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Abstract Density-based clustering relies on the idea of associating groups with
regions of the sample space characterized by high density of the probability distri-
bution underlying the observations. While this approach to cluster analysis exhibits
some desirable properties, its use is necessarily limited to continuous data only. The
present contribution proposes a simple but working way to circumvent this problem,
based on the identification of continuous components underlying the non-continuous
variables. The basic idea is explored in a number of variants applied to simulated data,
confirming the practical effectiveness of the technique and leading to recommenda-
tions for its practical usage. Some illustrations using real data are also presented.

Keywords Density estimation - Mixed variables - Modal clustering - Model-based
clustering - Multidimensional scaling

1 Background and motivation

Cluster analysis refers to a widespread class of methods for exploring data with the

aim of finding groups of similar objects. This goal has been traditionally achieved
by evaluating some measure of distance/dissimilarity between the observations. A
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popular account is the book of Kaufman and Rousseeuw (1990). An alternative, more
recent strand in cluster analysis has examined the problem via the introduction of some
notion of ‘density’ associated to the data. In the statistical literature, the term density
is intended as density of a probability distribution, from which the observations are
supposed to be sampled. Even with this specification, there exist at least two distinct
approaches within this framework.

The most consolidated approach to density-based clustering is the one denoted
as ‘model-based’. Although its formulation goes back to Wolfe (1970), model-based
clustering has become increasingly popular since the works of Fraley and Raftery
(1998, 2002). In this setting, the d-dimensional density f (x) underlying the observed
data is assumed to be a mixture of a number, G say, of component densities, f1, ..., fg
which belong to some specified parametric family of distributions, each with different
parameters. The problem then translates into the one of estimating the parameters of
f1, ..., fc and the vector of mixing probabilities; this task is typically tackled by
maximum likelihood with the aid of the Expectation Maximization algorithm. The
basic parametric assumption about fi, ..., f¢ is that they are all d-dimensional nor-
mal densities. In recent years, more flexible parametric families have been considered
(e.g., Lin 2010). In model-based clustering, each component density f, corresponds
to a cluster. The number of clusters, G, is either pre-assigned or is estimated using
some additional criterion, typically information-based.

Within the density-based approach, an alternative to model-based clustering arises
when the underlying density f(x) is estimated non-parametrically and its modes are
regarded as identifiers of the clusters; hence the term ‘modal’ or ‘non-parametric clus-
tering” will sometimes be used for this methodology. One formulation within this
approach aims at estimating the modes of f and associates each cluster to the set of
points along the steepest ascent path towards a mode. Most of contributions which
follow this direction can be considered as a refinement of the mean-shift clustering,
early proposed by Fukunaga and Hostetler (1975). Another class of methods asso-
ciates the clusters to disconnected density level sets of the sample space so that the
modes correspond to the innermost points of these sets. More in detail, the intersection
f(x) = k, with a given level value k, singles out high-density sets; moving k along
its feasible range gives rise to a tree structure of the high-density sets, hence of the
clusters. The basic idea of this formulation was put forward a long time ago (Wishart
1969; Hartigan 1975, Sect. 11.13) but it is only relatively recently that it has been
translated into some fully developed and operational procedures. Among these, we
recall the ones of Stuetzle (2003), Azzalini and Torelli (2007), and their subsequent
developments reviewed by Stuetzle and Nugent (2010) and Menardi and Azzalini
(2014), respectively.

It is worth to underline that both density-based formulations recalled above incor-
porate a well-defined concept of what constitutes a ‘cluster’, although with a slight
difference between the two approaches, and provide a way to estimate the number of
clusters. This fact represents both a conceptual and a practical advantage over tradi-
tional distance-based methods, which do not supply a similar outcome, and justifies
an extra effort which may be required to apply these methods even in the presence of
some limitations.
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Whatever specific formulation in density-based clustering is taken, one has to live
with the assumption, intrinsic to this approach, that the observations are of continuous
type. In some cases, this condition represents a severe limitation, since in a range of
applications at least some of the variables are instead of non-continuous type. Social
and economic studies are unarguably those where non-continuous observations occur
most frequently, but not by any means the only ones. The most common type of non-
continuous variables is represented by the categorical ones. However, sometimes even
numeric variables can be problematic, when they are highly discretized; for instance,
the number of successful pregnancies of a woman in her lifetime spans a small number
of values, especially in Western countries.

In principle, the model-based approach is applicable also to non-continuous data.
The classical approach for categorical data, often referred to as ‘latent class analy-
sis’, assumes f to be a mixture of multinomial distributions (Goodman 1974); a
recent advancement which considers correlated variables has been proposed by Mar-
bac et al. (2015). In practice, the model specification becomes difficult when the
observed variables are of heterogeneous type, because of the requirement to formu-
late a probability model which combines variables of different nature, potentially
involving a joint distribution with continuous, discrete and categorical components.
Some attempts in this direction have been pursued by Vermunt and Magidson
(2002) and by Hunt and Jorgensen (2003); both formulations rely on some dis-
putable assumption of independence between blocks of variables of different type.
In the same context, the work of Browne and McNicholas (2012) explores the use
of latent variables mixture models to cluster data of mixed type; in this case the
assumption is the observed variables are independent conditional to the latent vari-
ables.

On the contrary, within the non-parametric formulation of the density-based clus-
tering, to the best of our knowledge there has been no attempt to overcome the crucial
assumption of observing continuous data only.

The aim of the present contribution is to put forward a technique to circumvent the
restriction of density-based methods to continuous variables, to examine its working
in a range of situations and to provide recommendations for its practical usage. This
technique builds on the widespread idea of reconstructing the continuous latent struc-
ture underlying the observed data, and to apply density-based clustering subsequently.
Also due to its simplicity, the proposed technique can be applied to model-based clus-
tering and to modal clustering of data comprising variables of mixed type, quantitative
and qualitative.

2 On the reconstruction of a continuous latent structure

2.1 Formalization

In many cases, although certainly not universally, categorical variables are collected
having in mind that they are representatives of some underlying continuous variables.
This can occur in two distinct forms. In the first one, a continuous variable is known

to exist, but its direct measurement is not feasible or it is at least problematic. The
most typical example is represented by personal income, which in many surveys is not
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asked directly, to avoid a grossly biased response or non-response, and it is therefore
recorded indirectly via a battery of questions related to life conditions. The second,
more frequent, situation is when a continuous underlying variable is a convenient
mental construct, but it is not observable in principle; examples are intelligence, risk
aversion and abilities of various kind. In these cases, the search for one or possibly a
few continuous variables as the latent structure underlying a set of observed categorical
variables is especially natural.

To formalize the problem, our exploration starts by considering a simple idealized
situation where a continuous variable is not observable directly, but only through a
set of dichotomous manifest variables derived from the latent one. This simplification
should not mislead the attention from the actual focus of this work: although we
have in mind categorical variables, polytomous or even ordered, as well as discrete
variables, we are now considering the binary case as this represents the most extreme
departure from continuous data, hence presumably the most challenging situation
to be tested. Additionally, our aim is to use density-based methods for clustering
data of heterogeneous type, then not only categorical. However, since density-based
methods essentially requires continuous variables to work with, we shall focus for
now on the case of non-continuous variables and discuss how to handle mixed data
afterwards.

Consider a continuous random variable Z, which is only assumed to admit a density

function f(z), z € R and let zW . 7L pe aset of noisy version of Z:
z0 =7+, 1=1,...,L, 1)
where €V, ... ) are all N(0, 02), mutually independent and independent of Z. In

place of the variable of interest, Z, we observe instead

XD =sign(z®), 1=1,...,L. 2)

Step (1) is necessary in this construction otherwise, if o, = 0, all X O would coincide,
and increasing L would not increase the available information. On the reverse side, if
o — 00, the amount of information on Z carried by each X @ vanishes.

A question of interest is the following. How does the amount of information on Z
increase as the number L of binary representations X ) increases? To answer this ques-
tion, we may measure the error of approximating Z with the sequence XV, ..., X0

via mean square error:
L v\
MSE=E|{Z- ) — . 3)
=1 L

Some simple but tedious algebraic work leads to:

L—-1

MSE = E (72) + %E (x0%) + =——E (xDx@) —28 (zxV) @)

where the expectations depend on var(Z) and 062.
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Fig. 1 Plot of MSE versus L, on a log-scale, for some values of o¢, when Z ~ N (0, 1)

To get a perception of the MSE behaviour, Fig. 1 displays its value versus L, on the
logarithmic scale, for some values of o when Z ~ N (0, 1). In this case, the moments
involved in (4) take the form

E (ZZ) —1, E (sz) —1,

2 1 2
E (X(l) X(2)) = —arcsin( 2), E(zXWV) = — .
T 1 +o0; 7(l+o2)

Details about these computations are provided in the accompanying Supplementary
Material. The main message conveyed by Fig. 1 is that the MSE decreases appreciably
only for small values of L. In the approximate range 3 to 5 the rate of decrease slows
down and beyond about L = 5 is quite limited. A precise statement cannot be made,
also because of the concurrent effect of o, but the behaviour appears essentially of this
sort. Conversely, the plot indicates that, when a set of manifest dichotomous variables
is used to reconstruct a continuous latent structure, a drastic reduction in number can
be legitimate.

In practical work, several latent variables plausibly co-exist, each with the role of
our Z here, and subject-matter considerations are of key importance in deciding how
many latent variables one could reasonably attempt to reconstruct.

2.2 Continuous variables from multidimensional scaling

Since density-based methods essentially requires continuous variables to work with,
we must convert non-continuous variables into continuous ones. The constructed vari-
ables do not need to be equal in number to the original non-continuous variables.

The essence of our proposal to tackle the above-stated problem is outlined in the
following paragraph.

— The first step is to construct a dissimilarity matrix, D say, of the observed units.
In general, the dissimilarity matrix can be used for merging information from all

@ Springer



776 A. Azzalini, G. Menardi

variables, whether they are continuous, discrete, ordered or unordered categorical,
to quantify the dissimilarity between any given pair of units.

— Once D has been obtained, we make use of Multidimensional scaling (MDS) to
construct a set of continuous variables coherent with D at least approximately, that
is, the distances between units as measured on the newly created MDS variables
are as close as possible to the original dissimilarities.

— At this stage, all available information is coded into continuous variables and
density-based methods can be applied.

The above broad scheme gives rise to several variants, for three reasons: (a) the
actual construction of the matrix D offers a large variety of options; (b) the MDS stage
can be carried out in different ways, although the set of alternatives for this step is
relatively more limited; (c) the transformation using dissimilarity and MDS may be
applied to all the observed variables or to the non-continuous ones only, keeping the
continuous variables unchanged;

We shall not be concerned with aspect (a), since this stage is the same which
would be accomplished by someone who is tackling the clustering problem using
traditional distance-based methods, which represent a reference methodology for our
comparisons. Indeed, the choice of the dissimilarity metric has been historically a
controversial matter which cannot be tackled without considering the nature of the
data, the goal of the analysis, and subject-matter knowledge. We refer the reader to
the existing literature for a discussion about the specification of D (e.g., Kaufman and
Rousseeuw 1990, Chapter 1).

As for question (b), MDS was developed to produce multidimensional geometric
representations of data, where quantitative or qualitative relationships in the data are
made to correspond with geometric relationships in the representation; in this sense,
MDS lends itself to our purpose of extracting the continuous latent structure underlying
a set of data of mixed nature. More specifically, MDS starts with information about
the pairwise dissimilarity between the elements of a set of objects, and identifies a new
configuration of data defined in a metric space, where the pairwise distances between
the new data are the best approximation of the originally observed dissimilarities
(metric MDS), or possibly of some monotone increasing function of them (non-metric
MDS). We recall that Multidimensional scaling is widely documented in standard
texts; see for instance Mardia et al. (1979, Chapter 14).

Typically, the number of MDS variables is reduced, even substantially, compared
to the original ones, at least when the latter are in the form of categorical variables.
Concerning the actual use of MDS, we have to decide about the following aspects:
(i) choose between the so-called metric (which comprises various forms itself) and non-
metric version of MDS, which depends only on the ranking of dissimilarities, hence
it is invariant over monotonic transformations of the dissimilarities; (ii) decide how
many MDS variables to construct. These issues are explored through the simulations of
Sect. 3; its final subsection deals with the case of mixed variable and question (c) above.

A possible remark is that the proposed method is an instance of the so-called ‘tan-
dem method’, in which data undertake some preliminary processing before entering
a clustering procedure (Arabie and Hubert 1994). This scheme has been criticized as
the pre-clustering stage, often principal component analysis, can destroy the group-
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ing structure of the original data. In the present case, however, the nature of MDS,
which by construction preserves distances at least approximately, provides a form of
safeguard against such a danger.

Also, it is appropriate to state that the route examined here is not the only possi-
bility for tackling the problem. An alternative is provided by the concept of factor
analysis for categorical data, introduced by Bartholomew (1980) and examined fur-
ther by Bartholomew and Knott (1999) under the heading of latent trait models. This
would represent the natural route to implement the theoretical framework described
in Sect. 2.1 and it would also have the advantage of transferring information from
categorical variables directly to continuous ones, without going through the interme-
diate step of the dissimilarity matrix. The present choice has been adopted on the
ground of simplicity and flexibility, since the dissimilarity matrix can easily incorpo-
rate information also from discrete and ordered categorical variables; in addition the
corresponding software tools are more widely available and more familiar to the com-
munity working in cluster analysis. Finally, it is worth to stress that the use of MDS
appears as the most appropriate for the subsequent application of clustering methods.
This choice does not mean to rule out the potential usefulness of latent trait models, a
route which might deserve a separate exploration.

Another possible direction, in the case of binary or ordinal categorical variables,
could be to introduce a latent continuous multivariate distribution whose marginal
components are observed only in the form of intervals to which the units belong.
The latent-variable formulation is commonly employed in the context of categorical
variables but it becomes rapidly cumbersome if the additional aspect of clustering is
superimposed. Moreover this formulation would not apply to unordered categorical
variables and it would be feasible only within the mixture-model approach to cluster-
ing, not with modal clustering. The latter restriction is also shared by Oh and Raftery
(1998), who introduce a Bayesian model to cluster objects based on their dissimilari-
ties. The authors do not explicitly consider to apply the model on categorical or mixed
data after computing their distances, but this seems to us quite natural to extend the
usability of the method. Once more, we are motivated to explore the current proposal
which, as already remarked, combines wide flexibility and simplicity.

3 Numerical exploration via simulations
3.1 Simulation design and specification of the methods

To pursue the overall task stated in Sect. 1, under the specifications described in Sect. 2,
we have run a quite extensive simulation study.

Similarly to the setting of Sect. 2.1, we consider simulation of samples of size
n from a continuous and unobservable random variable Z, whose density function
is denoted fz(-), except that now Z = (Z1, ..., Z4)' can be multidimensional. The
distribution of Z is characterized by a structure which comprises G clusters, in a range
of possible forms described below.

The various methods are applied under the assumption that Z = (Z),, Z;,)" is formed

[
by two blocks of continuous variables with d, and d,, components, respectively, such
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that Z, is observable while Z, is unobservable. In place of Z,, we observe a set of
binary variables, supposed to be simplified categorical representations of its underlying
components Z;:

B _ ) O] (O 2
Xj _51gn(Z]+ej ) €; N(O,oej), 5)
wherel =1,...,L,j=1,...,d,. Therefore, it is assumed that observations on the
set of variables
(M (L) ) (L) (M Y
X=(xPxP o x P x P X xS

are available for each of n units, along with the possible observations of Z,. There is
no compelling reason for keeping L constant across the d,, component variables; this
choice has been made for mere simplicity.

The task is to cluster these  units into homogeneous groups by methods recalled in
Sect. 1 combined with the preliminary process described in Sect. 2.2. More specifically,
we explore the following situations:

(i) d, = 0 (and d,, = d), i.e. the observed data are of purely qualitative (binary)
nature. Here, the key steps are the following: (1) from the X variables, compute

a dissimilarity matrix D among the n units; (2) from D, apply MDS to obtain a

numerical configuration Z* = (Z7, ..., Z;*)’ ; (3) perform density-based clus-

tering on Z*.

(1) d, > 0, i.e. mixed categorical and continuous data are observed. To handle data
of this sort, two options have been explored, as follows.

1. MDS is applied to the dissimilarity matrix computed from all observed vari-
ables, Z* = (Z,, X)) € R?", and clustering is performed on these MDS
variables.

2. The observed continuous components Z,, are retained in their original form
and clustering is applied to the variables Z* = (Z,, Z}')’, where Z} denotes
the set of MDS variables extracted from the dissimilarity matrix of the binary
data X.

It stands to reason that information about the true underlying clustering structure, as
well any other information on Z, not provided by X is pretended not to be known,
and is used for assessing results only.

In evaluating the quality of the performances, we are interested in distinguishing the
possible sources of erroneous partitioning. This may be due to an awkward true cluster-
ing structure of the latent vector Z, or to the unavoidable loss of information when the
underlying continuous variables Z, give rise to the categorical variables X, or possibly
to a disruption of the clustering structure caused by the MDS transformation. To get
some insight on these possible effects, the true clustering structure of Z is compared
with the following outcomes: (a) the partitions detected by density-based clustering
on Z*; (b) the partitions detected by the same techniques on the latent variables Z;
(c) the clusters detected by some benchmark clustering methods for mixed data.

For each of these outcomes, the agreement with the real underlying grouping is
assessed via the adjusted Rand index (Hubert and Arabie 1985), ARI. This index
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takes the value 1 when there is perfect agreement between the two partitions, while its
expected value is 0 under random allocation; negative values are also possible, indi-
cating a classification worse than what would be expected under a random allocation.

The actual implementation of the numerical work has taken place within the com-
puting environment R (R Development Core Team 2011), complemented by some
of its packages. Details are provided next, along with a description of the specific
methods employed.

— Dissimilarities between binary variables can be specified in several ways. Our
option is simply to compute the Euclidean distance between the vectors of binary
values using the R function dist.

— Among the several available MDS variants, we consider the two most commonly
in use, that is, its ‘classical’ version as the representative of metric MDS, computed
in R by function cmdscale, and the non-metric version, computed by function
isoMDS of the R package MASS, version 7.3-37 (Venables and Ripley 2002).

— We have to select some specific density-based clustering methodologies on which
trying-out our procedure. Only very few of them can be examined, considering
that they must be tested in a variety of situations and that some of the proposed
theoretical formulations have not yet reached an operational stage. In particular,
we consider the model-based clustering methodology implemented by package
mclust version 4.4 (Fraley et al. 2012), which is based on mixtures of normal
densities. Concerning the modal approach, we consider one representative of the
level set formulation proposed by Azzalini and Torelli (2007) and implemented
by package pdfCluster version 1.0-1 (Azzalini and Menardi 2014). Optional
parameters of the two methods are left to their default values. In both cases, selec-
tion of the number of clusters is integral part of the procedure: in model-based
clustering this is based on the Bayesian information criterion; in modal clustering
this corresponds to the number of the detected modes which, in turn, depends on
the amount of smoothing to estimate the density. This latter value has been selected
as asymptotically optimal for normal data and then shrinked by a value of 3/4 to
reduce oversmoothing. While the criteria adopted for both formulations are indeed
not optimal, these are standard choices as also correspond to the default value of
associated arguments in the adopted packages.

— The number of operations required to run the whole methodology is simply the
sum of the number of operations required to run its single steps. Both MDS and
density-based clustering have a computational complexity which strongly depends
on the specific method adopted. In principle, classical MDS is computationally
more burdensome than non-metric MDS (e.g., Tzeng et al. 2008). In practice,
we experienced that the computing time for non-metric MDS is more than 10
times larger than for classical MDS and several thousands observations are easily

handled. Concerning the clustering step, the adopted modal clustering method

requires O (’[[L?p//zzj ) operations torunon an X p matrix when p > 3,and O (n logn)

operations for smaller p; model-based clustering requires O (K p*n) operations to
estimate a mixture of K normal components. Whatever option is selected, the time
to run the whole procedure has an order of magnitude of the seconds when applied
to 5-variate samples of size up to 500.
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— As the dissimilarity between many pairs of units can happen to be the same when
the number of binary variables is small, the resulting numerical configuration is
usually characterized by a large number of ties. In this case, non-parametric density
estimation may be problematic, due to the small variability in the sample. For this
reason, in addition to the application of modal clustering on the Z* vectors, we
also run the same methods on a jittered version of Z*, obtained by adding a small
amount of uniformly distributed noise to the data. Jittering has been used also in
connection with mclust but in this case it made no real difference; therefore, the
corresponding results have not been reported.

— We include two reference methods for comparison: dissimilarity-based cluster-
ing, namely the K-medoids method implemented by function pam of package
cluster version 1.15-3 (Maechler et al. 2013), and latent class analysis. The
latter approach is tested on the mixed data settings (ii) only, where some difficul-
ties may result in the specification of a joint distribution involving heterogeneous
data. We formulate a mixture of multivariate Bernoulli and Gaussian distributions
for the binary, and respectively, continuous variables and we assume the distribu-
tions to be conditional independent between the different types of variables. Latent
class analysis has been implemented by function £1exmix of package £1lexmix
version 2.3-12 (Gruen and Leisch 2008; Leisch 2004). Both the reference meth-
ods are given a head start by setting the number of clusters to the true number
G. For a comprehensive assessment and a comparison of the two approaches see
Anderlucci and Hennig (2014).

3.2 The cases examined

Simulations have been run with the following settings: n = 100 (except in cases
D5C and D5D specified below), L € {1,2,3,4,5,10,20}, d € {1,2,5}, o =
0.25 vér(Zj)l/z, d* € {l,...d}, where vﬁr(Zj) denotes the sample variance of the n
values drawn from of Z;. For each case considered, N = 5000 replicates have been
examined.

Next, we describe the selected cases for the distribution of Z from which the samples
are drawn. The following notation is adopted: N;(u, X)) denotes the d-dimensional
normal distribution with mean p and variance X, Ug denotes a uniform distribution
defined over the set S, 14 is the unitary vector with d components, /; is the identity
matrix of dimension d and vech(X) is the vector formed by the lower triangle of a
symmetric matrix X.

d=1 DIA well separated groups
2
Zg:l ”gN(/JLg, og)
H1 = —2.5, n2 = 2.5, 0] =0 = 1, T =Ty = 0.5;
DIB less separated groups
Zézx:l e N (g, 0g)
ur=—15u=15o0,=0y =1, 11 =1 =0.5;
d =2 D2A well separated groups
2
Zg:l ”gN(Mga Eg)
Mnp = 2.5 12, M2 = -2.5- 12, 21 = 22 = 12, Ty =T = 0.5;
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D2B

D2C

D2D

D5A

D5B

D5C

D5D

less separated groups

212;:1 TgN (g, Xg)

=151y, uo=—=-15-1, X1 =3, =L, m =m =0.5;
nonconvex groups

Z§=1 mgUs,

Sy ={z>0:z‘jzlz§= 1},S ={z <O:Z?le§= 13},

m1 =m =0.5;

groups whose structure is only distinguishable in a multidimensional
space.

Z§=l TN (1tg, Xg)

ur = (—1.5,1.5), pp = (1.5, —1.5), u3 = (=2.5,-2.5), 7 =
7wy = w3 = 1/3, vech(X]) = vech(X,) = (0.8,0.8, 1)/, vech(X3) =
(0.8, -0.8,1);

well separated groups Zi::l TgN (g, Xg)

n1=25-15,up =-25-15, 21 =3, =I5, 11 =1 =0.5;

less separated groups

Zézx:l e N (igs Xg)

u1=15-15, up =(—=1.5) - 15, Xy = Xp =I5, 1; =1 =0.5;
non-convex groups

Zgzl meUs,,

where S is the portion of a 5-dimensional unit torus having positive
coordinates, and & is similar with negative coordinates, 71 = 7, =
0.5.

Due to the more complex structure and to a rather high dimension,
samples of size n = 300 have been drawn from this distribution. See
Fig. 2 for an illustration of the 3-d analogue of this structure having
major radius 3/2 and minor radius 1.

groups whose structure is distinguishable only in a multidimensional
space

22:1 N (g, Xg)

w1 =(-3,3,3,3,3), uo = (3,-3,3,3,3), u3 = (3,3, -3, 3,3),
ns=3,3,3,-3,3)",u5s=3,3,3,3,-3),7r; =1/5,and ¥} = I5
forj=1,...,5.

Also in this complex case n = 300 has been adopted.

All these settings, except D2D and D5D, have an essentially unidimensional struc-
ture as far as clustering is concerned, in the sense that projecting the data on a
suitably selected unidimensional subspace is enough to reveal the existence of clus-
ters, although with various degree of separations among these clusters in the different
cases. Clusters in cases D2D and D5D require instead at least two and four dimensions,
respectively, to be discerned.

3.3 Outcomes of clustering binary data

Results of the simulations based on binary data only (d, = 0) are displayed in Figs. 4,
5,6,7,8,9,10, 11, 12 and 13, where the average ARI of each of the various tested
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Fig.2 Andillustration of the 3-d analogue of the D5C clustering structure, with non-convex-shaped clusters

o -- o Dissimilarity-based clustering

L -- L Latent class analysis

M -- M Model-based clustering on latent data

N -- N Nonparametric clustering on latent data
M M M M Model-based clustering + metric MDS

Model-based + nonmetric MDS

N N N N Nonparametric clustering + metric MDS

Nonparametric clustering + nonmetric MDS

J J 3 J Nonparametric clustering + Jittering + metric MDS

Nonparametric clustering + Jittering + nonmetric MDS

Fig. 3 Legend of letters, grey levels and line types adopted in Figs. 4, 5, 6,7, 8,9, 10, 11, 12, 13, 14, and
15

clustering methods and the true clustering structure is plotted versus L on alog; scale.
The letters and the line types adopted for identifying the various types of clustering are
described in Fig. 3; the coding of lines remains the same across all plots. Additional
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Fig. 4 Average ARI across simulations of detected clustering and true clustering structure in the D1A
setting, as L varies (on the logarithmic scale)
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Fig. 5 Average ARI across simulations of detected clustering and true clustering structure in the D1B
setting, as L varies (on the logarithmic scale)

results reporting the Monte Carlo distributions of the ARI across simulations are
included in the supplementary material accompanying this paper.

The general indication emerging from the set of available plots is that the pro-
posed methodology appears to work satisfactorily in most of the cases which have
been considered, as long as L is at least 2, but an increase of L beyond 4 or 5 pro-
duces a limited improvment, if any. These indications are broadly in agreement with
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Fig. 6 Average ARI across simulations of detected clustering and true clustering structure in the D2A
setting, as L varies (on the logarithmic scale)

those obtained in Sect. 2.1, summarized by Fig. 1. However, there are exceptions
to this overall behaviour; several reasons may concur to the lack of a clear-cut pat-
tern. First, as already mentioned, density estimation is problematic in the presence of
many ties, as it occurs frequently with binary data. This is especially true for non-
parametric clustering, which is then better used in combination with jittering to avoid
ties. Therefore, from now on, we shall focus of this variant of the method. Moreover,
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Fig. 7 Average ARI across simulations of detected clustering and true clustering structure in the D2B
setting, as L varies (on the logarithmic scale)

some of the simulation settings present a non-trivial clustering structure, and the two
density-based approaches have different strengths and weaknesses depending on this
underlying structure. For instance, modal clustering is somewhat compromised in the
D5D setting, since non-parametric density estimate, in a moderately high-dimensional
case with d = 5 and n = 300, is too poor to cope with G = 5 groups. Conversely,
the model-based approach is impaired by densities with non-convex contour level
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Fig. 8 Average ARI across simulations of detected clustering and true clustering structure in the D2C
setting, as L varies (on the logarithmic scale)

curves. However, this fact often holds also with normal mixtures, where the average
ARI behaviour is hindered by a large varge variability of its distributions (see the
Supplementary Material). Additionally, an odd behavior of model-based clustering
may derive from an overestimation of the number of clusters, a problem from which
the BIC is known to suffer. Also, in making the comparisons, one must consider the
relative values of the continuous curves and the corresponding dashed lines or curves,
not simply the gross value of the ARI. In other words, for each given case we must
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Fig. 9 Average ARI across simulations of detected clustering and true clustering structure in the D2D
setting, as L varies (on the logarithmic scale)

examine the relative values of the ARI values taking into account the corresponding
ARI of the procedures based on the latent variables Z* (which of course would be not
observable in real applications). As a general indication, in the majority of case the J
curves lie above the corresponding M curves, if L>1.

In general, results obtained from metric or non-metric MDS are largely equivalent,
which warrants a choice based on computational considerations. Conversely, the num-
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Fig. 10 Average ARI across simulations of detected clustering and true clustering structure in the DSA
setting, as L varies (on the logarithmic scale). Results deriving from the use of d* = 2 and d* = 4 are not
reported for brevity
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Fig. 11 Average ARI across simulations of detected clustering and true clustering structure in the D5B
setting, as L varies (on the logarithmic scale). Results deriving from the use of d* = 2 and d* = 4 are not

reported for brevity
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Fig. 12 Average ARI across simulations of detected clustering and true clustering structure in the D5C
setting, as L varies (on the logarithmic scale). Results deriving from the use of d* = 2 and d* = 4 are not

reported for brevity
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ber of selected MDS components has definitely an impact on the quality of partitions.
Recall that most of the clustering structures considered are intrinsically unidimen-
sional and the use of multiple MDS variables has then a negative effect. The D2D
and D5D cluster settings are conversely multidimensional and the use of two MDS
components works well here. In real data applications, one has to resort on background
information on the plausible number of latent continuous variables to decide about
the number of MDS variables to consider. In general, evidence from the simulations
suggests not to exceed a 3- or 4-dimensional MDS configuration, unless there are
reasons to believe that the clustering structure is really complex.

3.4 Handling mixed data

Explorations about the use of mixed data refer to two of the settings considered before,
D2D and D5D. In the former case, we set Z, = Z; and Z, = Z;, while in the latter
case we select the two blocks as Z, = (Z1, Z;) and Z,, = (Z3, Z4, Zs). The choice
of these two distributions, within the large set considered earlier, relates to the feature
already mentioned of an intrinsically two- and four-dimensional clustering structure,
where both the unobservable and the observed components of Z contribute to this
structure. Both options referred to as ‘1’ and ‘2’ in Sect. 2.1 have been examined.

Figures 14 and 15 display the average ARI values as the number of binary variables
varies and for different values of * MDS components; specifically, d* spans in {1, 2}
in the first case and {1, 2, 3} in the second case. Taking into account the results from
the previous simulations, non-parametric clustering has been run only on the jittered
data.

In interpreting the plots, one must bear in mind that the two options are not directly
comparable side by side, because of the different number of variables involved. Con-
sider, for example, the left and right panels of Fig. 14: in both cases one to two MDS
variables have been extracted form the dissimilarity matrix; however, according to
option 1 clustering has been performed on these MDS scores, while according to
option 2 clustering has been applied on the set of data obtained by merging the MDS
scores with the continuous variables Z,. Thus, the top-left panel in Fig. 14 is based on
two continuous variables, like in the bottom-right panel of the same figure and these
two plots are broadly comparable. A similar match holds for Fig. 15. From this view-
point, the two options appear to work quite similarly, with a little superiority of the
first option in Fig. 15, yet counterbalanced by a larger variability (see Supplementary
Material).

As for the two forms of density-based clustering, the non-parametric one appears
again preferable when a small number of MDS components is used, but its advantage
decreases or even disappears when the MDS dimension increases inappropriately,
since the model-based method is less affected in this circumstance.

Concerning the benchmark clustering methods, K-medoids appears effective in
recovering the true groups while latent class analysis tends to behave worse and simi-
larly to model-based clustering. It should be borne in mind that both methods benefit
from setting the number of clusters equal to the true one.
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Fig. 14 Average ARI across simulations of detected clustering and true clustering structure in the D2D
setting, as the number of binary variables varies. Clustering methods have been applied on the MDS
numerical configuration drawn from all the observed variables (right panels) or on a data set obtained by
merging the continuous observed components with the MDS numerical configuration extracted from the
dissimilarity matrix of the non-continuous data (left panel). The top plots refer to use of one MDS variable,
the bottom ones to two of them

4 Real data examples

In this section, we provide an illustration of the proposed methodology on some real
data examples, which are publicly available at the UCI machine learning repository
(Asuncion and Newman 2010).

On each considered set of data, of categorical or mixed type, we first combine
the different variables into a single dissimilarity matrix by using a generalization of
the Gower coefficient described by Kaufman and Rousseeuw (1990, Sect. 2.6). Then,
we apply MDS to extract the continuous latent configuration assumed to underlie the
observed data. Mixed data have been handled according to option ‘1°, i.e. the dissim-
ilarity matrix is computed on the whole set of variables. Since we do not have strong
reasons to consider the observed variables to be the expression of a multidimensional
latent structure, we take d* = 1 in all the examples. Finally, we apply model-based
clustering on the continuous score reconstructed, and modal clustering on the same
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Fig. 15 Average ARI across simulations of detected clustering and true clustering structure in the D5SD
setting, as the number of binary variables varies. Clustering methods have been applied on the MDS
numerical configuration drawn from all the observed variables (right panels) or on a data set obtained by
merging the continuous observed components with the MDS numerical configuration extracted from the
dissimilarity matrix of the non-continuous data (left panel). The plots in the top row refer to use of one
MDS variable, the middle row to three, the bottom row to five

jittered score. Again, we do not force the procedures to detect a prespecified number
of clusters, but allow them for estimating it from the data.

For comparison purposes, we also apply latent class analysis for mixed data on the
original observations and K-medoids on the computed dissimilarity matrix. Both the
benchmarks are given a head start by setting the number of clusters to the actual one.
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The first example concerns the votes of 435 US House of Representatives congress-
men in 1984 for 16 key issues identified by the Congressional Quartely Almanac. The
data represent a straight instance of the framework described in Sect. 2.1, as all the
16 variables are of binary nature, describing the vote in favour or against social or
economic questions (e.g. immigration, education spending, crime, budgeting etc.), as
a whole providing information about the underlying political position of the congress-
men. The aim of clustering is to reconstruct the political side of each voter, either
Democrat or Republican.

The second example refers to 15 characteristics of 690 credit card applicants, and
can be used to predict the bank decision about either approving or rejecting the credit
card application. The data represent quite a challenging example, as they comprise a
heterogeneous set of variables: categorical both dichotomous and polichotomous, and
continuous variables. Additionally, some instances of the latter ones are of peculiar
type, as most of their probability mass is concentrated on a very few values. Also,
two continuous variables present a very skew distribution, which has been treated by
taking the logarithmic transformation.

The third example includes 14 demographical, physical, and clinical attributes col-
lected by the Hungarian Institute of Cardiology (under the responsibility of Andras
Janosi) within a experimental study involving 294 individuals. The observed variables
are used to diagnostic the presence or absence of some heart diseases. Similarly to the
credit card example, there are both dichotomous and polytomous nominal variables,
and continuous ones.

Before proceeding with the analysis, we have first removed from the datasets the
variables presenting a very large proportion of missing values and, afterwards, all
the observations presenting missing values. In fact, this step is only required for the
application of latent class analysis, at least operationally.

Results are displayed in Tables 1, 2 and 3. While looking at the values of the adjusted
Rand index might convey a discouraging message about the effectiveness of the two
density-based methods, a careful observation of the cross-frequency tables gives a
general indication of success in the identification of the true clustering. Low values of
the ARI are associated to the cases where the two methods over-estimate the number
of groups (Table 2 for modal clustering and Tables 1, 2 for model-based clustering)
and an appropriate aggregation of these groups into two macro-clusters leads to quite
satisfactory results. In fact, these partitions are consistent with the assumption about the
existence of a continuous score underlying the observed variables: in the Congressional
voting data, for example, such score may be interpreted as the political ideology of each
Congressman. In this perspective, model-based clusters can be read as three different
levels of conservatism, a moderate position, and three different levels of progressivism.
Similarly, in the credit example, different clusters correspond to different levels of
credit solvency.

As far as the reference methods concern, clustering based on the dissimilarities
show a satisfactory behaviour in all the examples, as the misclassification error keeps
lower than 20 % in all the examples. In fact, we should recall that the good performance
are favoured by the prespecified number of clusters set equal to the actual one.

Latent class analysis shows satisfactory results in the third example only (Table 3)
while it fails resoundingly in the two other datasets. In fact, while an unarguable
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Table 1 US Congressional voting data: true groups (democratic, republican) compared with clusters iden-
tified by modal clustering, model-based clustering, dissimilarity-based clustering and latent class analysis

Modal Model-based K-medoids Latent class

1 2 1 2 3 4 5 6 7 1 2 1 2
Democratic

101 23 35 31 30 18 8 1 1 102 22 66 58
Republican

4 104 0 0 4 18 30 29 27 9 929 54 54
ARI = 0.587 ARI = 0.170 ARI =0.535 ARI = 0.000

Table 2 Credit card data: true groups (card denial, card approval) compared with clusters identified by
modal clustering, model-based clustering, dissimilarity-based clustering and latent class analysis

Modal Model-based K-medoids Latent class

1 2 3 4 1 2 3 4 1 2 1 2
Denyal

86 171 78 22 75 187 71 24 294 63 118 239
Approval

10 37 68 181 8 45 57 186 64 232 153 143
ARI = 0.223 ARI = 0.232 ARI = 0.372 ARI = 0.039

Table 3 Heart disease data: true groups (absence or presence of heart disease) compared with clusters iden-
tified by modal clustering, model-based clustering, dissimilarity-based clustering and latent class analysis

Modal Model-based K-medoids Latent class

1 2 1 2 1 2 1 2
Absence

148 15 146 17 145 18 142 21
Presence

34 64 30 68 30 68 25 73
ARI = 0.382 ARI = 0.403 ARI = 0.393 ARI =0.414

strength of this method is that it is the only existing clustering approach for mixed
data which relies on the data distribution, we have experienced a certain instability
of the Expectation Maximization algorithm used to estimate the parameters, probably
due also to the concentration of the probability mass on a very few values. Certainly
one could improve the estimation by regularizing the component-specific parameter
estimates, but our feeling is that the specification of such a complicated model does
not worth, on the whole, when the simple tandem-approach here discussed tends to
provide better results.
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5 Concluding remarks

The overall indication emerging from our numerical exploration is that the proposed
technique appears to work quite satisfactorily, provided some requisites are fulfilled.

For any underlying latent variable, it is advisable to have available a number L>1
of binary representations. As L increases, there is generally an improvement in per-
formance; however, beyond L = 4 or 5, there is generally little further gain. The
number of constructed MDS scores should ideally not exceed the number of under-
lying continuous latent variables, or at least not by a sizeable number. In general, it
seems unlikely that more than three or four MDS variables are required, except in
very complex situations. The two options for handling mixed data work in a broadly
similar way, and the choice between them is a matter of preference.

The above indications are formulated as if we knew the number of latent variables,
which in practical work is not the case, at least not exactly. In practice one must take
into account subject-matter considerations to formulate a judgement on this aspect,
like for instance in the illustrative applications of Sect. 4.

The two variant forms of MDS worked very similarly. Therefore the choice can be
addressed on the basis of computational convenience.

As for the relative performance of the two density-based clustering methods, the
modal one performs better than the model-based one in the majority of cases, especially
so if L > 1 and the binary variables are jittered. The model-based version is less
affected than the non-parametric by a misjudgement of the number of MDS variables.

All our numerical work and the above comments refer to binary observations.
Consideration of other forms of categorical variables, possibly of ordered type, or
discrete variables would have increased further the already large amount of numerical
outcomes. Since the case of binary variables is qualitatively the one more distant from
continuous variables, it seems reasonable to expect that the indications obtained here
hold in a broad sense also in these other cases.
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