). Nevertheless, the
estimation results including the period of the crisis are available under request.
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Fig. 2 Nonadjusted and adjusted data (left panel) and their respective periodogram (right panel) from the
empirical application
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Table 4 Empirical example: models identified by TSW

Variable ARIMA model chosen by TSW:

ln(IPI) (1 + 0.2275B) ∇∇4yt =
(
1 − 0.7146B4

)
εt , changed by seats to:

∇∇4yt = (1 − 0.2275B)
(
1 − 0.7146B4

)
εt

CC ∇∇4yt =
(
1 − 0.7054B4

)
εt

ln(CR) ∇∇4yt =
(
1 − 0.6732B4

)
εt

HS
(
1 − 0.4836B4

)
∇ yt = (1 − 0.5360B) εt

ln(AIR) ∇∇4yt = (1 − 0.1686B)
(
1 − 0.6158B4

)
εt

EMP (1 − 0.7923B) ∇∇4yt =
(
1 − 0.6320B4

)
et

The right panel in Fig. 2 depicts the periodogram of both differenced series: original
and adjusted by TSW. As expected, the periodograms of the differenced original series
have strong peaks at the two seasonal frequencies, while those of the differenced
adjusted series present dips at the same frequencies. The models identified by TSW
for the original series are provided in Table 4.

As can be seen in the table, all the series except ln(IPI), HS and EMP fol-
low a standard Airline model. For CC and ln(CR) the trend is very strong and
Q1 is equal to zero. The model identified for ln(IPI) does not accept the admissi-
ble decomposition and is modified by SEATS. Given that AR(1) polynomials with
�1 in the interval (−0.2, −0.4) are practically indistinguishable from the MA(1)
with Q1 = −�1, SEATS replaces the original model with the Airline model (Mar-
avall 2009). TSW chooses a stationary seasonal model for HS and SARIMA for
EMP.

We estimate the coefficients of FI at seasonal frequencies before and after the
adjustment by TSW. These results are presented in Table 5.

It is interesting to note that the examined series seem to follow the SARIMAmodel.
Note that the estimated seasonal FI coefficients before the adjustment (columns four
and five) are both statistically different from one in all the cases. In particular, CC,
ln(CR) and EMP seem to be seasonally stationary before adjustment. Overall, in line
with the simulation results, even though TSW has selected seasonally nonstationary
models for the three series, the estimated coefficients after the adjustment are substan-
tially higher than −0.5, suggesting that the adjusted series can be approximated by an
invertible process. That also seems to be the case of HS, for which TSW has selected
a stationary representation before adjustment. For the ln(IPI) and ln(AIR) series, the
estimated coefficients of FI at frequency π/2 are larger than 0.5, albeit we cannot
reject the null of d1 = 0.5 at any significance level. After adjustment, the estimated
coefficient of FI at the frequency π is smaller than −0.5 and the adjusted series may
then be noninvertible, although we cannot reject the null of d2 ≥ −0.5 in favor of the
alternative d2 < −0.5. Overall, the empirical results are in line with the results of the
simulation study.
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Table 5 Empirical example: estimation results after adjustment

T m1/m2 Before adjustment After adjustment

d̂1 d̂2 d̃1 d̃2

ln(IPI) 128 32/16 0.617 0.231 −0.153 −0.646

(0.144) (0.229) (0.144) (0.229)

CC 148 36/18 0.276 0.075 −0.127 −0.284

(0.133) (0.209) (0.133) (0.209)

CR 148 36/18 0.222 0.212 −0.317 −0.178

(0.143) (0.168) (0.115) (0.153)

HS 144 36/18 0.391 0.474 −0.266 −0.132

(0.134) (0.210) (0.134) (0.2100)

ln(AIR) 148 36/18 0.532 0.244 −0.195 −0.537

(0.133) (0.209) (0.133) (0.209)

EMP 140 36/18 0.380 0.054 −0.232 −0.226

(0.134) (0.210) (0.134) (0.210)

m1,m2—bandwidth parameters employed for the estimation at frequenciesπ/2 andπ respectively selected
based on an examination of the log-log plot of the tapered periodogram of the data in differences

6 Conclusions

In this paper, we have examined the invertibility property of seasonal series adjusted by
TSW.According toGomez andMaravall (2001) whenever the process chosen by TSW
to fit the data contains seasonal unit roots, the adjusted series estimated by the program
has MA unit roots and, as a result, it is not invertible and cannot be approximated by
an AR (VAR) process as it is ordinarily done in practice.

In the simulation study carried out in this work, we found that the invertibil-
ity issue may not be in many circumstances a strong concern. In particular, we
found that if the true DGP follows the Airline model, the adjusted series produced
by TSW are indeed noninvertible. However, if the series is fractionally integrated
at the seasonal frequencies, which is less restrictive and very plausible in some
cases according to the empirical evidence, the adjusted series still can be approxi-
mated by an invertible process, depending on the stationarity of the original series.
Thus, if the original series is seasonally stationary with coefficients of FI at sea-
sonal frequencies smaller than 0.5, the SA series adjusted by TSW is likely to be
statistically invertible or indistinguishable from an invertible process even if the
program chose a nonstationary model for the data, therefore still admitting AR (or
VAR) approximation. This approximation is more plausible the further the sea-
sonal FI parameters of the original series are from the nonstationary region. On
the contrary, if the original series is seasonally nonstationary, the resulting adjusted
series are expected to be noninvertible. As shown in the empirical examples, these
results are interesting since stationary FI seasonality is not a rare event in economic
data.
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