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Abstract Quantile regressionhas received agreat deal of attention as an important tool
for modeling statistical quantities of interest other than the conditional mean. Varying
coefficient models are widely used to explore dynamic patterns among popular models
available to avoid the curse of dimensionality. We propose a support vector quantile
regression model with varying coefficients and its two estimation methods. One uses
the quadratic programming, and the other uses the iteratively reweighted least squares
procedure. The proposedmethod can be applied easily and effectively to estimating the
nonlinear regression quantiles depending on the high-dimensional vector of smoothing
variables. We also present the model selection method that employs generalized cross
validation and generalized approximate cross validation techniques for choosing the
hyperparameters, which affect the performance of the proposed model. Numerical
studies are conducted to illustrate the performance of the proposed model.
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1 Introduction

Quantile regression (QR), introduced by Koenker and Bassett (1978), has been widely
used as a way to estimate the conditional quantiles of a response variable distribution.
Thus, QR in general provides a much more comprehensive picture of the conditional
distribution of a response variable than the conditional mean function. Furthermore,
QR is a useful and robust statistical method for estimating and conducting inferences
about a model for conditional quantile functions (Yu et al. 2003). Applications of QR
in many different areas, including medicine (Cole and Green 1992; Heagerty and Pepe
1999), survival analysis (Ying et al. 1995; Koenker and Geling 2001; Shim andHwang
2009), econometrics (Hendricks and Koenker 1992; Koenker and Hallock 2001; Shim
et al. 2011), and growth charts (Wei and He 2006), have been studied.

To address the curse of dimensionality problem in regression study, the additive
model by Breiman and Friedman (1985) and the varying coefficient (VC) model by
Hastie and Tibshirani (1993) have been proposed. It is well known that a general form
of the VC model includes the additive model as a special case. VC models constitute
an important class of nonparametric models. However, VC models have inherited the
simplicity and easy interpretation of classical linearmodels. The introductions, various
applications, and current research areas of VC models can be found in Hastie and
Tibshirani (1993), Hoover et al. (1998), Fan and Zhang (2008), and Park et al. (2015).
Recently, QR with VCs has been studied. Honda (2004) considered the estimation
of conditional quantiles in VC models by estimating the coefficients by local L1
regression. Kim (2007) also considered conditional quantiles with VCs and proposed a
methodology for their estimation and assessment using polynomial splines. Cai andXu
(2008) considered QR with VCs for a time series model. They used local polynomial
schemes to estimate the coefficients. In this paper, we propose a support vector quantile
regression (SVQR) with VCs and its two estimation methods, which can be applied
effectively to high-dimensional cases. This is the first article that deals with SVQR
withVCs. By theway, we do not deal with the quantile crossing problems in this paper.

The support vector machine (SVM), first developed by Vapnik (1995) and his
group at AT&T Bell Laboratories, has been successfully applied to a number of
real world problems related to classification and regression problems. Takeuchi and
Furuhashi (2004) first consideredQRby SVM.Li et al. (2007) proposed a SVQRusing
quadratic programming (QP) and derived a simple formula for the effective dimen-
sion of the SVQR, which allows convenient selection of hyperparameters. Shim and
Hwang (2009) considered amodified SVQRusing an iterative reweighted least squares
(IRWLS) procedure.

In this paper we present an SVQR with nonlinear coefficient functions and its
two estimation methods. One uses QP and the other uses the IRWLS procedure. The
IRWLS procedure uses a modified check function. This IRWLS procedure makes it
possible to derive a generalized cross validation (GCV) method for choosing hyperpa-
rameters and to construct pointwise confidence intervals for coefficient functions. We
also investigate the performance of the SVQR estimations through numerical studies.
The rest of this paper is organized as follows. Section2 introduces two versions of
SVQR with VCs. Sections3 and 4 present our numerical studies and conclusions,
respectively.
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2 SVQR with VCs

In this section we propose two versions of SVQR with VCs and their hyperparameter
selection procedures.

2.1 SVQR with VCs using QP

We now illustrate SVQR with VCs using QP and its hyperparameter selection proce-
dure. In this section we adapt a dimension reduction modeling method termed the VC
modeling approach to explore dynamic patterns.

We assume the θ th QR with VCs takes the form

qθ (xi , ui ) =
dx∑

k=0

xikβk,θ (ui ) = β t
θ (ui ) xi , (1)

where superscript t denote the transpose, ui is called the smoothing variables,
xi = (xi0, xi1, . . . , xidx )

t with xi0 ≡ 1 is the input vector, {βk,θ (·)} are smooth coef-
ficient functions, and βθ (ui ) = (β0,θ (ui ), . . . , βdx ,θ (ui ))

t . Here all of the {βk,θ (·)}
are allowed to depend on θ . For simplicity, we drop θ from {βk,θ (·)}. The QR model
(1) has been widely used to analyze conditional quantiles due to their flexibility and
interpretability. In fact, this model constitutes an important class of nonparametric
models.

We first estimate the coefficients {βk(·)} using the basic principle of SVQRbased on
the training data set D = {(xi , ui , yi )}ni=1. Then we estimate the conditional quantile
qθ (·, ·) in VC model by estimating the coefficients. For the SVQR with VCs we
assume that each coefficient function βk(ui ) is nonlinearly related to the smoothing
variables ui such that βk(ui ) = wt

kφ(ui ) + bk for k = 0, . . . , dx , where wk is a
corresponding weight vector of size d f × 1. Here the nonlinear feature mapping
function φ : Rdu → Rd f maps the input space to the higher dimensional feature
space, where the dimension d f is defined in an implicit way. An inner product in
feature space has an equivalent kernel in input space, φ(ui )tφ(u j ) = K (ui , u j ),
provided certain conditions hold Mercer (1909). Among several kernel functions we
use in this paperGaussian kernel, polynomial kernel and Epanechnikov kernel defined,
respectively, as

K
(
ui , u j

) = exp
(
−‖ui − u j‖2/2σ 2

)
,

K
(
ui , u j

) = (
1 + utiu j

)d
, i, j = 1, . . . , n,

K
(
ui , u j

) = 0.75

(
1 − ‖ui − u j

h
‖2

)
I

(
‖ui − u j

h
‖ < 1

)
,

where σ , h and d are kernel parameters.
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1018 J. Shim et al.

Then, using the basic principle of SVQR, the coefficient estimators {β̂k(·)} of SVQR
with VCs can be obtained by minimizing the following equation,

L = 1

2

dx∑

k=0

‖wk‖2 + C
n∑

i=1

ρθ

(
yi −

dx∑

k=0

xik
(
wt

kφ (ui ) + bk
)
)

, (2)

where ρθ (r) = θr I (r ≥ 0)−(1−θ)r I (r < 0) is the check function with the indicator
function I (·), and C > 0 is a penalty parameter which controls the balance between
the smoothness and fitness of the QR estimator.

We can express the optimization problem (2) by the formulation for SVQR as
follows:

L = 1

2

dx∑

k=0

‖wk‖2 + Cθ

n∑

i=1

ξi + C(1 − θ)

n∑

i=1

ξ∗
i

subject to

⎧
⎨

⎩

yi − ∑dx
k=0 xik

(
wt
kφ(ui ) + bk

) ≤ ξi ,

−yi + ∑dx
k=0 xik

(
wt

kφ(ui ) + bk
) ≤ ξ∗

i , i = 1, . . . , n.

We construct a Lagrange function as follows:

L = 1

2

dx∑

k=0

‖wk‖2 + Cθ

n∑

i=1

ξi + C(1 − θ)

n∑

i=1

ξ∗
i

−
n∑

i=1

αi

(
ξi − yi +

dx∑

k=0

xik(w
t
kφ(ui ) + bk)

)

−
n∑

i=1

α∗
i

(
ξ∗
i + yi −

dx∑

k=0

xik(w
t
kφ(ui ) + bk)

)

−
n∑

i=1

ηiξi −
n∑

i=1

η∗
i ξ

∗
i . (3)

We notice that the non-negative constraints with Lagrange multipliers α
(∗)
i , η

(∗)
i ≥ 0

should be satisfied. Taking partial derivatives of Eq. (3) with regard to the primal
variables (wk, ξ

(∗)
i , bk), we have

∂L

∂wk
= 0 ⇒ wk =

n∑

i=1

xikφ(ui )(αi − α∗
i ), k = 0, 1, . . . , dx ,

∂L

∂ξi
= 0 ⇒ Cθ = αi + ηi , i = 1, . . . , n,
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∂L

∂ξ∗
i

= 0 ⇒ C(1 − θ) = α∗
i + η∗

i , i = 1, . . . , n,

∂L

∂bk
= 0 ⇒

n∑

i=1

xik
(
αi − α∗

i

) = 0, k = 0, 1, . . . , dx .

Plugging the above results into the Eq. (3), we have the dual optimization problem to
maximize

− 1

2

n∑

i, j=1

(
αi − α∗

i

) (
α j − α∗

j

) dx∑

k=0

xik x jk K (ui , u j ) +
n∑

i=1

yi
(
αi − α∗

i

)
(4)

subject to

⎧
⎨

⎩

∑n
i=1 xik

(
αi − α∗

i

) = 0, k = 0, 1, . . . , dx ,

0 ≤ αi ≤ Cθ, 0 ≤ α∗
i ≤ C(1 − θ), i = 1, . . . , n.

We notice that this SVQR with VCs works by solving a constrained QP problem.
Solving the QP problem (4) with the constraints determines the optimal Lagrange

multipliers (α̂i , α̂
∗
i ). Thus, for a given (xt , ut ) the SVQR with VCs using QP for

coefficient function estimation takes the form:

β̂k(ut ) =
n∑

i=1

xik K (ut , ui )
(
α̂i − α̂∗

i

) + b̂k,

and then for QR function estimator takes the form:

q̂θ (xt , ut ) =
n∑

i=1

dx∑

k=0

xtk xik K (ut , ui )
(
α̂i − α̂∗

i

) +
dx∑

k=0

xtk b̂k .

We remark that (xt , ut ) could be an observation in the training data set or a new
observation. Here b̂k for k = 0, 1, . . . , dx is obtained via Kuhn–Tucker conditions
(Kuhn and Tucker 1951) such as

⎛

⎜⎜⎜⎝

b̂0
b̂1
...

b̂dx

⎞

⎟⎟⎟⎠ = (
X t
sXs

)−1 X t
s ys, (5)

where Xs is an ns × (dx + 1) matrix with i th row xti for i ∈ Is = {i =
1, . . . , n|0 < αi < Cθ, 0 < α∗

i < C(1 − θ)}, ys is an ns × 1 vector with i th

element
(
yi − ∑n

j=1
∑dx

k=0 xik x jk K (ui , u j )
(
α̂ j − α̂∗

j

))
for i ∈ Is and ns is the size

of Is .
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1020 J. Shim et al.

We now consider the hyperparameter selection problem which determines the
appropriate hyperparameters of the proposed SVQR with VCs using QP. The func-
tional structure of the SVQR with VCs using QP is characterized by hyperparameters
such as the regularization parameter C and the kernel parameter γ ∈ {σ, h, d}. To
choose the values of hyperparameters of the SVQR with VCs using QP we first need
to consider the cross validation (CV) function as follows:

CV (λ) =
n∑

i=1

ρθ

(
yi − q̂(−i)

θ (xi , ui )
)
,

where λ = (C, γ ) is the set of hyperparameters, and q̂(−i)
θ (xi , ui ) is the θ th QR func-

tion estimated without i th observation. Since for each candidate of hyperparameters,
q̂(−i)
θ (xi , ui ) for i = 1, . . . , n, should be evaluated, selecting hyperparameters using
CV function is computationally formidable. Applying Yuan (2006), a GACV function
to select the set of hyperparameters λ for SVQR with VCs using QP is shown as
follows:

GACV (λ) =
∑n

i=1 ρθ

(
yi − q̂θ (xi , ui )

)

n − d f
,

where d f is a measure of the effective dimensionality of the fitted model. In this paper
we used d f = ns related with (5) from Li et al. (2007). Another common criterion is
Schwarz information criterion (SIC) (Schwarz (1978), Koenker et al. (1994))

SIC(λ) = ln

(
1

n

n∑

i=1

ρθ

(
yi − q̂θ (xi , ui )

)
)

+ ln n

2n
d f.

2.2 SVQR with VCs using IRWLS

We now illustrate SVQR with VCs using IRWLS procedure and its hyperparameter
selection procedure. This method enables us to derive GCV for selecting hyperpara-
meters and obtain the variance of β̂k(ut ) so as to construct an approximate pointwise
confidence interval for βk(ut ).

The check function ρθ (·) used in SVQR with VCs using QP can be seen as the
weighted quadratic loss function such as

ρθ (r) = υ(θ)r2,

where υ(θ) = (θ I (r ≥ 0)+ (1− θ)I (r < 0))/|r |. Now the optimization problem (2)
becomes the problem of obtaining (wk, bk)’s which minimize

L = 1

2

dx∑

k=0

‖wk‖2 + C

2

n∑

i=1

υi (θ)

(
yi −

dx∑

k=0

xik
(
wt
kφ(ui ) + bk

)
)2

, (6)
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whereυi (θ) = (θ I (ei ≥ 0)+(1−θ)I (ei < 0))/|ei |with ei = yi−∑dx
k=0 xik(w

t
kφ(ui )

+ bk) and C > 0 is a penalty parameter.
We can express the optimization problem (6) by formulation for weighted least

squares SVM as follows:

L = 1

2

dx∑

k=0

‖wk‖2 + C

2

n∑

i=1

υi (θ)e2i

subject to

yi −
dx∑

k=0

xik
(
wt
kφ(ui ) + bk

) = ei , i = 1, . . . , n.

We construct a Lagrange function as follows:

L= 1

2

dx∑

k=1

‖wk‖2+C

2

n∑

i=1

υi (θ)e2i −
n∑

i=1

αi

(
ei − yi +

dx∑

k=0

xik
(
wt
kφ(ui )+bk

)
)

,

(7)

where αi ’s are Lagrange multipliers. Taking partial derivatives of Eq. (7) with regard
to (wk, bk, ei , αi ) we have,

∂L

∂wk
= 0 ⇒ wk =

n∑

i=1

xikφ(ui )αi , k = 0, . . . , dx ,

∂L

∂bk
= 0 ⇒

n∑

i=1

xikαi = 0, k = 0, . . . , dx ,

∂L

∂ei
= 0 ⇒ Cυi (θ)ei − αi = 0, i = 1, . . . , n,

∂L

∂αi
= 0 ⇒ ei − yi +

dx∑

k=0

xik(w
t
kφ(ui ) + bk) = 0, i = 1, . . . , n.

After eliminating ei ’s and wk’s, we have the optimal values of αi ’s and bk’s from the
linear equation as follows:

(
XX t 
 K + 1

C V (θ)−1 X
X t 0(dx+1)×(dx+1)

) (
α

b

)
=

(
y

0(dx+1)×1

)
(8)

where X = (x1, . . . , xn)t , K is an n × n kernel matrix with (i, j)th element
K (ui , u j ), V (θ) is an n × n diagonal matrix of υi (θ), 0p×q is a p × q zero matrix,
α = (α1, . . . , αn)

t , b = (b0, . . . , bdx )
t and 
 denotes a componentwise product. We

notice that the solution to (8) cannot be obtained in a single step since V (θ) contains
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1022 J. Shim et al.

(α, b), which leads to apply the IRWLS procedure which starts with initialized values
of (α, b).

Solving the linear Eq. (8) determines the optimal Lagrange multipliers α̂i ’s and bias
terms b̂k’s. Thus, for a given (xt , ut ) the SVQRwith VCs using IRWLS for coefficient
function estimation takes the form:

β̂k(ut ) =
n∑

i=1

xik K (ut , ui )α̂i + b̂k, (9)

and then for QR function estimation takes the form:

q̂θ (xt , ut ) =
n∑

i=1

dx∑

k=0

xtk xik K (ut , ui )α̂i +
dx∑

k=0

xtk b̂k . (10)

For the purpose of utilizing in constructing confidence intervals for βk(ut ) and
qθ (xt , ut ) we are going to express β̂k(ut ) and q̂θ (xt , ut ) as the linear combination of
y in what follows. From (8) we can express β̂k(ut ) as follows:

β̂k(ut ) =
(
xt(k) 
 kt , νtdx+1(k)

)
M y

= sk(ut ) y, (11)

where sk(ut ) = (xt(k) 
 kt , νtdx+1(k))M, x(k) is the (k + 1)th column of X , kt =
(K (ut , u1), . . . , K (ut , un)), νdx+1(k) is a vector of size (dx + 1) with 0’s but 1 in
(k + 1)th, and M is the (n + dx + 1) × n submatrix of the inverse of the leftmost
matrix in (8). For a point (ut , xt ) we can also express q̂θ (xt , ut ) as follows:

q̂θ (xt , ut ) = ht (θ) y,

where ht (θ) = (
(xttX

t ) 
 kt , xtt
)
M. From (11) we can obtain the estimator of

Var(β̂k(ut )) for k = 0, 1, . . . , dx as follows:

̂Var
(
β̂k(ut )

)
= sk(ut )Σ̂ stk(ut ), (12)

where Σ̂ is an estimator of Var( y).
For nonparametric inference the confidence interval is really useful. There are two

types of confidence intervals. One is the pointwise confidence interval. The other
is the simultaneous confidence interval. Our interest here is in estimating coefficient
functions rather than theQR function itself. Thuswe illustrate the pointwise confidence
intervals only for the coefficient functions in the SVQR with VCs using IRWLS. But
the pointwise confidence interval for the QR function can be derived in the same way.
The estimated variance (12) can be used to construct pointwise confidence intervals.
Under certain regularity conditions (Shiryaev 1996), the central limit theorem for
linear smoothers is valid and we can show asymptotically
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Support vector quantile regression with varying. . . 1023

β̂k(ut ) − E
(
β̂k(ut )

)

̂Var
(
β̂k(ut )

) →D N (0, 1), k = 0, 1, . . . , dx ,

where →D denotes convergence in distribution. If the estimator is conditionally unbi-
ased, i.e., E(β̂k(ut )) = βk(ut ) for k = 0, 1, . . . , dx , approximate 100(1 − α)%
pointwise confidence interval takes the form

(
β̂k(ut ) ± z1− α

2

√
̂Var

(
β̂k(ut )

))
, k = 0, 1, . . . , dx , (13)

where z1−α/2 denotes the (1 − α/2)th quantile of the standard normal distribution.
In fact, the interval (13) is a confidence interval for E(β̂k(ut )). It is a confidence
interval for βk(ut ) under the assumption E(β̂k(ut )) = βk(ut ). Thus it is actually the
bias-ignored approximate 100(1 − α)% pointwise confidence interval.

We now consider the hyperparameter selection problem which determines the
appropriate hyperparameters of the proposed SVQRwithVCs using IRWLS. To deter-
mine the values of hyperparameters of the SVQRwith VCs using IRWLSwe first need
to consider the CV function as follows:

CV (λ) = 1

n

n∑

i=1

υi (θ)
(
yi − q̂(−i)

θ (xi , ui )
)2

By leaving-out-one Lemma of Craven and Wahba (1979),

(
yi − q̂(−i)

θ (xi , ui )
)

− (
yi − q̂θ (xi , ui )

) = q̂θ (xi , ui ) − q̂(−i)
θ (xi , ui )

� ∂q̂θ (xi , ui )
∂yi

(
yi − q̂(−i)

θ (xi , ui )
)

we have

(
yi − q̂(−i)

θ (xi , ui )
)

� yi − q̂θ (xi , ui )

1 − ∂q̂θ (xi ,ui )
∂yi

.

Then the ordinary cross validation (OCV) function can be obtained as

OCV (λ) = 1

n

n∑

i=1

υi (θ)

⎛

⎝ yi − q̂θ (xi , ui )

1 − ∂q̂θ (xi ,ui )
∂yi

⎞

⎠
2

= 1

n

n∑

i=1

υi (θ)

(
yi − q̂θ (xi , ui )

1 − hii

)2

,
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1024 J. Shim et al.

where hi j = ∂q̂θ (xi , ui )/∂y j is an (i, j)th element of the hat matrix H . Replacing
hii by their average tr(H)/n, the GCV function can be obtained as

GCV (λ) = n
∑n

i=1 υi (θ)
(
yi − q̂θ (xi , ui )

)2

(n − tr(H))2
.

3 Numerical studies

In this section, we illustrate the performance of the SVQR with VCs using QP and
IRWLS with synthetic data and the wage data in Wooldridge (2003). For our numer-
ical studies, we compare the proposed methods with SVQR in the study by Li et al.
(2007) and local polynomial quantile regression with VCs (LPQRVC) in the study by
Cai and Xu (2008). Throughout this paper, we use the Epanechnikov kernel for the
LPQRVC and the Gaussian kernel function for the SVQR, SVQR with VCs using QP
and IRWLS. For hyperparameter selection we use the CV function for the LPQRVC
method, the GCV function for the SVQR with VCs using IRWLS, and the GACV
function for the SVQR and SVQR with VCs using QP. To obtain the best of each
method, we use different kernels and criteria. The hyerparameters are selected to min-
imize each objective function with the grid search method. The candidates sets of
the regularization parameter C and kernel parameter σ in SVQR with VCs using QP
and IRWLS, and SVQR are {10, 20, 40, 70, 100, 200, 400, 600, 800, 1000, 1200} and
{0.5, 1, 2, . . . , 8}, respectively. The parameter h in Epanechnikov kernel function is
selected from the set {0.1, 0.2, . . . , 1}. We use 0’s as the initial values of α and b for
the IRWLS procedure associated with the SVQR with VCs using IRWLS.

3.1 Synthetic data example

For the synthetic data example we generate {(xi , ui , yi )}ni=1 from the location-scale
model,

yi = β1(ui )x1i + β2(ui )x2i + σ(ui )ei , i = 1, . . . , n,

where β1(ui ) = sin(
√
2πui ), β2(ui ) = cos(

√
2πui ), σ(ui ) = exp(sin(0.5πui )),

ui ∼ i.i.d. U (0, 3), x1i , x2i ∼ i.i.d. N (1, 1), and ei ∼ i.i.d. N (0, 1) or Student’s t
with three degrees of freedom. The θ th QR is

qθ (ui , x1i , x2i ) = β0(ui ) + β1(ui )x1i + β2(ui )x2i , (14)

where β0(ui ) = σ(ui )�−1(θ) and �−1(θ) is the θ th quantile of the standard normal.
The performance of the estimators q̂θ ’s and β̂k’s is assessed by the mean integrated

squared errors (MISE) and by the standard deviation of ISEs, respectively, defined as
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Support vector quantile regression with varying. . . 1025

Table 1 Comparison of the MISE and SDISE values for the case that ei ∼ i.i.d. N (0, 1)

θ f SVQR LPQRVC SVQRVCQP SVQRVCLS

0.1 qθ (u, x) 6.4934 1.7888 1.6547 1.3862

(0.1769) (0.0670) (0.0678) (0.0589)

β0(u) 2.1280 1.6473 1.2641

(0.1572) (0.1245) (0.1082)

β1(u) 0.8982 0.6590 0.5490

(0.0629) (0.0487) (0.0395)

β2(u) 0.8400 0.6905 0.5398

(0.0554) (0.0541) (0.0433)

0.5 qθ (u, x) 2.6081 0.9794 0.7577 0.7576

(0.0758) (0.0339) (0.0324) (0.0323)

β0(u) 1.1896 0.9176 0.5910

(0.0851) (0.0822) (0.0477)

β1(u) 0.4653 0.3105 0.3100

(0.0319) (0.0252) (0.02422)

β2(u) 0.4944 0.3433 0.3129

(0.0276) (0.0253) (0.01924)

0.9 qθ (u, x) 5.8312 1.5767 1.4763 1.2343

(0.1679) (0.0555) (0.0581) (0.0509)

β0(u) 1.7497 1.6832 1.1605

(0.1329) (0.1580) (0.1067)

β1(u) 0.7082 0.6284 0.5002

(0.0486) (0.0492) (0.0371)

β2(u) 0.7074 0.6256 0.5276

(0.0376) (0.0437) (0.03697)

The SDISE values are given in parentheses
SVQRVCQP SVQR with VCs using QP, SVQRVCLS SVQR with VCs using IRWLS
Boldfaced values indicate the best performance for the given quantity

MI SE = 1

N

N∑

j=1

I SE j ,

SDI SE =
⎛

⎝ 1

N

N∑

j=1

(
I SE j − MI SE

)2
⎞

⎠
1/2

,

where I SE j = 1
n

∑n
i=1( f̂i − fi )2, fi = qθ (ui , xi ) or βk(ui ), k = 0, 1, 2, for the j th

data set, and n and N are the numbers of observations and data sets, respectively. For
our experiment, we repeat N = 100 times with each sample size n = 100 for each
θ = 0.1, 0.5 and 0.9.

Tables1 and 2 show the results for theMISE and SDISE values for qθ ’s and βk’s for
θ = 0.1, 0.5, 0.9 when the distribution of error term is the standard normal N (0, 1)
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Table 2 Comparison of the MISE and SDISE values for the case that ei ∼ i.i.d. t3

θ f SVQR LPQRVC SVQRVCQP SVQRVCLS

0.1 qθ (u, x) 7.8250 2.4951 2.6691 2.1686

(0.4512) (0.1733) (0.2672) (0.1477)

β0(u) 3.6666 2.8780 1.7324

(0.6591) (0.4208) (0.2580)

β1(u) 1.2462 1.1476 0.8406

(0.1313) (0.1503) (0.0751)

β2(u) 1.3206 1.0730 0.8092

(0.2169) (0.1196) (0.0797)

0.5 qθ (u, x) 5.9087 1.3078 1.0066 1.3507

(0.6735) (0.0529) (0.0464) (0.0694)

β0(u) 1.6457 1.0665 0.6408

(0.1453) (0.1289) (0.0614)

β1(u) 0.7641 0.4654 0.5503

(0.0756) (0.0428) (0.0396)

β2(u) 0.6531 0.4304 0.4808

(0.0495) (0.0405) (0.0340)

0.9 qθ (u, x) 12.4839 5.5506 6.1202 4.9098

(1.0247) (1.1426) (1.1660) (1.1526)

β0(u) 5.6208 4.7308 3.7451

(0.8061) (0.6877) (0.6860)

β1(u) 2.2973 2.1786 1.6913

(0.3880) (0.4007) (0.39023)

β2(u) 2.3749 2.6247 1.9944

(0.4778) (0.5056) (0.5004)

The SDISE values are given in parentheses
SVQRVCQP SVQR with VCs using QP, SVQRVCLS SVQR with VCs using IRWLS
Boldfaced values indicate the best performance for the given quantity

and Student’s t with three degrees of freedom, respectively. The SDISE values are in
parentheses. Boldfaced values indicate the best performance for the given quantity.
We know from Table1 that the proposed SVQR with VCs using QP and IRWLS
outperform SVQR and LPQRVC in estimating all qθ ’s and LPQRVC in estimating
all βk’s for the standard normal error distribution. In particular, the SVQR with VCs
using IRWLS has the smallest values of MISE and SDISE for all θ ’s. We know from
Table2 that the SVQR with VCs using IRWLS outperforms SVQR and LPQRVC
in estimating qθ ’s and LPQRVC in estimating βk’s except θ = 0.5 for the t3 error
distribution. However, the SVQR with VCs using QP performs best in estimating qθ ,
β1 and β2 except β0 for θ = 0.5 for the t3 error distribution.
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Table 3 Estimated coefficients
for linear QR for θ = 0.1, 0.5
and 0.9 for the wage data set

θ Bias u x1 x2 x3

0.1 0.3678 0.0435 0.1948 0.2192 −0.0009

0.5 0.1008 0.0876 0.3759 0.1240 0.0065

0.9 0.4685 0.1026 0.3399 0.0284 0.0134
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Fig. 1 Plots of the estimated coefficient functions by SVQR with VCs using IRWLS (SVQRVCLS) for
three quantiles, θ = 0.1 (solid line), θ = 0.5 (dashed line) and θ = 0.9 (dotted line). Top left β0(u) versus
u, top right β1(u) versus u, bottom left β2(u) versus u, and bottom right β3(u) versus u

3.2 Real data example

For a real example we consider a subset of the wage data set studied in Wooldridge
(2003), which consists of three variables collected regarding each of 526 working
individuals for the year 1976. The dependent variable y is the logarithm of wages in
dollars per hour. Among major independent variables possibly affecting wages, we
use years of education (u), indicator of gender (x1), marital status (x2), and years of
potential labor force experience (x3). Two variables, x1 and x2, are binary in nature
and serve to indicate qualitative features of the individual. We define x1 to be a binary
variable taking on the value one for males and the value zero for females. We also
define x2 to be one if the person is married and zero if the person is not married. For
a complete description of all 24 variables, refer to http://fmwww.bc.edu/ec-p/data/
wooldridge/wage1.des.

Simple correlation analysis shows that all variables u, x1, x2 and x3 have positive
correlation coefficient values with y, which are 0.4311, 0.3737, 0.2707, and 0.1114,
respectively. From the coefficients we might interpret that a married man with higher
education and longer experience will have a higher chance of getting higher wages.
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Another analysis through linear QR for θ = 0.1, 0.5, and 0.9 has been done, and the
coefficient estimators are shown in Table3. From Table3 we know that marital status
and gender are more important factors in predicting wages compared to the education
length for the low and median wage group (θ = 0.1, 0.5). For the high wage group
(θ = 0.9), the effect of years of education is greater than that of marital status, and
gender is still amajor factor.We can see that gender has the largest coefficient values of
0.3759 and 0.3399 for θ = 0.5 and 0.9, respectively. The coefficient of x3 is negligibly
small for all θ ’s. It is even a negative value for θ = 0.1

We now analyze the wage data with the SVQR with VCs using IRWLS only.
Figure1 depicts the estimated coefficient functions for three quantiles, θ = 0.1 (solid
line), θ = 0.5 (dashed line), and θ = 0.9 (dotted line), β0(u) vs. u in the top left,
β1(u) vs. u in the top right, β2(u) vs. u in the bottom left, and β3(u) vs. u in the
bottom right. As seen in Fig. 1, wages increase as the years of education increase for
the high and median wage groups and remains almost unchanged for the low wage
group. The positive effect of gender on wages for the high wage group is strong for
subjects with low education status, but the effect gradually disappears as the years of
education increase. On the contrary, gender barely affects wages for subjects with low
education status, but it has a strong effect on subjects with high education status in the
low wage group. However, the positive effect of gender remains almost unchanged
regardless of the years of education for the median wage group.

Figure1 also shows that the effect of marriage slightly increases for the low
and median wage groups as the years of education increase, and it remains almost
unchanged for the high wage group. The experience length barely affects wages for
subjects with low education status in all wage groups. A slight positive effect of expe-
rience length on wages is seen for subjects with high education status in the high
and median wage groups. However, experience length does not help to increase wages
regardless of education status for the lowwage group. Thus, we notice that the smooth-
ing variable, u, and the independent variables have different effects on the different
quantiles of the conditional distribution of wages.

According to the linear QR analysis, the coefficients of x1 are 0.1948, 0.3759,
and 0.3399 for θ = 0.1, 0.5 and 0.9, respectively. Figure1 shows that the order of
magnitude of these coefficient values is maintained only in the vicinity of u = 13.
Also, the strong positive effect of gender on wages for the case of the low wage and
high education status has not been revealed by the linear QR. Thus, the SVQR with
VCs using IRWLS method reveals what we can not observe through linear QR.

4 Conclusion

In this paper, we considered the estimation of conditional quantiles in VC models
by estimating the coefficient functions. We proposed the SVQR with VCs using QP
and IRWLS for estimating quantiles. The coefficient functions are estimated by using
the kernel trick of SVM. The proposed estimators are easy to compute via standard
SVQR algorithms. Through two examples, we observed that the proposed methods
derive satisfying results and overall give more accurate and stable estimators than the
SVQRandLPQRVC. Thus, ourmethods appear to be useful in estimatingQR function
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and nonlinear coefficient functions. In particular, SVQR with VCs using IRWLS is
preferred since this method makes it possible to construct confidence intervals for
coefficient functions and save computing time. The SVQR with VCs using QP and
IRWLS also make hyperparameter selection easier and faster than a leave-one-out
CV or k-fold CV. Thus, the SVQR with VCs using QP and IRWLS methods can be
easily and effectively applied to nonlinear regression coefficients depending on the
high-dimensional vector of smoothing variables. We conclude that SVQR with VCs
using IRWLS is a promising nonparametric estimation method of QR function.

Acknowledgments The authorswish to thank two anonymous reviewers for their valuable and constructive
comments on an earlier version of this article. The research of J. Shim was supported by Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry
of Education, Science and Technology with Grant No. (NRF-2015R1D1A1A01056582). The research of
C.Hwangwaswas supported by theHumanResources Program in Energy Technology of theKorea Institute
of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of
Trade, Industry & Energy, Republic of Korea (No. 20154030200830), and the research of K. Seok was
supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology with Grant No. (2011-0009705).

References

Breiman L, Friedman JH (1985) Estimating optimal transformations for multiple regression and correlation
(with discussion). J Am Stat Assoc 80:580–619

Cai Z, Xu X (2008) Nonparametric quantile estimations for dynamic smooth coefficient models. J Am Stat
Assoc 103:1595–1608

Cole T, Green P (1992) Smoothing reference centile curves: the LMS method and penalized likelihood.
Stat Med 11:1305–1319

Craven P, Wahba G (1979) Smoothing noisy data with spline functions: estimating the correct degree of
smoothing by the method of generalized cross-validation. Numer Math 31:377–403

Fan J, Zhang W (2008) Statistical methods with varying coefficient models. Stat Interface 1:179–195
Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc B 55:757–796
Heagerty P, Pepe M (1999) Semiparametric estimation of regression quantiles with application to standard-

izing weight for height and age in US children. J R Stat Soc C 48:533–551
Hendricks W, Koenker R (1992) Hierarchical spline models for conditional quantiles and the demand for

electricity. J Am Stat Assoc 87:58–68
Honda T (2004) Quantile regression in varying coefficient models. J Stat Plan Inference 121:113–125
Hoover DR, Rice JA, Wu CO, Yang LP (1998) Nonparametric smoothing estimates of time-varying coef-

ficient models with longitudinal data. Biometrika 85:809–822
Kim MO (2007) Quantile regression with varying coefficients. Ann Stat 35:92–108
Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81:673–680
Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50
Koenker R, Geling R (2001) Reappraising medfly longevity: a quantile regression survival analysis. J Am

Stat Assoc 96:458–468
Koenker R, Hallock KF (2001) Quantile regression. J Econ Perspect 15:143–156
KuhnH, Tucker A (1951) Nonlinear programming. In: Proceedings of 2nd Berkeley symposium. University

of California Press, Berkeley
Li Y, Kiu Y, Zhu J (2007) Quantile regression in reproducing kernel Hilbert space. J Am Stat Assoc

103:255–268
Mercer J (1909) Functions of positive and negative type and their connection with theory of integral

equations. Philos Trans R Soc A 209:415–446
Park BU, Mammen E, Lee YK, Lee ER (2015) Varying coefficient regression models: a review and new

developments. Int Stat Rev 83:36–64
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

123



1030 J. Shim et al.

Shim J, KimY, Lee J, Hwang C (2011) Estimating value at risk with semiparametric support vector quantile
regression. Comput Stat 27:685–700

Shim J, Hwang C (2009) Support vector censored quantile regression under random censoring. Comput
Stat Data Anal 53:912–919

Shiryaev AN (1996) Probability. Springer, New York
Takeuchi I, Furuhashi T (2004) Non-crossing quantile regressions by SVM. In: Proceedings of 2004 IEEE

international joint conference on neural networks, pp 401–406
Vapnik VN (1995) The nature of statistical learning theory. Springer, New York
Wei Y, He X (2006) Conditional growth charts (with discussions). Ann Stat 34:2069–2097
Wooldridge JM (2003) Introductory econometrics. Thompson South-Western, Mason
Ying Z, Jung SH,Wei LJ (1995) Survival analysis with median regression models. J Am Stat Assoc 90:178–

184
Yu K, Lu Z, Stander J (2003) Quantile regression: applications and current research area. Statistician

52:331–350
Yuan M (2006) GACV for quantile smoothing splines. Comput Stat Data Anal 5:813–829

123


	Support vector quantile regression with varying coefficients
	Abstract
	1 Introduction
	2 SVQR with VCs
	2.1 SVQR with VCs using QP
	2.2 SVQR with VCs using IRWLS

	3 Numerical studies
	3.1 Synthetic data example
	3.2 Real data example

	4 Conclusion
	Acknowledgments
	References




