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Abstract Because of its orthogonality, interpretability and best representation, func-
tional principal component analysis approach has been extensively used to estimate
the slope function in the functional linear model. However, as a very popular smooth
technique in nonparametric/semiparametric regression, polynomial spline method has
received little attention in the functional data case. In this paper, we propose the poly-
nomial spline method to estimate a partial functional linear model. Some asymptotic
results are established, including asymptotic normality for the parameter vector and the
global rate of convergence for the slope function. Finally, we evaluate the performance
of our estimation method by some simulation studies.

Keywords Functional data analysis · Polynomial spline · Asymptotic normality ·
Rates of convergence

1 Introduction

With the development of technology of computation and measurement, scientists usu-
ally confront the data providing information about curves, surfaces or anything else
varying with continuous variables. Such type of data structure, called functional data,
attracted great interests in various fields. For example, in chemometrics the spectro-
metric data consists of hundreds of differentwavelength spectra, fMRI data can recover
the contours of invisible human organs and spatial data is used to study the topological,
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geometric, or geographic properties of entities. Due to the infinite dimensionality and
the strong mutual relations of predictors, the traditional multivariate statistical meth-
ods fail to analyze functional data. To overcome these problems, Ramsay and Dalzell
(1991), Ramsay and Silverman (1997, 2005) introduced some fundamental models
and tools for functional data analysis.

Regression analysis is very popular in statistical analysis. As an extension of ordi-
nary linear models, Ramsay and Silverman (1997, 2005) introduced the functional
linear model to model the relationship between a scalar response and a functional pre-
dictor. Further, Cardot et al. (1999), Cai and Hall (2006), Hall and Horowitz (2007)
and Li and Hsing (2007) proposed estimation methods based on functional principal
component analysis and investigated the asymptotic properties of the estimators. On
the other hand, Cardot et al. (2003) and Crambes et al. (2009) employed penalized
B-spline and smoothing spline to estimate the functional slope parameter. As an exten-
sion of nonparametric model, functional nonparametric regression was also studied in
literatures. Kernel regression (Ferraty and Vieu 2006), local linear regression (Baíllo
and Grané 2009) and K -nearest neighbours method (Burba et al. 2009) are used to
deal with the functional nonparametric models.

In order to improve the power of prediction and interpretation of the functional
regression model, some additional real-valued predictors could be introduced. There
is some recent literature focusing on this situation. For example, Aneiros-Pérez and
Vieu (2006) introduced a semi-functional partial linear regression model to predict
the fat content of the chopped pure meat. Further, Aneiros-Pérez and Vieu (2008)
extended this model to dependent data. Zhang et al. (2007) introduced the partial
functional linear model to assess the effect of women’s hormone on the total hip
bone mineral density and Shin (2009) proposed a new estimation method based on
functional principal component analysis. Cardot and Sarda (2008) generalized the
functional linear model to a varying coefficient functional linear model in which an
additional random variable influenced smoothly the functional coefficient. Zhou and
Chen (2012) introduced a semi-functional linearmodelwhich combined the functional
linear regression model and the nonparametric regression model.

In functional linear regression, because of its orthogonality, interpretability and best
representation, functional principal component analysis approach has been extensively
used to estimate the slope function (see Cardot et al. 1999; Cai and Hall 2006; Hall
and Horowitz 2007; Li and Hsing 2007; Shin 2009). As a very popular smooth tech-
nique, polynomial spline or regression spline method can produce a smooth function
estimate and can be operated easily, so it has received considerable attention in non-
parametric/semiparametric regression (see Chen 1991; Stone 1994; Stone et al. 1997;
Zhou et al. 1998; Huang 2003a, b; Huang et al. 2004a; Huang and Shen 2004b and so
on). However, there is limited literature discussed the polynomial spline method in the
functional data case. We only noted that Ramsay and Silverman (1997, 2005) applied
polynomial spline to estimate the functional linear model, but they didn’t investigate
the asymptotic behaviors of the estimator.

In this paper, we focus on the polynomial spline estimators for the partial functional
linear models. We employ the polynomial spline basis to approximate the functional
coefficients. Using profile least squares technique, we obtain the optimal convergence
rate and asymptotic normality for estimators of parameters. Based on these estimators,
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we also have the limiting distribution of Wald test statistic for linear hypothesis of
parameters. The numerical studies indicate our proposed procedure can enjoy more
smoothness for functional coefficients in finite samples.

The rest of the paper is organized as follows. In Sect. 2, we introduce the poly-
nomial spline estimate for partial functional linear models. Section 3 investigates the
asymptotic properties of estimators and discusses statical inference problem. Simu-
lation studies are presented in Sect. 4. Conclusion and further research are given in
Sect. 5. All technical details and proofs are given in the “Appendix”.

2 Polynomial spline estimation

Let the observed data (Xi ,Zi , Yi ), i = 1, . . . , n, which are independent and identically
distributed (i.i.d.), be generated from the following partial functional linear model

Yi =
1∫

0

Xi (t)α(t)dt + ZT
i β + εi , i = 1, . . . , n, (1)

where Yi and Zi = (Zi1, . . . , Zip)
T are the scalar response variable and the p-

dimensional predictor vector, respectively. The predictor variable Xi is a random
function valued in H = L2([0, 1]), the Hilbert space containing square integrable
functions defined on the unit interval. Let 〈φ, ϕ〉 = ∫ 1

0 φ(t)ϕ(t)dt denote the usual
inner product of function φ and ϕ and let ‖φ‖ = 〈φ, φ〉1/2 denote the norm of H . The
random errors εi are independent and identically distributed with mean 0 and finite
variance σ 2 and are independent of (Xi ,Zi ). Let β be an unknown p-dimensional
parameter vector and α(t) be an unknown smoothing function belonging to H .

Before introducing the polynomial spline estimation, we recall simply the polyno-
mial spline function. Let k ≥ 0. The sequence 0 = t0 < t1 < · · · < tNn < tNn+1 = 1
is a partition of interval [0, 1], which is called knot sequence. Suppose a function is a
polynomial of degree k on each of the intervals [ti , ti+1](i = 0, 1, . . . , Nn), and it has
k − 1 continuous derivatives for k ≥ 1 on the interval [0, 1], then it is called spline
function of degree k.

We next consider the polynomial spline estimate α̂ of α. Let Sk,Nn be the space
of polynomial splines defined on interval [0, 1] with degree k and Nn interior knots.
The space Sk,Nn is a Kn-dimensional linear space, Kn = Nn + k + 1. From Theorem
XII.1 of de Boor (2001), we can conclude that, if the slope function α(t) is sufficiently
smooth, there is a spline function a(t) ∈ Sk,Nn such that

α(t) ≈ a(t) =
Kn∑

s=1

bs Bs(t), (2)

where B j , j = 1, . . . , Kn are theB-spline basis functions. Plugging the approximation
(2) into model (1), we have

Yi ≈
Kn∑

s=1

bs〈Xi , Bs〉 + Z T
i β + εi , i = 1, . . . , n, (3)
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where the spline coefficient vector b = (b1, . . . , bKn )
T and parameter vector β are

to be estimated. Then, the semiparametric estimation problem in model (1) turns into
the ordinary parametric estimation problem.

Let the square loss function

l(β, b) =
n∑

i=1

(
Yi − ZT

i β −
Kn∑

s=1

bs〈Xi , Bs〉
)2

. (4)

The estimators of b and β can be obtained by minimizing (4). For ease to discuss
the asymptotic properties, we apply the profile least squares procedure to estimate
unknown spline coefficients and parameters. The estimators for β and b are given by

β̂ = (ZT (I − A)Z)−1ZT (I − A)Y, b̂ = (BT B)−1BT (Y − Zβ̂), (5)

where Y = (Y1, . . . , Yn)T , Z = (Z1, . . . ,Zn)T , B = {〈Xi , B j 〉
}

i=1,...,n
j=1,...,Kn

and A =
B(BT B)−1BT . Then, the polynomial spline estimator of α(t) and the estimator of σ 2

can be respectively defined by

α̂(t) =
Kn∑

s=1

b̂s Bs(t), σ̂ 2
n = 1

n

n∑
i=1

(
Yi − 〈Xi , α̂〉 − Z T

i β̂
)2

. (6)

3 Asymptotic properties

In this section, we investigate the asymptotic properties of the polynomial spline
estimators. For ease to discuss the asymptotic behaviors of our proposed estima-
tors, the following notation is needed. For two sequences of positive numbers an

and bn , an � bn signifies an/bn is uniformly bounded and an � bn if an � bn

and bn � an . The covariance operator � of the random function X is defined as
�x(t) = ∫ 1

0 E X (t)X (s)x(s)ds, x ∈ H . The norm ‖·‖ of a function f ∈ Ck+1([0, 1])
is defined as ‖ f ‖ = ( ∫ 1

0 f (t)2dt
)1/2.

In order to establish the theoretical properties of polynomial spline estimation, the
following assumptions are required:

(C1) There are some positive constants M and 1
4(k+1) < r < 1

2 such that

h = max
j=0,...,Nn

(t j+1 − t j ) � n−r , Kn � nr , h/ min
j=0,...,Nn

(t j+1 − t j ) ≤ M.

(C2) E ||X ||4 < ∞ and the eigenvalues of the covariance operator � of X are strictly
positive.

(C3) E |Z11|4 + · · · + E |Z1p|4 + E |ε1|4 < ∞.

(C4) For j = 1, . . . , p, E(Z1 j |X1) is a continuous linear functional, that is, there
exists a function g j ∈ H such that E(Z1 j |X1) = 〈X1, g j 〉. Further, we

123



Polynomial spline estimation for partial functional linear… 1111

assume g j , j = 1, . . . , p and slope function α are smooth enough, that is,
g j ∈ Ck+1([0, 1]), α ∈ Ck+1([0, 1]).

(C5) Let η1 j = Z1 j − E(Z1 j |X1) = Z1 j − 〈X1, g j 〉, j = 1, . . . , p, η1 =
(η11, . . . , η1p)

T . Furthermore, we assume that
 = Eη1η
T
1 is a positive definite

matrix.

Remark 1 Conditions (C1)–(C5) are very general in polynomial spline estimation and
functional linear model. In fact, condition (C1) is similar to (3) in Zhou et al. (1998).
For the number of spline basis Kn , the requirement is similar to (16) in Shin (2009).
Condition (C2) is very common in functional linear model (see H1 and H2 in Cardot
et al. 1999 and (12) in Shin 2009). However, we don’t need additional assumption on
eigenvalues of the covariance operator � like (14) in Shin (2009). Condition (C3) is
similar to (11) in Aneiros-Pérez and Vieu (2006) and (17) in Shin (2009). Condition
(C4) requires the dependence between the covariate Z1 j , ( j = 1, . . . , p) and the
random function X1 is a continuous linear functional, which is a special case of
conditional expectation operators E(Xi j |Ti = t) in Aneiros-Pérez and Vieu (2006).
Furthermore, to assure the validity of the polynomial spline estimation, we need a
restricted smooth condition on each functional coefficient g j and α. Condition (C5)
is similar to (12) in Aneiros-Pérez and Vieu (2006) and (20) in Shin (2009).

Under the above assumption conditions, we have the following results.

Theorem 1 If conditions (C1)–(C5) hold, as n → ∞, we have

√
n(β̂ − β)

D−→ N (0, σ 2
−1).

Theorem 2 Suppose that conditions (C1)–(C5) are satisfied, then

‖α̂ − α‖2 = Op

( Kn

n
+ K −2(k+1)

n

)
.

Remark 2 For the estimation of the parameter vector, Theorem1 shows that the asymp-
totic result is similar to Theorem 1(i) in Aneiros-Pérez and Vieu (2006) and Theorem
3.1 in Shin (2009). For the estimation of functional coefficient, Theorem 2 indicates
that, under smoother conditions (Ck+1 in particular), the global convergence rate is
similar to those given in Newey (1997) and Huang and Shen (2004b) in nonparametric
regression setting, which shows that the existence of a random vector as a predictor
does not change the rate of convergence of the estimated functional coefficient. More-
over, if we take r = (a + 1)/(a + 2b) and k = (2b − 1)/2(a + 1) − 1, then we can
obtain the same rate of convergence of the estimated functional coefficient as Shin
(2009).

For the estimator of variance σ 2, we have the following theorem

Theorem 3 If conditions (C1)–(C5) hold, then we have

√
n
(
σ̂ 2

n − σ 2
)

D−→ N (0,�2),
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where �2 = E(ε21 − σ 2)2.

Further, let 
̂n = n−1ZT (I − A)Z. In the light of the above theorems, we can
obtain the following corollary.

Corollary 1 Under conditions (C1)–(C5), as n → ∞, we have

χ̂2
n,p = n

σ̂ 2
n

(β̂ − β)T 
̂n(β̂ − β)
D−→ χ2

p.

Remark 3 According to the corollary 1, we can obtain an approximate (1−γ ) asymp-
totic confidence region for parameter vector β, that is,

{
a ∈ R p : n

σ̂ 2
n

(β̂ − a)T 
̂n(β̂ − a) ≤ χ2
p,1−γ

}
.

Also, we can get an approximate (1 − γ ) asymptotic confidence interval for every
parameter β j , j = 1, . . . , p, that is,

[
β̂ j + zγ /2

σ̂n(
̂n)
−1
j j√

n
, β̂ j − zγ /2

σ̂n(
̂n)−1
j j√

n

]
,

where σ̂n(
̂n)
−1
j j is the j th diagonal element of σ̂n(
̂n)−1.

4 Simulation studies

In this section, we present some simulation results to illustrate the finite sample
behaviors of the polynomial spline estimation and compare our method with the Shin
(2009)’s.

4.1 Models for generating simulation data

In this subsectionwe specify fourmodels to generate simulationdata
{
(Xi ,Zi , Yi )

}n
i=1.

In the first three models we take the same form as Lian (2011) to generate Xi , that is,

Xi =
50∑
j=1

ξi j j−1φ j (t),

where φ1(t) = 1, φ j (t) = √
2 cos(( j − 1)π t) for j ≥ 2 and ξi j is independent and

identical distribution with U [−√
3,

√
3].

Model 1: Yi = 1.5Zi1 − Zi2 + 2Zi3 + ∫ 1
0 Xi (t)α(t)dt + εi , where Zi =

(Zi1, Zi2, Zi3)
T is from a multivariate normal distribution N (0,�) with covari-

ance matrix � = [0.9, 0.2, 0.3; 0.2, 0.5, 0.1; 0.3, 0.1, 1]. The functional coefficient
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α(t) = ∑50
j=1 b jφ j (t), where b1 = 0.5, b j = 4 j−2, for j ≥ 2 and the error variable

εi is N (0, 1).
Model 2: Yi = 2Zi1 − Zi2 + ∫ 1

0 Xi (t)α(t)dt + εi , Zi1 = ∫ 1
0 Xi (t)α1(t)dt + εi1,

Zi2 = ∫ 1
0 Xi (t)α2(t)dt +εi2, where the functional coefficient α(t) is similarly defined

in Model 1. In addition, functional coefficients α1(t) = ∑50
j=1 b1 jφ j (t) and α2(t) =∑50

j=1 b2 jφ j (t), where b11 = 1, b21 = −0.5, b1 j = 2 j−2, b2 j = 3 j−2 for j ≥ 2.
Random error variables εi and εi1 are N (0, 0.25) and εi2 is N (0, 0.64).

Model 3: Yi = 1.5Zi1 + 5Zi2 − 1.7Zi3 + ∫ 1
0 Xi (t)α(t)dt + εi , where Zi =

(Zi1, Zi2, Zi3)
T is from a multivariate normal distribution N (0, I3). The functional

coefficient is given by

α(t) = 2 sin(0.5π t) + 4 sin(1.5π t) + 5 sin(2.5π t),

which is similar to example (a) in Cardot et al. (2003). The error variable εi is
N (0, 0.36).

Model 4: We take the same example in Shin (2009), that is,

Yi = 2Zi1 − Zi2 + 1.5Zi3 + 5Zi4 − 1.7Zi5 +
1∫

0

Xi (t)α(t)dt + εi ,

where Xi (t) is a standard Brownian motion and α(t) = √
2 sin(π t/2) + 3

√
2 sin(3

π t/2). Random vector Zi = (Zi1, Zi2, Zi3, Zi4, Zi5)
T is from a multivariate normal

distribution N (0, I5), and error variable εi is N (0, 1).
For practicality, the random functions Xi (t) in Models 1–4 are all only observed at

100 equally spaced points on [0, 1].

4.2 Implementation

In this subsection, we specifically illustrate implementation of our method and Shin
(2009)’s method. To implement Shin (2009)’s method, we need to turn discrete obser-
vation data of Xi (t) into functional data objects. In this paper, we utilize the method
mentioned in Chapter 4 of Ramsay et al. (2009) and choose 25 B-spline functions to
build functional data. We also use pca.fd function mentioned in Chapter 7 of Ramsay
et al. (2009) to carry out a functional principal components analysis. For our proce-
dure, we have to choose the degrees of spline functions, the positions and the number
of knots. Similarly to Huang and Shen (2004b), we choose B-spline basis with equally
spaced knots and the fixed degree 2 in this paper. Then, we only need to select the num-
ber of the B-spline basis and eigenfunctions Kn . Many methods can be used to select
Kn , for example, AIC (Akaike 1974), BIC (Schwarz 1978), “leave-one-subject-out”
cross-validation (Rice and Silverman 1991) and modified multi-fold cross-validation
(Cai et al. 2000). In this paper, we use “leave-one-subject-out” cross-validation tech-
nique to choose the number of B-spline basis and eigenfunctions. Specifically, we
select Kn by minimizing the following cross-validation score:

CV (Kn) =
n∑

i=1

(
Yi − 〈Xi , α̂

−i 〉 − ZT
i β̂−i

)2
,
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Fig. 1 The empirical distribution function (real line) of χ̂2
n,3 from 500 simulated samples under Model 1

with different sample sizes: (left) n=100; (right) n=500

where α̂−i and β̂−i are estimators computed by deleting the i th observation
(Xi ,Zi , Yi ). In our procedure, the number of B-spline basis ranges from 3 to 12
and the number of eigenfunctions ranges from 1 to 10. For the integrals involved in
matrix B, we approximate them by the trapezoidal rule.

Two risk functions are used to assess the performances of our estimators and the
Shin (2009)’s: the mean square prediction error of the response variable Y , which is
similar to (26) in Cardot et al. (2003),

MSPE = n−1
n∑

i=1

(
Ŷi − ZT

i β −
∫ 1

0
Xi (t)α(t)dt

)2

,

and the square-root of average squared error (RASE) of functional coefficient α(t),
which is similar to (6) in Huang and Shen (2004b),

RASE =
[

n−1
grid

ngrid∑
k=1

(̂α(tk) − α(tk))
2

]1/2

,

where {tk, k = 1, . . . , ngrid} are grid points chosen to be equally spaced on the interval
[0, 1]. In this paper, the number of grid points ngrid = 101.

We use Matlab to implement our procedure. For each simulation model above-
mentioned, we consider two different sample sizes: n = 100 and n = 500, and each
simulation experiment has been repeated 500 times.

4.3 Simulation results

In this subsection, we present some simulation results of 4 simulation models men-
tioned in (4.1). Notations s and p denote our estimation method and the Shin (2009)’s,
respectively.

Figure 1 displays the empirical distribution function of χ̂2
n,3 from 500 simulated

samples under Model 1. For Models 2–4, the empirical distribution functions of χ̂2
n,p

have same performance, so we omit them to save space. We can see from this figure
that as the sample size n increases, the empirical distribution more and more approach
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Table 1 The MSE of estimators β̂ and σ̂ 2
n under different models and sample sizes

n=100 n=500 n=100 n=500

MSEs MSEp MSEs MSEp MSEs MSEp MSEs MSEp

Model 1 Model 2

β̂1 0.01463 0.01445 0.00301 0.00303 0.01107 0.01132 0.00187 0.00191

β̂2 0.02436 0.02463 0.00464 0.00465 0.00452 0.00465 0.00083 0.00083

β̂3 0.01126 0.01100 0.00212 0.00213 – – – –

σ̂ 2
n 0.02265 0.02274 0.00414 0.00413 0.00164 0.00170 0.00028 0.00029

Model 3 Model 4

β̂1 0.00437 0.00446 0.00081 0.00081 0.01214 0.01207 0.00205 0.00206

β̂2 0.00385 0.00384 0.00075 0.00076 0.01147 0.01145 0.00201 0.00202

β̂3 0.00412 0.00417 0.00070 0.00071 0.01132 0.01105 0.00214 0.00214

β̂4 – – – – 0.01140 0.01123 0.00197 0.00196

β̂5 – – – – 0.01069 0.01077 0.00200 0.00120

σ̂ 2
n 0.00375 0.00346 0.00058 0.00057 0.03013 0.02753 0.00482 0.00459

Table 2 The mean(sd) of RASE and MSPE for Models 1–4

RASEs RASEp MSPEs MSPEp

Model 1 n=100 0.4120(0.1571) 0.4916(0.1104) 0.0614(0.0359) 0.0621(0.0335)

n=500 0.2138(0.0637) 0.3182(0.0640) 0.0127(0.0068) 0.0137(0.0070)

Model 2 n=100 0.4366(0.1193) 0.5385(0.0786) 0.0182(0.0119) 0.0214(0.0121)

n=500 0.2399(0.0209) 0.3179(0.0117) 0.0041(0.0023) 0.0049(0.0022)

Model 3 n=100 0.9257(0.4853) 1.0148(0.2983) 0.0426(0.0194) 0.0424(0.0168)

n=500 0.4509(0.2155) 0.5509(0.1274) 0.0088(0.0040) 0.0094(0.0034)

Model 4 n=100 2.7417(3.3974) 1.4131(1.8058) 0.1036(0.0559) 0.0914(0.0539)

n=500 1.5595(1.5423) 0.5949(0.7420) 0.0232(0.0118) 0.0182(0.0109)

the theoretical distribution, which also reveals the validity of asymptotic normality in
Sect. 3.

Table 1 summarizes mean squared errors (MSE) of estimators β̂ and σ̂ 2
n under

Models 1–4. Table 2 presents the mean and standard deviation of RASE and MSPE
to evaluate the performance of our estimation procedure. Figure 2 shows our estimate
(dashed curve) and the Shin (2009)’s (dotted curve) from the typical samples which
correspond to the minimum of RASEs and RASEp under Models 1–4, respectively.
From these results in our simulation examples, we can know that the two estimation
methods are very close for the parameter component β and σ . However, from the
prediction perspective and the estimation effect of function coefficient α(t), if the
functional coefficient α(t) can be expressed linear combination of eigenfunctions of
covariance operator �, the Shin (2009)’s method is superior to ours, if not, our method
seems to perform better than Shin (2009)’ method. At the same time, the differences
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Fig. 2 The true α(t) (solid curve), the polynomial spline estimator (dashed curve) and the Shen (2009)’s
(dotted curve) under different models and sample sizes: (left) n=100; (right) n=500
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Table 3 The mean(sd) of running cpu time for Models 3–4

Model 3 Model 4
n=100 n=500 n=100 n=500

Times 0.5647(0.1307) 78.7888(2.1625) 0.4171(0.1078) 57.7458(1.7945)

Timep 0.7107(0.1477) 77.6594(2.4156) 0.4883(0.0962) 55.5548(1.8272)

between the two estimation methods become smaller and smaller as the sample size
n increases.

Table 3 displays the mean and standard deviation of running cpu time in a Dell per-
sonal computerwith Inter(R)Core(TM)2DuoCPU.We seem to infer fromTable 3 that
our method is more computationally expedient at least in the examples studied when
the sample size is small, while the Shin (2009)’s is more computationally expedient
if the sample size is large.

5 Conclusion and further research

In this paper, we propose the polynomial spline estimation for the partial functional
linear model. Some asymptotic results are established, including asymptotic normality
for the parameter vector and the global rate of convergence for the functional coeffi-
cient. By simulation studies, we verify the validity of theoretical results. On the one
hand, from the prediction perspective and the estimation effect of function coefficient
α(t), we detect if the functional coefficient α(t) can be expressed linear combination
of eigenfunctions of covariance operator �, the Shin (2009)’s method is superior to
ours, if not, our method seems to perform better than Shin (2009)’ method. While the
differences between the two estimation methods become smaller and smaller as the
sample size n increases. On the other hand, from computational time, we can draw a
conclusion that our method is more computationally expedient at least in the examples
studiedwhen the sample size is small, while the Shin (2009)’s is more computationally
expedient if the sample size is large. From our limited study, we only consider the func-
tional predictorwould beobserved fully.However,we canusually obtain some sparsely
discrete observations for each functional observation in practice. For this case, we can
use smooth techniques to approximate the functional observations. And then, the poly-
nomial spline method can also be used to estimate the partial functional linear model.
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Appendix

In the appendix, we give the proofs of the theorems and corollary in Sect. 3.
Set Bs = Kn

1/2N b
s , s = 1, . . . , Kn , where N b

s are the normalized B-splines. From
the Theorem 4.2 of Chapter 5 of DeVore and Lorentz (1993), we have that for any
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1118 J. Zhou et al.

spline function
∑Kn

s=1 bs Bs , there are positive constants M1 and M2 such that

M1‖b‖22 ≤
∫ { Kn∑

s=1

bs Bs

}2

≤ M2‖b‖22, (7)

where ‖ · ‖2 is Euclidean norm. Let ‖r‖∞ = supx∈[0,1] |r(x)|.
In order to prove the theorems, we need the following two lemmas.

Lemma 1 If conditions (C1) and (C2) hold, then we have
(i)

sup
a∈Sk,Nn

∣∣∣
1
n

∑n
i=1〈Xi , a〉2

E〈X, a〉2 − 1
∣∣∣ = op(1).

(ii) there exists an interval [M3, M4], 0 < M3 < M4 < ∞ such that as n → ∞,

P
{

all the eigenvalues of
1

n
BT B fall in [M3, M4]

}
→ 1.

Note that the Lemma 1 is a generalization of Lemma 1 and 2 in Huang and Shen
(2004b) in functional data case. We give a brief proof in the following.

Proof (i) Let �n denote the empirical versions of operator �, that is,

�n x(t) = 1

n

n∑
i=1

〈Xi , x〉Xi (t), x ∈ H, t ∈ [0, 1].

By the Cauchy–Schwarz inequality, condition (C2) and (28) in Cardot et al. (2003),
we have

∣∣∣
1
n

∑n
i=1〈Xi , a〉2

E〈X, a〉2 − 1
∣∣∣ =

∣∣∣ 〈(�n − �)a, a〉
〈�a, a〉

∣∣∣

≤ ‖�n − �‖∞‖a‖2
C‖a‖2

= ‖�n − �‖∞
C

.

Then for an arbitrary constant ε > 0, by Lemma 5.2 in Cardot et al. (1999), we have

P

{
sup

a∈Sk,Nn

∣∣∣
1
n

∑n
i=1〈Xi , a〉2

E〈X, a〉2 − 1
∣∣∣ > ε

}
≤ P

{
‖�n − �‖∞ > Cε

}

≤ E‖�n − �‖2∞
C2ε2

≤ E‖X‖4
nC2ε2

,
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together with (C2), which gives the result.
(ii) Let b = (b1, . . . , bKn )

T , a = ∑Kn
s=1 bs Bs . It follows from (i) that except an

event whose probability tends to zero as n → ∞,

1

n
bT BT Bb = 1

n

n∑
i=1

( Kn∑
s=1

bs〈Xi , Bs〉
)2

� E〈X, a〉2.

By the Cauchy–Schwarz inequality, (28) in Cardot et al. (2003) and (7),

E〈X, a〉2 � ‖a‖2 � ‖b‖22.

Thus, except an event whose probability tends to zero, 1
n bT BT Bb � ‖b‖22, holds

uniformly for all b, which yields the result. 
�
Lemma 2 Under conditions (C1)–(C5), as n → ∞, we have

ZT (I − A)Z
n

P−→ 
.

Proof Let μ j (Xi ) = E(Zi j |Xi ) = 〈Xi , g j 〉, ηi j = Zi j − μ j (Xi ),

Ṽ j =
(
μ j (X1), . . . , μ j (Xn)

)T
, η̃ j = (η1 j , . . . , ηnj )

T , j = 1, . . . , p.

We also define V = (Ṽ1, . . . , Ṽp), η = (η̃1, . . . , η̃p). Then, Z = η + V and

ZT (I − A)Z
n

= (η + V )T (I − A)(η + V )

n

= ηT (I − A)η

n
+ ηT (I − A)V

n
+ V T (I − A)η

n
+ V T (I − A)V

n
= I1 + I2 + I3 + I4.

For the ( j, l)th element of I1

(I1) jl = η̃ j
T (I − A)η̃l

n
= η̃ j

T η̃l

n
− η̃ j

T Aη̃l

n
, j, l = 1, . . . , p.

By independence and the Cauchy–Schwarz inequality, we have

E

{∑n
i=1[ηi jηil − E(ηi jηil)]

n

}2

= E(η1 jη1l − Eη1 jη1l)
2

n

≤ Eη21 jη
2
1l

n

≤ (Eη41 j )
1/2(Eη41l)

1/2

n
.
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Further, by Cr inequality and (C2)–(C4), we have

E(η1 j )
4 = E

(
Z1 j − 〈X1, g j 〉

)4 ≤ 8
(

E |Z1 j |4 + E |〈X1, g j 〉|4
)

≤ 8
(

E |Z1 j |4 + E‖X1‖4‖g j‖4
)

< ∞, j = 1, . . . , p.

Thus,

ηT η

n
P−→ 
. (8)

Note that A ≥ 0, then we have

∣∣∣ η̃ j
T Aη̃l

n

∣∣∣ ≤
∣∣∣ η̃ j

T Aη̃ j

n

∣∣∣1/2
∣∣∣ η̃l

T Aη̃l

n

∣∣∣1/2.

By Lemma 1, we can know that except an event whose probability tends to zero,

η̃ j
T Aη̃ j

n
= η̃ j

T B(BT B)−1BT η̃ j

n
� η̃ j

T B BT η̃ j

n2 .

Also note that E〈Xi , Bs〉ηi j = E〈Xi , Bs〉E(ηi j |Xi ) = 0. Then, by (7) and conditions
(C2)–(C4), we have there exists a positive constant C such that

E η̃ j
T B BT η̃ j = E

⎧⎨
⎩

Kn∑
s=1

[
n∑

i=1

〈Xi , Bs〉ηi j

]2
⎫⎬
⎭

= n
Kn∑

s=1

E〈X1, Bs〉2η21 j

≤ n
Kn∑

s=1

‖Bs‖2
(
E‖X1‖4

)1/2(
E |η1 j |4

)1/2

≤ CnKn .

Thus, for j, l = 1, . . . , p,

η̃ j
T Aη̃l

n
= Op

( Kn

n

)
= op(1),

which together with (8) yields

I1
P−→ 
. (9)
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For the ( j, l)-th element of I4, j, l = 1, . . . , p,

(I4) jl = Ṽ j
T
(I − A)Ṽl

n
,

by Cauchy–Schwartz inequality,

E
∣∣∣Ṽ j

T
(I − A)Ṽl

∣∣∣ ≤
(

EṼj
T
(I − A)Ṽ j

)1/2(
EṼl

T
(I − A)Ṽl

)1/2
.

It follows from Theorem XII.1 of de Boor (2001) that there exist positive constant C j

and spline function g∗
j ∈ Sk,Nn , j = 1, . . . , p such that

‖g j − g∗
j ‖∞ ≤ C j h

k+1.

Set g∗
j = ∑Kn

s=1 b∗
js Bs, b∗

j = (b∗
j1, . . . , b∗

j Kn
)T , j = 1, . . . , p, then,

Ṽ j
∗ =

(
〈X1, g∗

j 〉, . . . , 〈Xn, g∗
j 〉
)T = Bb∗

j .

As A is an orthogonal projection matrix,

E
∣∣∣Ṽ j

T
(I − A)Ṽ j

∣∣∣ = E
∣∣∣(I − A)Ṽ j

∣∣∣2 ≤ E
∣∣∣Ṽ j − Ṽ ∗

j

∣∣∣2

≤ nE‖X1‖2‖g j − g∗
j ‖2 � nh2(k+1).

From the above results and (C1), we have

Ṽ j
T
(I − A)Ṽl

n
= Op

(
h2(k+1)) = op(1),

that is,

I4
P−→ 0. (10)

For the ( j, l)-th element of I2 and I3, j, l = 1, . . . , p, we have

|η̃ j
T (I − A)Ṽl |

n
≤ (η̃ j

T (I − A)η̃ j )
1/2(Ṽl

T
(I − A)Ṽl)

1/2

n
,

|Ṽ j
T
(I − A)η̃l |

n
≤ (Ṽ j

T
(I − A)Ṽ j )

1/2(η̃l
T (I − A)η̃l)

1/2

n
.

Using (9) and (10), we can infer that

I2
P−→ 0, I3

P−→ 0. (11)

123



1122 J. Zhou et al.

The combination of (9)–(11) allows us to finish the proof of Lemma 2. 
�

Proof of Theorem 1 Denote � =
(
〈X1, α〉, . . . , 〈Xn, α〉

)T
, ε = (ε1, . . . , ε1)

T .

Then, Y = Zβ + � + ε. We can write

√
n(β̂ − β) = √

n
[
ZT (I − A)Z

]−1
ZT (I − A)�+√

n
[
ZT (I − A)Z

]−1
ZT (I − A)ε

= �1 + �2.

Observe that

�1 =
[ZT (I − A)Z

n

]−1
n−1/2ZT (I − A)� =

[ZT (I − A)Z
n

]−1
�11,

�2 =
[ZT (I − A)Z

n

]−1
n−1/2ZT (I − A)ε =

[ZT (I − A)Z
n

]−1
�21.

For �11, as Z = η + V ,

�11 = n−1/2ηT (I − A)� + n−1/2V T (I − A)�. (12)

By (C4) and the Theorem XII.1 of de Boor (2001), we know that there is a spline
function α∗ = ∑Kn

s=1 b∗
s Bs ∈ Sk,Nn and positive constant C such that

‖α − α∗‖∞ ≤ Chk+1. (13)

Set �∗ = (〈X1, α
∗〉, . . . , 〈Xn, α∗〉)T and b∗ = (b∗

1, . . . , b∗
Kn

)T , we have �∗ = Bb∗.
For j = 1, . . . , p, by conditions (C1), (C2), (C4) and Theorem XII.1 of de Boor
(2001), we can infer

E
∣∣∣Ṽ j

T
(I − A)�

∣∣∣ = E
∣∣∣(Ṽ j − Ṽ ∗

j )T (I − A)(� − �∗)
∣∣∣

≤ E
{∣∣∣(Ṽ j − Ṽ ∗

j )T (I − A)(Ṽ j − Ṽ ∗
j )

∣∣∣1/2
∣∣∣(� − �∗)T (I − A)(� − �∗)

∣∣∣1/2
}

≤
(

E
n∑

i=1

〈Xi , g j − g∗
j 〉2

)1/2 (
E

n∑
i=1

〈Xi , α − α∗〉2
)1/2

� nh2(k+1).

Thus, by (C1) we have

n−1/2V T (I − A)� = Op(n
1/2h2(k+1)) = op(1). (14)

Observe that for j = 1, . . . , p,

∣∣∣n−1/2η̃ j
T (I − A)�

∣∣∣ =
∣∣∣n−1/2η̃ j

T (I − A)(� − �∗)
∣∣∣
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≤
∣∣∣n−1/2η̃ j

T (� − �∗)
∣∣∣ +

∣∣∣n−1/2η̃ j
T A(� − �∗)

∣∣∣
≤ n−1/2

∣∣∣
n∑

i=1

ηi j 〈Xi , α − α∗〉
∣∣∣

+ n−1/2
∣∣∣η̃ j

T Aη̃ j

∣∣∣1/2
∣∣∣

n∑
i=1

〈Xi , α − α∗〉2
∣∣∣1/2

� I j1 + I j2.

As E
(
ηi j 〈Xi , α − α∗〉

)
= E

[
〈Xi , α − α∗〉E(ηi j |Xi )

]
= 0 and

E
∣∣∣

n∑
i=1

ηi j 〈Xi , α − α∗〉
∣∣∣2 = nEη21 j 〈X1, α − α∗〉2

≤ n‖α − α∗‖2(Eη41 j )
1/2(E‖X1‖4)1/2

� nh2(k+1),

we can infer

I j1 = Op(h
k+1) = op(1). (15)

Further, under the Lemma 1, (C1) and (13), we can show

I j2 = Op(K 1/2
n hk+1) = Op(n

−r(k+ 1
2 )) = op(1). (16)

By (12), (14)–(16) and Lemma 2, we have

�1
P−→ 0. (17)

�21 can be expressed as

�21 = n−1/2ηT (I − A)ε + n−1/2V T (I − A)ε � R1 + R2.

Let εi = ηiεi . Since εi is independent of (Xi ,Zi ) and (Xi ,Zi , Yi ) is i.i.d. sequence,
the εi are i.i.d. random variables with Eεi = 0 and V ar(εi ) = σ 2
.

Observe that
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R1 = n−1/2ηT ε − n−1/2ηT Aε = n−1/2
n∑

i=1

ηiεi − n−1/2ηT Aε

= n−1/2
n∑

i=1

εi − n−1/2ηT Aε.

Then, by the central limit theorem,

n−1/2
n∑

i=1

εi
D−→ N

(
0, σ 2


)
. (18)

Also note that
∣∣∣n−1/2η̃ j

T Aε

∣∣∣ ≤ n−1/2
(
η̃ j

T Aη̃ j

)1/2(
εT Aε

)1/2
.

Then, it follows from Lemma 1 that

εT Aε = εT B(BT B)−1BT ε � εT B BT ε

n
.

Since E〈Xi , Bs〉εi 〈X j , Bs〉ε j = 0, i �= j , we have

EεT B BT ε = E
Kn∑

s=1

(
n∑

i=1

εi 〈Xi , Bs〉
)2

=
Kn∑

s=1

n∑
i=1

Eε2i 〈Xi , Bs〉2

≤ nσ 2
Kn∑

s=1

E‖X1‖2‖Bs‖2 � nKn,

that is, εT Aε = Op(Kn). In addition, we can know from the proof of Lemma 2 that

η̃ j
T Aη̃ j

n
= Op

( Kn

n

)
.

Thus,

n−1/2ηT Aε = Op(Knn−1/2) = op(1),

which, together with (18), yields

R1
D−→ N

(
0, σ 2


)
. (19)

For the j th element of R2, j = 1, . . . , p, we have

∣∣∣n−1/2Ṽ j
T
(I − A)ε

∣∣∣ =
∣∣∣n−1/2(Ṽ j − Ṽ ∗

j )T (I − A)ε

∣∣∣
≤

∣∣∣n−1/2(Ṽ j − Ṽ ∗
j )T ε

∣∣∣ +
∣∣∣n−1/2(Ṽ j − Ṽ ∗

j )T Aε

∣∣∣
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≤
∣∣∣n−1/2(Ṽ j −Ṽ ∗

j )T ε

∣∣∣+ n−1/2
∣∣∣(Ṽ j −Ṽ ∗

j )T (Ṽ j −Ṽ ∗
j )

∣∣∣1/2
∣∣∣εAε

∣∣∣1/2

� J j1 + J j2.

Since εi is independent (Xi ,Zi ), we have

E J 2
j1 = n−1

n∑
i=1

Eε2i 〈Xi , g j − g∗
j 〉2 ≤ σ 2E‖X1‖2‖g j − g∗

j ‖2 � h2(k+1).

Then,

J j1 = Op
(
hk+1) = op(1).

Also, observe that

E
n∑

i=1

〈Xi , g j − g∗
j 〉2 = nE〈X1, g j − g∗

j 〉2 ≤ nE‖X1‖2‖g j − g∗
j ‖2 � nh2k+2.

Then, by (C1), we have

J j2 = Op
(
K 1/2

n hk+1) = Op
(
n−r(k+1/2)) = op(1).

From the above results, we can infer

R2
P−→ 0. (20)

Now, by Lemma 2, (17), (19), (20) and Slutsky theorem, we can obtain the Theorem 1.

�

Proof of Theorem 2 Observe that

b̂ = (BT B)−1BT (Y − Zβ̂) = (BT B)−1BT (Z(β − β̂) + � + ε
)
.

Let Ỹ = Z(β − β̂)+�. Denote b̃ = (BT B)−1BT Ỹ and α̃(t) = ∑Kn
s=1 b̃s Bs(t), where

b̃ = (b̃1, . . . , ˜bKn )
T . Then, b̂ − b̃ = (BT B)−1BT ε. By Lemma 1, we have

‖b̂ − b̃‖22 = εT B(BT B)−1(BT B)−1BT ε � εT B BT ε

n2 ,

except on an event whose probability tends to zero as n → ∞. Thus, by (7), we can
infer

‖α̂ − α̃‖2 � ‖b̂ − b̃‖22 = Op

( Kn

n

)
. (21)
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Also, it follows from the Theorem XII.1 of de Boor (2001) that there exists a spline
function α∗(t) = ∑Kn

s=1 b∗
s Bs(t) ∈ Sk,Nn where b∗ = (b∗

1, . . . , b∗
Kn

)T and constant
C > 0 such that

‖α∗ − α‖ ≤ ‖α∗ − α‖∞ ≤ Chk+1. (22)

By the Theorem XII.1 of de Boor (2001) and (7), we have

∥∥∥α̃ − α∗
∥∥∥2 �

∥∥∥b̃ − b∗
∥∥∥2
2

� (b̃ − b∗)T BT B(b̃ − b∗)
n

= ‖Bb̃ − Bb∗‖22
n

.

Observe that Bb̃ = B(BT B)−1BT Ỹ and B(BT B)−1BT is an orthogonal projection
matrix. Thus,

‖Bb̃ − Bb∗‖22
n

≤ ‖Ỹ − Bb∗‖22
n

=
∥∥Z(β − β̂) + (� − �∗)

∥∥2
2

n

≤ 2

n

[
‖Z(β − β̂)‖22 + ‖� − �∗‖22

]

= 2

n

n∑
i=1

⎧⎨
⎩

p∑
j=1

Zi j (β j − β̂ j )

⎫⎬
⎭

2

+ 2

n

n∑
i=1

〈Xi , α − α∗〉2.

Applying (C2), (22) and the Cauchy–Schwarz inequality, we obtain that

E〈X1, α − α∗〉2 ≤ E‖X1‖2‖α − α∗‖2 ≤ Ch2(k+1),

that is,

∑n
i=1〈Xi , α − α∗〉2

n
= Op

(
h2(k+1)). (23)

In addition, note that

1

n

n∑
i=1

⎧⎨
⎩

p∑
j=1

Zi j (β j − β̂ j )

⎫⎬
⎭

2

≤ p
p∑

j=1

(
β j − β̂ j

)2∑n
i=1 Z2

i j

n
.

Then, it follows from Theorem 1 and (C4) that

1

n

n∑
i=1

⎧⎨
⎩

p∑
j=1

Zi j (β j − β̂ j )

⎫⎬
⎭

2

= Op(n
−1), (24)

which together with (23) yields

‖α̃ − α∗‖2 = Op
(
n−1 + h2(k+1)). (25)

123



Polynomial spline estimation for partial functional linear… 1127

Further, we can infer that

‖α̂ − α‖2 ≤ 3
(
‖α̂ − α̃‖2 + ‖α̃ − α∗‖2 + ‖α∗ − α‖2

)
. (26)

Then, the combination of (21), (22), (25) and (26) allows us to complete the proof of
Theorem 2. 
�
Proof of Theorem 3 We can write

√
n(̂σ 2

n − σ 2) = √
n

{∑n
i=1

(
Yi − 〈Xi , α̂〉 − ZT

i β̂
)2

n
− σ 2

}

= √
n

{∑n
i=1

[〈Xi , α − α̂〉 + ZT
i (β − β̂) + ε

]2
n

− σ 2

}

= n−1/2
n∑

i=1

〈Xi , α − α̂〉2 + n−1/2
n∑

i=1

(β − β̂)TZiZT
i (β − β̂)

+ n−1/2
n∑

i=1

(ε2i − σ 2) + 2n−1/2
n∑

i=1

〈Xi , α − α̂〉εi

+ 2n−1/2
n∑

i=1

εiZT
i (β − β̂) + 2n−1/2

n∑
i=1

〈Xi , α − α̂〉ZT
i (β − β̂)

� Rn1 + Rn2 + Rn3 + Rn4 + Rn5 + Rn6.

Observe that

Rn1 = n−1/2
n∑

i=1

〈Xi , α − α̂〉2 ≤ ‖α − α̂‖2n−1/2
n∑

i=1

‖Xi‖2.

Then, by (C1), (C2), theorem 2, we have

Rn1 = Op
(
Knn−1/2 + n1/2h2(k+1)) = Op

(
nr−1/2 + n1/2−2r(k+1)) = op(1).

(27)

It follows from (24) that

Rn2 = Op
(
n−1/2) = op(1). (28)

For Rn3, since E(ε21 − σ 2) = 0 and �2 = E(ε21 − σ 2)2 < ∞, it follows from the
central limit theorem that

Rn3
D−→ N (0,�2). (29)
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For Rn4, we have

|Rn4| = 2n1/2
∣∣∣〈
∑n

i=1 Xiεi

n
, α − α̂〉

∣∣∣ ≤ 2n1/2
∥∥∥
∑n

i=1 Xiεi

n

∥∥∥
∥∥∥α − α̂

∥∥∥.

Then, applying (C1), (C2) and Theorem 2, we can obtain

Rn4 = Op
(
K 1/2

n n−1/2 + hk+1) = op(1). (30)

Note that

Rn5 = 2n1/2

∑n
i=1 εiZT

i (β − β̂)

n
= 2n1/2

p∑
j=1

(β j − β̂ j )

∑n
i=1 εi Zi j

n
.

Thus, using (C3) and Theorem 1, we have

Rn5 = Op
(
n−1/2) = op(1). (31)

Also, observe that

|Rn6| = 2n1/2

∣∣∑n
i=1〈Xi , α − α̂〉ZT

i (β − β̂)
∣∣

n

≤ 2n1/2
p∑

j=1

|β j − β̂ j |‖α − α̂‖
∑n

i=1 ‖Xi‖|Zi j |
n

.

Then, by (C1)–(C3), Theorem 1 and 2, we can get

Rn6 = Op
(
K 1/2

n n−1/2 + hk+1) = op(1). (32)

Finally, using (27)–(32), we can complete the proof of Theorem 3. 
�

Proof of Corollary 1 It follows form Theorem 1 that

√
n

σ



1
2 (β̂ − β)

D−→ N (0, Ip).

Also, by Lemma 2 and Theorem 3, we have that


̂n
P−→ 
, σ̂ 2

n
P−→ σ 2.

Then, by the Slutsky theorem, we obtain the Corollary 1. 
�
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