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Abstract Data augmentation (DA) algorithm is a widely used Markov chain Monte
Carlo algorithm. In this paper, an alternative to DA algorithm is proposed. It is shown
that the modified Markov chain is always more efficient than DA in the sense that the
asymptotic variance in the central limit theorem under the alternative chain is no larger
than that under DA. The modification is based on Peskun’s (Biometrika 60:607–612,
1973) result which shows that asymptotic variance of time average estimators based
on a finite state space reversible Markov chain does not increase if the Markov chain
is altered by increasing all off-diagonal probabilities. In the special case when the
state space or the augmentation space of the DA chain is finite, it is shown that Liu’s
(Biometrika 83:681–682, 1996) modified sampler can be used to improve upon the
DA algorithm. Two illustrative examples, namely the beta-binomial distribution, and a
model for analyzing rank data are used to show the gains in efficiency by the proposed
algorithms.

Keywords Modified data augmentation · Efficiency ordering · MCMC · Peskun
ordering · Rao Blackwellization

1 Introduction

Let fX : X → [0,∞) be a probability density function that is intractable in the
sense that expectations with respect to fX cannot be computed analytically. If direct
simulation from fX is not possible, one may resort to a Markov chain Monte Carlo
(MCMC) method such as the data augmentation (DA) algorithm (Tanner and Wong
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1987) to estimate expectations with respect to fX . The construction of a DA algorithm
begins with finding a joint density, say f : X × Y → [0,∞), that satisfies two
conditions: (i) the x-marginal of f (x, y) is fX , and (ii) it is easy to sample from the
corresponding two conditional densities, fX |Y (·|y) and fY |X (·|x). The Markov chain
{Xn}∞n=0 associated with the DA algorithm is run as follows. Given the current state,
Xn = x , the following two steps are used to move to the new state Xn+1.

Iteration n + 1 of the DA Algorithm:

1. Draw Y ∼ fY |X (·|x), and call the observed value y
2. Draw Xn+1 ∼ fX |Y (·|y)

Since the Markov chain {Xn}n≥0 is reversible with respect to fX (Liu et al. 1994),
it follows that fX is an invariant density for {Xn}n≥0. Suppose that g : X → R is a
function of interest andwewant to compute E fX g := ∫

X g(x) fX (x)μ(dx). If {Xn}n≥0
is suitably irreducible, then time averages ḡn := ∑n

i=1 g(Xi )/n consistently estimate
space averages E fX g (Meyn and Tweedie 1993, Theorem 17.0.1). In order to evaluate
the performance of ḡn as an estimator of E fX g, like elsewhere in statistics, we consider
its variance in the central limit theorem (CLT). In this paper we propose a modification
of DA algorithms using Peskun ordering (Peskun 1973) that improves DA in terms of
asymptotic variance of ḡn .

We now briefly describe Peskun’s (1973) result. Let P and Q be two Markov
transition matrices both reversible with respect to a given probability distribution.
Peskun (1973) showed that if each of the off-diagonal elements of P is greater than or
equal to the corresponding off-diagonal element of Q, then the asymptotic variances
of time averages of any function are smaller in a chain generated using P than in
one using Q. Tierney (1998) later extended this result to general state space Markov
chains. The key idea behind Peskun ordering is that by moving probability off the
diagonal, a Markov chain decreases probability of retaining the current state. Note
that if a Markov chain is held back in the same state for succeeding times, it fails to
move around the state space and thus increases autocorrelation in the observedMarkov
chain and hence the variance of the empirical average increases.

If we replace step 2 above in theDA algorithmwith a draw from aMarkov transition
function that is reversiblewith respect to fX |Y , we show that the resultingMarkov chain
{X̃n} is also reversible with respect to the target density fX (x). Thus, the chain {X̃n}
can also be used to estimate expectations with respect to fX (x). Further, we establish
conditions under which the Markov chain {X̃n} has higher off-diagonal probabilities
than DA. Then as discussed above the modified chain {X̃n} is at least as efficient as the
DAalgorithm in the sense that asymptotic variances are never larger than theDAchain.
Improving efficiency of theDA algorithm is practically important since if {X̃n} is twice
as efficient as DA and if both algorithms require similar amount of time to run, then
{X̃n} needs only half of the time the DA algorithm requires to achieve the same level of
precision in the estimates. In particular, we consider the case when the state spaceX or
the augmentation space Y is finite, and the step 2 in DA algorithm is substituted with
an appropriateMetropolis Hastings (MH) step to improve upon the DA algorithm. The
MH step that we use here is given in Liu (1996) who used it to increase efficiency of
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random scan Gibbs sampler. We call the resulting algorithm, the modified DA (MDA)
algorithm. In general, the naive way of simulating Liu’s (1996) sampler by repeated
sampling can be very computationally expensive and hence impractical. In Sect. 4.2.1
we show that in an example involving analysis of rank data the naive way of sampling
Liu’s (1996) algorithm takes too long to run to be useful in practice. In Sect. 3.2.1 we
develop an alternative efficient method that can be used to effectively sample from
Liu’s (1996) algorithm.

The remainder of this paper is organized as follows. Section 2 contains a review
of results regarding efficiency ordering and Peskun ordering of Markov chains. In
Sect. 3 we provide a result improving DA chains in general state space and use it
to produce efficient algorithms when the state space X, or the augmentation space Y
is finite. Finally in Sect. 4, we compare the DA and our proposed algorithm in the
context of two specific examples. Proofs and some technical derivations are given in
the Appendices.

2 Peskun’s theorem and efficiency ordering

Let P(x, dy) be a Markov transition function (Mtf) on X, equipped with a countably
generated σ -algebra B(X). If P is reversible with respect to a probability measure π ,
that is, if π(dx)P(x, dx ′) = π(dx ′)P(x ′, dx) for all x, x ′ ∈ X, then π is invariant
for P , that is,

π(A) =
∫

X
P(x, A)π(dx) for all measurable set A.

Let L2(π) be the vector space of all real valued, measurable functions on X that
are square integrable with respect to π . The inner product in L2(π) is defined as
〈g, h〉 = ∫

X g(x) h(x) π(dx) . The Mtf P defines an operator on L2(π) through,
(Pg)(x) = ∫

X g(y)P(x, dy). Abusing notation, we use P to denote both the Mtf and
the corresponding operator. If the Mtf P is reversible with respect to π , then for all
bounded functions g, h ∈ L2(π), 〈Pg, h〉 = 〈g, Ph〉. The spectrum of the operator
P is defined as

σ(P) =
{
λ ∈ R : P − λI is not invertible

}
.

For reversible P , it follows from standard linear operator theory that σ(P) ⊆ [−1, 1].
Let {ηn}n≥0 denote the Markov chain driven by P starting at η0. If {ηn}n≥0 is ψ-

irreducible andHarris recurrent, that is, if it is apositive Harris chain, then the estimator
ḡn := ∑n

i=1 g(ηi )/n is strongly consistent for Eπ g := ∫
X g(x)π(dx), no matter how

the chain is started (see Meyn and Tweedie 1993, for definition of ψ-irreducibility,
and Harris recurrence). In practice, this estimator is useful if it is possible to provide
an associated standard error of ḡn . This is where a central limit theorem (CLT) for ḡn

is called for, that is, we need that as n → ∞,

√
n(ḡn − Eπ g)

d−→ N (0, v(g, P)), (1)
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for some positive, finite quantity v(g, P). Thus if (1) holds and v̂(g, P) is a consistent
estimator of v(g, P), then an asymptotic standard error of ḡn based onMCMC sample
of size n is v̂(g, P)/

√
n. If the CLT fails to hold, then we simply write v(g, P) = ∞.

Unfortunately, even if g ∈ L2(π), and {ηn}n≥0 is positive Harris, v(g, P) can still
be ∞. Different sufficient conditions for CLT can be found in Jones (2004) (see
also Roberts and Rosenthal 2004). Let P be reversible and let εg be the spectral
decomposition measure (Rudin 1991) of g associated with P , then from Kipnis and
Varadhan (1986) we know that

v(g, P) =
∫

σ(P)

1 + λ

1 − λ
εg(dλ). (2)

In the finite state space case, that is, when the cardinality of the set X, #X = d < ∞,
P is simply a reversible Markov transition matrix (Mtm) and σ(P) consists of its
eigenvalues (see Hobert et al. 2011, for a discussion on these ideas). In this case, the
asymptotic variance v(g, P) can be written as (see e.g. Brémaud 1999, p. 235)

v(g, P) =
d−1∑

i=1

1 + λi

1 − λi
〈g, ui 〉2, (3)

where 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λd−1 ≥ −1 are the eigenvalues of P with right
eigenvectors ui , i = 1, 2, . . . , d −1(u0 = 1). Here λ0 = 1 > λ1 follows because P is
irreducible (see e.g. Brémaud 1999, p. 204). From (3) we see that asymptotic variance
is an increasing function of the eigenvalues of the Mtm P .

Now suppose that we have two reversible positive Harris Mtf’s P and Q with
invariant distribution π . Hence either one of them can be used to estimate Eπ g. If P
and Q are similar in terms of computation effort, then we prefer the chain with smaller
asymptotic variance. In general, if v(g, P) ≤ v(g, Q) for all g then P is said to be
more efficient than Q as defined below.

Definition 1 (Mira andGeyer 1999) Let P and Q be twoMtf’swith the same invariant
distribution π . Then P is better than Q in the efficiency ordering, written P E Q, if
v(g, P) ≤ v(g, Q) for all g ∈ L2(π).

As mentioned in the introduction that a sufficient condition for efficiency ordering of
reversible Markov chains is due to Peskun (1973) which was later extended to general
state space Markov chains by Tierney (1998).

Definition 2 (Tierney 1998) Let P and Q be two Mtf’s with the same invariant mea-
sure π . Then P dominates Q in the Peskun sense, written P P Q, if for π -almost
all x we have P(x, A\{x}) ≥ Q(x, A\{x}) for all A ∈ B(X).

Tierney’s (1998) Theorem 4 show that if P and Q are reversible with respect to π and
P P Q then P E Q. When X is finite, from Definition 2 we see that P P Q
implies that each of the off-diagonal elements of the Mtm P is greater than or equal to
the corresponding element of the Mtm Q. Mira and Geyer (1999) show that P P Q
implies that the (ordered) eigenvalues P are no larger than those of Q. Since smaller
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eigenvalues result in smaller asymptotic variance [see the expressions of v(g, P) in
(2) and (3)], it follows that P E Q. On the other hand, the speed of convergence (of
the Markov chain driven by P) to stationarity (π ) is determined by its spectral radius,
ρ(P) := sup{|λ| : λ ∈ σ(P)} (Rosenthal 2003). The smaller the spectral radius, the
faster the Markov chain converges. That is, while small asymptotic variance of time
average estimators is achieved by having small eigenvalues, faster convergence of the
Markov chain requires having small eigenvalues in absolute value. Since P P Q
does not imply an ordering on the absolute values of the eigenvalues, P may have
slower convergence than Q.

3 Improving upon the DA algorithm

We begin with a result showing how Peskun ordering can be used for improving
efficiency of DA chains.

3.1 A result improving general state space DA chains

Let fX : X → [0,∞) be a probability density function with respect to a σ -finite
measure μ and f (x, y) be a probability density function on X × Y with respect to
a σ -finite measure μ × ν. The Markov transition density (Mtd) of the DA algorithm
presented in the Introduction is given by

k(x ′|x) =
∫

Y
fX |Y (x ′|y) fY |X (y|x)ν(dy).

Let K (x, ·) be the correspondingMtf.Asmentioned in the Introduction, K is reversible
with respect to fX and hence fX is invariant for K . So if K isψ-irreducible and Harris
recurrent, it can be used to estimate means with respect to fX . A simple sufficient
condition for K satisfying these conditions can be found in Hobert (2011). For each
y ∈ Y, let ky(x ′|x) be a Mtd on X with respect to μ. Define

k̃(x ′|x) =
∫

Y
ky(x ′|x) fY |X (y|x)ν(dy).

Let k̃(x ′|x) be a Mtd with corresponding Mtf K̃ . We have the following proposition
comparing the Mtf’s K and K̃ .

Proposition 1 1. Suppose that for all y ∈ Y, and x ′ ∈ X,

∫

X
ky(x ′|x) fX |Y (x |y)μ(dx) = fX |Y (x ′|y), (4)

that is, fX |Y (x ′|y) is invariant for ky(x ′|x). Then fX (x) is invariant for k̃.
2. If for all y ∈ Y, and x, x ′ ∈ X,

ky(x ′|x) fX |Y (x |y) = ky(x |x ′) fX |Y (x ′|y), (5)
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that is, ky is reversible with respect to fX |Y (x |y), then k̃ is reversible with respect
to fX (x).

3. Assume that (5) holds, and if for all A ∈ B(X)

∫

A\{x}
ky(x ′|x)μ(dx ′) ≥

∫

A\{x}
f (x ′|y)μ(dx ′), (6)

for fX almost all x ∈ X and all y ∈ Y. Then K̃ P K and hence K̃ E K .

The proof of Proposition 1 is given in “Appendix A”. A sufficient condition for (6) to
hold is ky(x ′|x) ≥ f (x ′|y) for all x ′ �= x ∈ X. The DA algorithm requires one to be
able to draw from the two conditional densities fY |X , and fX |Y . Whereas simulating K̃
requires a draw from fY |X followed by a draw from ky(x ′|x). So, if drawing from fX |Y
is difficult and we can find ky(x ′|x) which satisfies (4), we can use K̃ for estimating
E fX g.

Remark 1 In Proposition 1 we replace step 2 (draw from fX |Y ) of the DA algorithm
with draw from another Mtd. It is important to note that if we substitute step 1 of
the DA algorithm with a draw from an Mtd kx (y|y′) that is reversible with respect to
fY |X (y|x), the resulting chain is not a Markov chain.

It may be difficult to find ky(x ′|x) satisfying the conditions (5) and (6). Liu (1996)
proposed a modification to discrete state space random scan Gibbs sampler where a
Metropolis–Hastings step is used to prevent staying at the current value of a coordinate
for consecutive iterations. In the next two sections we show that when the state space
X or the augmentation space Y is finite, we can use Liu’s (1996) modified sampler to
improve upon the DA algorithm.

3.2 When state space X is finite

Suppose the state space X has d elements. So K is a d × d Mtm. We consider the
following Metropolis–Hastings (MH) algorithm with invariant density fX |Y (x |y).

Draw x ′ ∼ qy(x ′|x), where the proposal density qy(x ′|x) is

qy(x ′|x) = fX |Y (x ′|y)

1 − fX |Y (x |y)
I (x ′ �= x), (7)

and I (A) is the indicator function of the set A. Accept x ′ with probability

αy(x, x ′) = min

(

1,
1 − fX |Y (x |y)

1 − fX |Y (x ′|y)

)

,

otherwise remain at x . Our alternative algorithm, which we call modified DA (MDA)
algorithm replaces step 2 of the DA algorithm presented in the Introduction by the
above Metropolis–Hastings step. Let {X̃n}n≥0 denote the MDA chain. If X̃n = x is
the current state, the following two steps are used to move to the new state X̃n+1.
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Iteration n + 1 of the MDA Algorithm:

1. Draw Y ∼ fY |X (·|x), and call the observed value y.
2. Draw X̃n+1 using a MH step with proposal density (7).

Note theMDA algorithm is a sub-chain of a conditional Metropolis–Hastings sampler
defined in Jones et al. (2014). Define,

ry(x) = 1 −
∑

x ′ �=x

qy(x ′|x)αy(x, x ′)

= 1 −
∑

x ′ �=x

min

(
fX |Y (x ′|y)

1 − fX |Y (x |y)
,

fX |Y (x ′|y)

1 − fX |Y (x ′|y)

)

.

Then the elements of the Mtm KM D A are given by

kM D A(x ′|x) =
∫

Y
qy(x ′|x)αy(x, x ′) fY |X (y|x)ν(dy)

+ I (x ′ = x)

∫

Y
ry(x) fY |X (y|x)ν(dy).

The second term in the above expression is the probability that the algorithm remains at
x . Since qy(x ′|x)αy(x, x ′) ≥ f (x ′|y) for all x ′ �= x ∈ X and all y ∈ Y, the following
corollary follows from Proposition 1.

Corollary 1 The Mtm KM D A is reversible with respect to fX (x), and KM D A E K .

Liu et al. (1994) showed that the Markov operators corresponding to DA algorithms
are positive (see e.g. Rudin 1991, for definition of positive operator). This implies that
σ(K ) ⊂ [0, 1). Furthermore, from Mira and Geyer (1999), we have the following
corollary.

Corollary 2 Let λi and λ̃i , i = 1, 2, . . . , d − 1 be the eigenvalues of the Mtm’s K
and KM D A respectively. Then λi ∈ [0, 1), λ̃i ∈ (−1, 1), and λ̃i ≤ λi for all i .

Since the DA algorithms are known to have slow convergence, over the last two
decades a great deal of effort has gone into modifying DA to speed up its conver-
gence. The parameter expanded DA (PX-DA) algorithm of Liu and Wu (1999), and
closely related conditional and marginal augmentation algorithms of Meng and van
Dyk (1999) and van Dyk and Meng (2001) are alternatives to DA which often con-
verges faster than DA algorithms. Generalizing these alternative algorithms, Hobert
and Marchev (2008) recently introduced sandwich algorithms. Although Hobert and
Marchev (2008) proved that the sandwich algorithms are at least as (asymptotically)
efficient as the original DA algorithms, it was noted recently that even the optimal
PX-DA algorithm could take millions of iterations before it provided any improve-
ment over the DA algorithm (Roy 2014). The DA algorithms and also generally the
sandwich algorithms that are used in practice are positive Markov chains leading to
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positive eigenvalues (Khare and Hobert 2011, p. 2587). On the other hand, the MDA
algorithm can have negative eigenvalues and hence it can have superior performance
than DA and sandwich algorithms in terms of asymptotic variance.

On the other hand, since MDA may have larger eigenvalues in absolute value than
DA, it may have slower convergence than DA. In Sect. 4.1 we provide an example
where MDA has faster convergence than DA. In fact, MDA results in iid samples in
this example.

3.2.1 An efficient method for sampling Liu’s (1996) algorithm

In order to efficiently run the MDA algorithm, we need fast method of sampling from
qy(x ′|x) defined in (7). The naive way of sampling from qy(x ′|x) is to repeatedly draw
from fX |Y (x ′|y) until a value x ′ different from x is obtained. This method of sampling
from qy(x ′|x) can be very costly when fX |Y (x |y) is large (close to one). Below we
describe an alternative recipe for the Metropolis–Hastings step in the MDA algorithm
when fX |Y (x |y) is larger than (

√
5− 1)/2 ≈ 0.618. When fX |Y (x |y) ≤ (

√
5− 1)/2,

sampling from qy(x ′|x) can be performed by the naive repeated sampling mentioned
above.

Recipe for MH step when fX |Y (x |y) > (
√
5 − 1)/2:

(i) Draw x ′ ∼ fX |Y (·|y). If x ′ �= x where x is the current value, go to (ii). Otherwise,
make another draw from fX |Y (·|y). If the new value is also equal to x , then return
x as the result. Otherwise, continue to (ii).

(ii) We now have a value x ′ different from x . Accept and return x ′ as the result with
probability

βy(x, x ′) = 1

(1 − fX |Y (x ′|y))(1 + fX |Y (x |y))
. (8)

Otherwise return x .

We now explain why the above method works. Note that when fX |Y (x |y) ≥ 1/2,

αy(x, x ′) = 1 − fX |Y (x |y)

1 − fX |Y (x ′|y)
implying

qy(x ′|x)αy(x, x ′) = fX |Y (x ′|y)

1 − fX |Y (x ′|y)
I (x ′ �= x). (9)

The probability of obtaining x ′ (which is used in step (ii)) from step (i) is

fX |Y (x ′|y) + fX |Y (x |y) fX |Y (x ′|y) = fX |Y (x ′|y)(1 + fX |Y (x |y)).

So the probability of producing x ′ (different from x) as the final result is

fX |Y (x ′|y)(1 + fX |Y (x |y))βy(x, x ′) = fX |Y (x ′|y)

1 − fX |Y (x ′|y)
,
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which is same as qy(x ′|x)αy(x, x ′) given in (9). Hence the probability of staying back
at x is 1−∑

x ′ �=x qy(x ′|x)αy(x, x ′) = ry(x). Finally, the above alternative method of
performing the Metropolis Hastings step works as long as the expression βy(x, x ′) in
(8) is <1. In order to establish this, note that for x ′ �= x , fX |Y (x ′|y)+ fX |Y (x |y) ≤ 1,
that is, (1 − fX |Y (x ′|y)) ≥ fX |Y (x |y), implying that

βy(x, x ′) ≤ 1

fX |Y (x |y)(1 + fX |Y (x |y))
,

which is <1 since fX |Y (x |y) > (
√
5 − 1)/2.

3.3 When augmentation space Y is finite

Next, we consider the case when the parameter space X is uncountable, but the aug-
mentation space Y is finite. An example of this situation is the Bayesian mixture
models as discussed in Hobert et al. (2011). In this case, we consider the so-called
conjugate Markov chain that lives on Y and makes transition y → y′ with probability

k∗(y′|y) =
∫

X
fY |X (y′|x) fX |Y (x |y)μ(dx).

Straightforward calculations show that fY is the invariant density of k∗, where fY is
the y-marginal density of f (x, y). Hobert et al. (2011) showed that if |X| = ∞, and
|Y| = d < ∞, then σ(K ) consists of the points {0} together with the d −1 eigenvalues
of the Mtm K ∗ associated with the conjugate chain. Since Y is finite, we can use Liu’s
(1996) modified algorithm, as in Sect. 3.2, to construct an MDAMtm K ∗

M D A which is
more efficient than K ∗. That is, to estimate means with respect to fY we prefer K ∗

M D A
over K ∗. Below we show that a Rao-Blackwellized estimator based on K ∗

M D A is more
efficient than the time average estimator based on the DA algorithm K .

As before suppose we are interested in estimating E fX g for some function g : X →
R. Now

E fX g = E fY [E fX |Y (g(X)|y)] = E fY h,

where h(y) := E fX |Y (g(X)|y). If h is available in closed form, then we can use K ∗
M D A

to estimate E fY h, that is, E fX g.

Proposition 2 The Markov chain driven by K ∗
M D A is more efficient than the DA

algorithm K , for estimating E fX g, that is, v(h, K ∗
M D A) ≤ v(g, K ), for all g ∈ L2( fX )

where h(y) = E fX |Y (g(X)|y).

Proof From Liu et al. (1994) we know that v(h, K ∗) ≤ v(g, K ). Then the proposition
follows since v(h, K ∗

M D A) ≤ v(h, K ∗) by Proposition 1. ��
Remark 2 It is known that Peskun’s criterion as defined in Definition 2 can not be
used for comparing Mtf’s for which P(x, {x}) = 0 for every x in the state space. For
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example, as mentioned in (Mira and Geyer 1999, p. 14), Gibbs samplers with continu-
ous full conditionals cannot be compared using Peskun ordering. In Proposition 2 we
have constructed more efficient estimators than time averages based on the DA chain
even when the state space X is continuous.

4 Examples

In this section we consider two examples—the beta-binomial model, and a model for
analyzing rank data. In the first example we consider two situations—the state space
X is finite, the augmentation space Y is infinite and |X| = ∞, but |Y| < ∞. In the
second example, X is finite and the augmentation space Y is infinite.

4.1 Beta-binomial model

Consider the following beta-binomial model

f (x, y) ∝
(

n

x

)

yx+α−1(1 − y)n−x+β−1, x = 0, 1, . . . , n; 0 ≤ y ≤ 1,

from Casella and George (1992) who were interested in calculating some characteris-
tics of the marginal distribution fX based on the DA chain. The two conditionals used
in the DA chain are standard distributions. In fact, fX |Y is Binomial (n, y) and fY |X
is Beta (x + α, n − x + β). The transition probabilities of the DA chain are given by

k(x ′|x) =
∫ 1

0

(
n

x ′

)

yx ′
(1 − y)n−x ′ yx+α−1(1 − y)n−x+β−1

B(x + α, n − x + β)
dy

=
(n

x ′
)
B(x + x ′ + α, 2n − (x + x ′) + β)

B(x + α, n − x + β)
,

where B(·, ·) is the beta function.
Liu (1996) in an associated Technical report (Metropolized Gibbs Sampler: An

Improvement) considered the above example and by comparing autocorrelation plots
in the case n = 1 = α = β, he conjectured that the MDA algorithm is more efficient
than the standard Gibbs sampler. Below we show that it is indeed the case. Since
n = 1, the state space of the DA chain is {0, 1} and fX (0) = 1/2 = fX (1). Simple
calculations show that the Mtm’s of the DA and the MDA algorithms are given by

K =
(
2/3 1/3
1/3 2/3

)

and KM D A =
(
1/2 1/2
1/2 1/2

)

.

So, the MDA algorithm produces iid draws from the invariant distribution in this case.
This explains why the autocorrelations for MDA chain “dropped quickly to zero in
two iterations” as observed in the above mentioned Technical report. Note that in this
example λ̃1 = 0 < λ1 = 1/3. Suppose we want to estimate E(X). Since MDA results
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in iid samples from fX , v(X, KM D A) = Var fX (X) = 1/4. On the other hand, we have
(see e.g. Brémaud 1999, p. 233)

v(X, K ) = Var fX (X) + 2〈x, (Z − I )x〉, (10)

where 〈·, ·〉 denotes the inner product in L2( fX ), Z ≡ (I − (K − F))−1, with F =
(1, 1)T ( fX (0), fX (1)). Since

K − F =
(

1/6 −1/6
−1/6 1/6

)

⇒ Z =
(

5/4 −1/4
−1/4 5/4

)

,

we have 〈x, (Z− I )x〉 = 1/8. Then from (10) we have v(X, K ) = 1/4+ 2/8 = 1/2,
and so v(X, K )/v(X, KM D A) = 2. Thus MDA algorithm in this case is twice as
efficient as the DA algorithm for estimating E(X).

Next we consider estimating E fY (Y ). In this case fY plays the role of the target
density fX from the Introduction and the DA chain is denoted by {Yn}n≥0. Here, the
marginal density fY is simply a uniform distribution in (0, 1). Note that, v(Y, K ) =
Var fY (Y ) + 2

∑∞
k=1 Cov(Y0, Yk). We can calculate the lag-k autocovariances using

the following formula given in Liu et al. (1994)

Cov(Y0, Yk) = Var(E(· · · E(E(Y |X)|Y ) · · · )),

where the expression in the right hand side has k conditional expectations alternately
with respect to fY |X and fX |Y . Then Cov(Y0, Y1) = Var(E(Y |X)) = Var((X +
1)/3) = (1/32)(1/4),Cov(Y0, Y2) = Var(E(E(Y |X)|Y )) = Var((Y + 1)/3) =
(1/32)(1/12), so on. In general, Cov(Y0, Y2k−1) = (1/32k)(1/4) and Cov(Y0, Y2k) =
(1/32k)(1/12) for k = 1, 2, . . . . So

v(Y, K D A) = 1

12
+ 2

[
1

32
1

4
+ 1

32
1

12
+ 1

34
1

4
+ 1

34
1

12
+ · · ·

]

= 1

12
+ 1

12
= 1

6
.

In this case the support of the target density fY is (0, 1), which is not finite. So
we can not use the approach mentioned in Sect. 3.2 to improve the time average
estimator

∑n
i=1 Yi/n. On the other hand, since h(x) = E(Y |X = x) = (x + 1)/3, is

available in closed form and the augmentation space {0, 1} is finite, we can use theRao-
Blackwellized MDA estimator discussed in Sect. 3.3 to estimate E fY (Y ). Since MDA
results in iid draws, v(h, K ∗

M D A) = Var fX ((X + 1)/3) = (1/32)(1/4) = 1/36. So,
v(Y, K )/v(h, K ∗

M D A) = 6, that is, our proposed estimator is six times more efficient
than the standard estimator

∑n
i=1 Yi/n of E fY (Y ) based on the DA chain. On the other

hand, using (10) for the function h(X), we see that the asymptotic variance of the Rao-
Blackwellized estimator of Y based on the conjugate chain is v(h, K ∗) = 1/18, that
is, MDA is only twice more efficient than this estimator.
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4.2 Bayesian analysis of rank data

In many examples of rank data, like ranking of students for their proficiency in a given
subject, onemay use some objective criterion like themarks scored in an appropriately
designed test for determining their rank. However, in other situations, like the case
of evaluating a job applicant, usually different attributes are considered. Typically, a
panel of judges evaluate the candidates (items) on a variety of relevant aspects, some
of which may be objective, and others are subjective. The whole group of experts then
tries to arrive at a consensus ranking based on all the rankings by the individual experts
through some subjective decision making process. Laha and Dongaonkar (2009) call
this generally accepted rank as the “true rank”. Consider a situation in which p items
are ranked by a random sample of m judges from a population. Let Sp be the set
(group) of permutations of the integers 1, 2, . . . , p. Laha and Dongaonkar (2009)
assume that the observed ranks zi ’s are “perturbed” versions of the true rank π of the
p items. Formally, zi = σi ◦ π , where σi ∈ Sp, for i = 1, 2, . . . , m and ◦ denotes
the composition operation on Sp, that is, the observed ranks zi ’s are considered
permutations of the true rankπ . The permutation σi plays the role of “error” analogous
to ε in the linear model z = μ + ε.

Often there are covariates on the experts and the true rank depends on the value of
the covariate. Recently, Laha et al. (2013) generalized the above model to incorporate
covariates. They assume that zi = σi ◦ π(xi ), where π(xi ) is the true rank when
the covariate is xi and xi falls in one of the c categories numbered 1 through c, that
is, xi ∈ {1, 2, . . . , c}. Denoting the p! possible rankings as ζ1, ζ2, . . . , ζp!, (ζ1 being
the identity permutation) and assuming that the errors σi ’s are iid having multinomial
distribution σi ∼ Mult(1; θ1θ2, . . . , θp!)with θi ≡ θζi , the likelihood function is given
by

�(θ ,π) =
p!∏

i=1

c∏

j=1

θ
mi j

ζi ◦π( j)−1,

where θ = (θ1, θ2, . . . , θp!), π = (π(1), π(2), . . . , π(c)), and mi j is the number of
times ranking ζi is given by respondents in the j th category. A conjugate prior for
the parameter θ is the Dirichlet distribution. Let p(θ) ∝ ∏p!

i=1 θ
ai −1
i be the prior on

θ with some suitably chosen hyperparameters ai ’s. We assume that ai ∝ 2−dC (ζi ,ζ1),
where dC (·, ·) is the Cayley’s distance inSp. (See Laha et al. 2013, for a more general
choice for this hyperparameter.) Assume that the prior on π is p(π) = ∏c

j=1 p(π( j))
where a uniform prior is specified on π( j)’s. Then the posterior distribution is given
by

p(θ ,π |z) ∝ �(θ,π)p(θ) ∝
p!∏

i=1

c∏

j=1

θ
mi j

ζi ◦π( j)−1

p!∏

i=1

θ
ai −1
i =

p!∏

k=1

θ
Mk (π)+ak−1
k ,

where Mk(π) = ∑p!
i=1

∑c
j=1 mi j I (ζi ◦ π( j)−1 = ζk). Since the conditional density

p(π |θ , z) is product of multinomial distributions and p(θ |π , z) is Dirichlet distribu-

123



Improving efficiency of data augmentation algorithms… 721

tion, we can construct a DA algorithm. Indeed from Laha et al. (2013) we have that
the conditional distribution of θ given π and z is given by

p(θ |π , z) ∝
p!∏

k=1

θ
Mk (π)+ak−1
k ,

and conditional on θ and z, π(1), . . . , π(c) are independent with

p(π( j) = ζr |θ, z) ∝
p!∏

k=1

θ

∑
i mi j I(ζi =ζk◦ζr )

k , r = 1, . . . , p!.

Note that here the roles of x and y from the Introduction, are being played by π and
θ , respectively. For an integer r larger than 1, denote the standard (r − 1) simplex by

Sr := {
(t1, t2, . . . , tr ) ∈ R

r : ti ∈ [0, 1] and t1 + · · · + tr = 1
}
. (11)

Then the transition probabilities of the DA chain are given by

k(π ′|π) =
∫

Sp!
p(π ′|θ, z)p(θ |π , z)dθ ,

Both using a simulation study and real data examples, Laha et al. (2013) showed
that the DA algorithm converges slowly especially when sample size m is large. Due
to intractability of the marginal posterior density p(θ |z), a computationally efficient
sandwich algorithm as described in Hobert and Marchev (2008) is not available in
this example. We now show that the technique proposed in Sect. 3.2 can be used to
improve the efficiency of the DA chain.

We consider a special case where c = 2 = p, that is, there are two categories,
two items to rank and we assume that mi j = m/4 for all i, j . Doing some algebra,
it can be shown that in this case ki j = 1/4 for all i, j for any value of the hyper
parameters ai ’s. That is, the DA algorithm produces iid draws from the marginal
posterior density p(π |y), which is, in this special case, a uniform distribution on
{(ζi , ζ j ) : i, j = 1, 2}. Since the state space is finite with cardinality (p !)c, we
can construct the MDA algorithm in this example. Note that the cardinality of the
augmentation space here is infinite. Using the formula for the elements of KM D A, that
is, k̃i j given in “Appendix B”, we observe that

KM D A = (1/3)J − (1/3)I,

where J is the 4 × 4 matrix of ones. Note that, the Mtm KM D A can be obtained
by moving the diagonal probabilities of the DA Mtm K uniformly to the three off-
diagonal elements. Suppose we want to estimate P(π(1) = ζ1) = E p(π |y)[g(π)],
where g(π) = I (π(1) = ζ1). Since λ̃i = −1/3 for i = 1, 2, 3, the spectral radius
of KM D A is 1/3. Hence, MDA has slower convergence than DA, which produces iid
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draws in this special case. But, as we show now, KM D A is twice as efficient as K for
estimating E p(π |y)[g(π)]. Since DA results in iid draws, v(g, K ) = Var(g(π)|y) =
1/4. From (10) we know that v(g, KM D A) = Var(g(π)|y) + 2〈g, (Z − I )g〉, where
〈·, ·〉 denotes the inner product in L2(p(π |y)), and Z ≡ (I − (KM D A − P(π |y)))−1,
with P(π |y) = (1/4)11T . Doing some algebra we see that

Z = (1/16)11T + (3/4)I ⇒ 2〈g, (Z − I )g〉 = −1/8.

So v(g, KM D A) = 1/4 − 1/8 = 1/8 and hence v(g, K )/v(g, KM D A) = 2. Thus as
in the previous section, MDA algorithm in this special case is twice as efficient as the
DA algorithm.

We could not carry out closed form calculations for v(g, K D A) and v(g, KM D A)

when mi j �= m/4 for some i, j . In this case, we compare DA and MDA chains using
numerical approximation. Laha et al. (2013) used simulation study to demonstrate the
slow convergence of DA chains. In their simulation study, they considered p = 2,
and c = 2, as above and they let the number of observations, m, vary. The true ranks
for the two categories are assumed to be ζ1 and ζ2 respectively. The true value of θ is
taken to be (0.7, 0.3). The small values of p and c allow us to compute the Markov
transition probabilities in closed form. We let the sample size m vary between 20 and
60 in increments of 10, and equal size of sample is taken from the two categories.
For example, if m = 20, then we simulate 10 observations from category 1 and 10
observations from category 2. For each fixed sample size, the simulation is repeated
1000 times. From Sect. 2 we know that the second largest eigenvalue (in absolute
value) of a Mtm shows the speed of convergence of the chain. In fact, Laha et al.
(2013) used the box plot of the 1000 λ1 values (corresponding to 1000 Mtm’s based
on repeated simulations) to show that the largest eigenvalues of the DA chain tends to
one as the sample size increases, that is, the DA algorithm slows down with increasing
sample size.

For the same simulation setting mentioned above, we calculate the eigenvalues of
the KM D A. We calculate the entries of the KM D A by numerical integration using the
expressions given in the “Appendix B”. Figure 1 shows the boxplots of the eigenvalues
of KM D A matrices corresponding 1000 simulated data. From the top plot in Fig. 1
we see that the largest eigenvalues tends to one as the sample size increases, that is,
both DA and MDA algorithms slow down with increasing sample size. But, the MDA
results in smaller (even negative) eigenvalues resulting in smaller asymptotic variance.

Next we compare the performance of DA and MDA algorithms in a real data
example.

4.2.1 Tyne–Wear metropolitan district council election data

It is of interest to see whether the position of a candidate’s name on the ballot paper
has any effect in terms of the number of votes which he receives. We consider a study
presented in Brook and Upton (1974, p. 415) regarding local government election
in the Tyne–Wear area. Consider a particular party fielding three candidates for this
election and label them as a, b and c in the order in which these candidates appear on
the ballot paper. A particular outcome in terms of votes received can be expressed as
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Fig. 1 The behavior of the eigenvalues for the DA andMDA chains. The graph shows how the eigenvalues
of these chains change with sample size, m and also how MDA results in smaller eigenvalues

a permutation such as bac which means that candidate b has received the maximum
number of votes and c the least. The data aggregated over all parties with three candi-
dates and over all wards in the Tyne–Wear area is given in Brook and Upton (1974).
We reproduce the data in Table1 for ready reference.

In this example, p = 3, c = 6, and thus the cardinality of the state space is (3!)6 =
46, 656. Laha et al. (2013) noted that for all areas except the second (Wigan, Bolton,
Bury, Rochdale), ζ1 = abc is the mode of the posterior distributions of the true ranks.
The mode of the posterior distribution of π(2) is ζ6 = cba. We consider the functions
g(π) = I (π(2) = ζ6, π(i) = ζ1; i = 1, 3, 4, 5, 6). We ran both DA and MDA
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Table 1 The Tyne–Wear metropolitan district council election data from Brook and Upton (1974, pp. 415)

Areas

Lex. order Order 1 2 3 4 5 6 Total

ζ1 abc 46 32 38 27 50 39 232

ζ2 acb 22 20 20 25 27 22 136

ζ3 bac 32 15 29 32 27 39 174

ζ4 bca 23 32 23 24 26 23 151

ζ5 cab 17 25 13 13 23 23 114

ζ6 cba 25 26 13 16 35 26 141

Total 165 150 136 137 188 172 948

Areas are as follows:
1. Tyneside and Wearside
2. Wigan, Bolton, Bury, Rochdale
3. Salford, Manchester, Oldham
4. Trafford Stockport, tameside
5. Kent and Worcestershire (June 10th, 1973)
6. An assortment of results from various sources including Birmingham, Doncaster and Merseyside

algorithms and used batch means method for estimating v(g, K ) and v(g, KM D A).
Based on 50,000 iterations of these algorithms started at π(2) = 6, π( j) = 1, for
j = 1, 3, 4, 5, 6, we observed v̂(g, K )/v̂(g, KM D A) = 1.47.
Next we assess the performance of the alternative method presented in Sect. 3.2.1

for sampling from Liu’s (1996) sampler. We observe that in the analysis of Tyne–Wear
election data, theMDAalgorithm, using the naive repeated sampling forMH step takes
similar amount of time to run as the MDA algorithm using the method in Sect. 3.2.1.
The reason that the repeated samplingmethod does not perform poorly in this example
is because the conditional density p(π |θ, z) never took any large value. Indeed, it never
took a value larger than 0.71 in 50,000 iterations. We then consider a fictitious data
to assess the performance of the sampler in Sect. 3.2.1 when the conditional density
takes larger values. As in the above data set, we take p = 3, c = 6. Let the data be
m1 j = 50, m2 j = 40, m3 j = 20, m4 j = 10 = m5 j , andm6 j = j for j = 1, 2, . . . , 6.
Starting at π( j) = 1 for all j = 1, 2, . . . , 6, it took 23.9 and 30.2 s on an old Intel
Q9550 2.83GHz machine running Windows 7 to run 50,000 iterations of DA and
MDA (using the method in Sect. 3.2.1) respectively. (The codes were written in R
(R Development Core Team 2011).) Whereas, the MDA using repeated sampling did
not complete 50,000 iterations even after 30 hours. Indeed in one iteration when the
value of the conditional density p(π |θ, z) was 0.999978, the repeated sampling made
196,760 draws before producing a vector π ′ different from the current π .

5 Discussions

Each iteration of a DA algorithm consists of draws from two conditional distributions.
In this paper, it is shown that if the draw from the second conditional distribution is
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replaced with a draw from an appropriate Mtf, the resulting Markov chain is always at
least as efficient as theDAchain.When either the state space or the augmentation space
is finite, using Liu’s (1996) sampler an algorithm, called MDA, is constructed that is
more efficient than the DA algorithm. Since the naive method for implementing Liu’s
(1996) sampler can be impractical, an efficient alternative method is proposed. This
alternative method for Liu’s (1996) sampler is not specific to the MDA algorithm, and
it can be used anywhere Liu’s (1996) algorithm is implemented. It would be interesting
to construct an improved algorithm following Proposition 1 when both the state space
and the augmentation space are infinite.
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for the case fX |Y (x |y) > (
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Appendices

Appendix A: Proof of Proposition 1

Proof To show fX (x) is invariant for K̃ , note that

∫

X
k̃(x ′|x) fX (x)μ(dx) =

∫

X

∫

Y
ky(x ′|x) fY |X (y|x)ν(dy) fX (x)μ(dx)

=
∫

Y

∫

X
ky(x ′|x) fX |Y (x |y)μ(dx) fY (y)ν(dy)

=
∫

Y
fX |Y (x ′|y) fY (y)ν(dy) = fX (x ′)

where the third equality follows from (4).
Next assume that ky is reversible with respect to fX |Y (x |y), that is, (5) holds. Then

k̃(x ′|x) fX (x) =
∫

Y
ky(x ′|x) fY |X (y|x)ν(dy) fX (x)

=
∫

Y
ky(x ′|x) fX |Y (x |y) fY (y)ν(dy)

=
∫

Y
ky(x |x ′) fX |Y (x ′|y) fY (y)ν(dy)

=
∫

Y
ky(x |x ′) fY |X (y|x ′)ν(dy) fX (x ′) = k̃(x |x ′) fX (x ′),

that is, k̃ is is reversible with respect to fX .
Since (6) is in force, for all A ∈ B(X) and for fX almost all x ∈ X we have

K̃ (x, A\{x}) =
∫

A\{x}
k̃(x ′|x)μ(dx ′) =

∫

A\{x}

∫

Y
ky(x ′|x) fY |X (y|x)ν(dy)μ(dx ′)
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≥
∫

Y

∫

A\{x}
fX |Y (x ′|y)μ(dx ′) fY |X (y|x)ν(dy)

= K (x, A\{x}),

that is, K̃ P K . ��

Appendix B: The Mtm KMDA when p = 2, c = 2

Weorder the points in the state space as follows: (ζ1, ζ1), (ζ1, ζ2), (ζ2, ζ1), and (ζ2, ζ2).
We denote the entries of KM D A by k̃i j . So, for example, the element k̃23 is the prob-
ability of moving from (ζ1, ζ2) to (ζ2, ζ1). In order to write down the expressions
for k̃i j we need to introduce some notations. Recall that mi j denotes the number of
observations in the j th category with rank ζi for i, j = 1, 2. Let mi. = mi1 + mi2 for
i = 1, 2, md = m11 + m22, and mod = m12 + m21. Finally, for fixed w ∈ (0, 1), let

A(w) = [wm1. (1 − w)m2. + wm2. (1 − w)m1. + wmd (1 − w)mod + wmod (1 − w)md ],

and c = 1/B(m1. + a1, m2. + a2). Recall that a1, a2 are the hyper parameters of the
prior of θ . Below, we provide the the expressions for k̃1 j , for j = 1, . . . , 4. The other
rows of KM D A can be found similarly. From Sect. 3.2 we know that

k̃12 =
∫

S2

p(π = (ζ1, ζ2)|θ, y)

1 − p(π = (ζ1, ζ1)|θ, y)

× min

(

1,
1 − p(π = (ζ1, ζ1)|θ, y)

1 − p(π = (ζ1, ζ2)|θ, y)

)

p(θ |π = (ζ1, ζ1), y)dθ

Straightforward calculations show that if m12 ≥ m22 then

p(π = (ζ1, ζ1)|θ, y) > p(π = (ζ1, ζ2)|θ, y) ⇔ θ1 > 1/2.

On the other hand, if m12 < m22 then

p(π = (ζ1, ζ1)|θ, y) > p(π = (ζ1, ζ2)|θ, y) ⇔ θ1 < 1/2.

Simple calculations show that if m12 ≥ m22, then

k̃12 = c

[ ∫ 1/2

0

wmd+m1.+a1−1(1 − w)mod+m2.+a2−1

A(w) − wm1. (1 − w)m2.
dw

+
∫ 1

1/2

wmd+m1.+a1−1(1 − w)mod+m2.+a2−1

A(w) − wmd (1 − w)mod
dw

]

.

In the case of m12 < m22, the range of integration in the above two terms are inter-
changed. Similarly, we find that the expression for k̃13 depends on whether m11 ≥ m21
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or m11 < m21. If m11 ≥ m21,

k̃13 = c

[ ∫ 1/2

0

wmod+m1.+a1−1(1 − w)md+m2.+a2−1

A(w) − wm1. (1 − w)m2.
dw

+
∫ 1

1/2

wmod+m1.+a1−1(1 − w)md+m2.+a2−1

A(w) − wmod (1 − w)md
dw

]

,

and the ranges of integration in the above two terms are interchangedwhenm11 < m21.
Lastly, if m1. ≥ m2.,

k̃14 = c

[ ∫ 1/2

0

wm+a1−1(1 − w)m+a2−1

A(w) − wm1. (1 − w)m2.
dw

+
∫ 1

1/2

wm+a1−1(1 − w)m+a2−1

A(w) − wm2. (1 − w)m1.
dw

]

,

where m = m1. + m2. is the number of observations and as before the ranges of
integration are interchanged when m1. < m2.. Finally, k̃11 is set to 1 − ∑4

j=2 k̃1 j .
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