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Abstract Most of the existing procedures for sparse principal component analysis
(PCA)use apenalty function to obtain a sparsematrix ofweights bywhich adatamatrix
is post-multiplied to produce PC scores. In this paper, we propose a new sparse PCA
procedure which differs from the existing ones in two ways. First, the new procedure
does not sparsify the weight matrix. Instead, the so-called loadings matrix is sparsified
by which the score matrix is post-multiplied to approximate the data matrix. Second,
the cardinality of the loading matrix i.e., the total number of nonzero loadings, is
pre-specified to be an integer without using penalty functions. The procedure is called
unpenalized sparse loading PCA (USLPCA). A desirable property of USLPCA is that
the indices for the percentages of explained variances can be defined in the same form
as in the standard PCA. We develop an alternate least squares algorithm for USLPCA
which uses the fact that the PCA loss function can be decomposed as a sum of a term
irrelevant to the loadings, and another one being easily minimized under cardinality
constraints. A procedure is also presented for selecting the best cardinality using
information criteria. The procedures are assessed in a simulation study and illustrated
with real data examples.
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1 Introduction

For an n-observations × p-variables column-centered data matrix X, principal com-
ponent analysis (PCA) can be formulated as minimizing the least squares function

LS = ‖X − FA′‖2 = ‖X − XWA′‖2 (1.1)

over W (p × m) and A (p × m) (e.g., Izenman 2008; Zou et al. 2006). Here, ‖ • ‖2
indicates the squared Frobenius norm and F = XW is an n × m matrix of PC scores,
where m ≤ min(n, p) is the number of components. That is, PCA is regarded as an
approximation of X by a lower rank matrix FA′. It is well known that the problem
is solved through the singular value decomposition (SVD) of X (Eckart and Young
1936; Takane 2014).

The term “loading matrix” is used by some authors for A, and by others forW. To
avoid this confusion, we call W weight matrix as it weighs the variables in X, while
we call A loading matrix as it describes how the variables load the components in F.
The matrix W or A is interpreted to capture the relationships among variables and
components. In either case, the interpreted matrix is desired to be sparse, i.e., to have a
great number of zero elements, since a sparse matrix is easily interpreted by focusing
only on the variables and components linked with nonzero elements. However, such
sparse A or W cannot be obtained by the standard PCA. For this reason, a number
of modified PCA procedures have been proposed in the last decade, which produce
sparse solutions (Trendafilov 2014). Such procedures are called sparse PCA.

All existing sparse PCA procedures produce sparse weight matrix W (not A).
Also, most of them are using penalty functions that penalizeW for having nonzero
elements. Such examples are SCoTLASS (Jolliffe et al. 2003), SPCA (Zou et al. 2006),
and sPCA-rSVD (Shen and Huang 2008). Further development of the penalty-based
procedures has been proposed by Journée et al. (2010), d’Aspremont et al. (2008), and
Witten et al. (2009). They are all formulated in a similar manner: the sum of λ× P(W)
and the loss function as in (1.1) is minimized or the function is minimized subject
to P(W) ≤ 1/λ. Here, P(W) stands for a penalty function, and the weight λ for the
penalty is a tuning parameter(s) specifying the relative importance of P(W). Thus, the
penalty weight λ controls the number of nonzero elements, which is called cardinality:
a larger value of λ leads toW of lower cardinality, i.e., being sparser. Thus, the exact
cardinality of the solution is not known in advance, and it is found after the sparsifying
procedure is carried out with particular λ.

In this paper, we propose a new sparse PCA procedure which differs from the
existing ones in the following points:

[1] The new procedure gives sparse loading matrix A rather than W.
[2] It does not use a penalty function, and the cardinality of A is prespecified.

By these features, we refer to our proposed procedure as unpenalized sparse loading
PCA (USLPCA). Recently Van Deun et al. (2011) proposed a similar approach to
sparsifyA in simultaneous PCA of several matrices. However, in contrast to USLPCA,
they use penalty functions to achieve sparseA. Therefore, our proposedUSLPCAwith
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both features [1] and [2] is new, to the best of our knowledge. The implications and
the benefits of [1] and [2] are discussed in detail in the next three paragraphs.

Whether W or A is to be sparsified depends on “in what the interest is” when
interpreting a PCA solution. If the interest is in how the original variables are pre-
sented/summarized by the components F = XW, then the weight matrixW should be
sparsified, because it expresses how the variables areweighted to form the components.
On the other hand, when the interest is in how the original variables are explained by
the components,A is to be sparsified, sinceA is the coefficient matrix in the regression
ofX onto F as given in (1.1). Recall, that this interpretation is assumed in the software
package SPSS which produces A by default output, not W (SPSS Inc. 1997). Thus,
USLPCA is to be used for interpreting how variables are explained by components.

There is another important implication from [1]. It helps to avoid the difficulty of
the existing procedures sparsifyingW, which destroys the components’ orthogonality,
a fundamental feature of the standard PCA. That is, in most of the existing procedures,
the columns ofF = XW are correlated,which complicates the definition of the percent-
age of explained variance (PEV) indicating towhat extent the variances of variables are
explained by components (e.g., Zou et al. 2006; Shen and Huang 2008). On the other
hand, whenW is not sparsified,F can be constrained as F′F being a diagonal matrixD.
In USLPCA, D is set to the n times of the m ×m identity matrix Im , i.e. the constraint

1

n
F′F = Im . (1.2)

is used. Here, it should be noticed that (1.2) and F′F = D are not essentially different,
since ofFD−1/2D1/2A′ = FA′, which implies thatFwithF′F = D can be transformed
to meet (1.2) without changing (1.1) and the zero elements in A. As shown in Sect. 4,
this column-orthonormality of F in USLPCA allows PEV to be readily defined in the
same manner as in the standard PCA. In Sect. 4, it would also be described that (1.2)
equalizes the nonzero loadings inA to the correlation coefficients between components
and the original variables when the latter are standardized. Then, obtaining a sparse
A is very beneficial as it clearly describes the correlation structure of the dimension
reduction.

Prespecifying cardinality in [2] is simply achieved by incorporating the constraint

Card(A) = c (1.3)

in the formulation of PCA, where Card(A) stands for the cardinality of A, i.e., the
number of its nonzero elements, and c is a specified integer. That is, (1.1) is mini-
mized subject to (1.2) and (1.3) in USLPCA. Obviously, the cardinality of A can be
predetermined to be a desired integer by substituting it into c in (1.3). Here, it should
be noticed that c is also a tuning parameter to be chosen by users, as the penalty
weight λ in the existing penalized approaches. However, c and λ differ in that c is
an integer within a restricted range, while λ can take any positive real number. The
former c is one of 1, 2, …, pm, thus we can simply obtain the solutions for all possi-
ble c to choose the solution with the best cardinality. In contrast, we cannot consider
all possible values of the penalty weight λ, thus its limited values must be selected
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in the penalized approaches. However, this selection is not easy, since the resulting
cardinality is unknown in advance as already stated.

An example of the existing approaches for concretely illustrating their differences
from USLPCA is Zou et al’s (2006) SPCA, which is apparently similar to USLPCA
in that the loss function is defined using (1.1). However, a linear combination of (1.1)
and the penalty functions for sparsifying W is minimized over W and A in SPCA,
where the loading matrix A (not F) is constrained as A′A = Im .

Here,wemustmention the differences of sparse PCA from the rotationwhich can be
used for facilitating the interpretation of loadings in the standard PCA (Jolliffe 2002;
Trendafilov and Adachi 2015). Here, the rotation refers to obtaining orthonormal T
so that a number of the elements in AT are close to zero, by exploiting the property
that FA′ in (1) equals FTT′A′ and FT can be substituted for F in (1.2):AT can also be
regarded as the loading matrix. A crucial difference of the rotation from sparse PCA
is that the loadings in rotated AT cannot be exactly zero. Thus, users must decide, in
a subjective manner, which elements can be viewed as approximately zero. Another
important difference is that the rotation criteria are functions of AT only, and do not
involve the data. This implies that it cannot be known how AT influences the fit to the
underlying data set.

The remaining parts of the paper are organized as follows: the incorporation of the
cardinality-constrained minimization with (1.3) is described in Sect. 2, which follows
from the decomposition of sums-of-squares for the PCA loss function (1.1). In Sect. 3,
the algorithm for USLPCA is presented. The interpretation of sparse loadings are
detailed and the PEV indices are introduced in Sect. 4. A procedure for selecting the
cardinality c in (1.3) is described in Sect. 5. A simulation study is reported in Sect. 6,
and real data examples are considered in Sect. 7.

2 Unpenalized sparse loading PCA

In USLPCA, the PCA loss function (1.1) is minimized under the orthonormality con-
dition (1.2) for components and the cardinality constraint (1.3) for loadings. USLPCA
is thus formulated as

minF,ALS (F,A) = ‖X − FA′‖2 subject to Card (A) = c and
1

n
F′F = Im . (2.1)

For simplicity, we have formulated USLPCA without using W explicitly. By substi-
tuting F=XW, (2.1) is rewritten as minW,A‖X − XWA′‖2 subject to Card(A) = c
and n−1W′X′XW = Im .

The key point of USLPCA is to use the fact that (1.2) leads to the decomposition
of sum-of-squares for the loss function (1.1):

‖X − FA′‖2 = ‖X − FB′‖2 + n‖B − A‖2, (2.2)

with B being the cross-product matrix of p-variables ×m-components:

B = 1

n
X′F. (2.3)
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The equality (2.2) is proved as follows: (1.1) is rewritten as ‖X−FA′‖2 = ‖X−FB′ +
FB−FA′‖2, which implies that the decomposition (2.2) holds true if (X−FB′)′(FB′−
FA′) equals the matrix of zeros O. This is fulfilled, using (1.2) and (2.3), as

(X − FB′)′(FB′ − FA′) = X′FB′ − X′FA′ − BF′FB′ + BF′FA′

= nBB′ − nBA′ − nBB′ + nBA′ = O. (2.4)

The decomposition (2.2) shows that the term g(A) = ‖B − A‖2 is only relevant
to A, which implies that the minimization of (1.1) over A for a fixed F amounts to
minA g(A), where g(A) is a function in which a sparse loading matrix A is simply
matched with the matrix B in (2.3). Thus, minA g(A) with the cardinality constraint
(1.3) is easily attained, as shown in Sect. 3.3.

The algorithm described in the next section gives the solution for a specific value c
in the cardinality constraint (1.3). Thus, it remains to choose the best c value. For this
task, we adopt the following procedure:

Choose the value c with the best I (c) among c = cmin, . . ., cmax, (2.5)

where I (c) is an index of the goodness of the USLPCA solution obtained for a specific
c, and cmin/cmax expresses the reasonable minimum/maximum of c. The choice of the
index I (c) is described in Sect. 5.

As discussed in Sect. 1, the largest interval of [cmin, cmax] is obviously [1, pm]. It
can be reasonably reduced as

cmin = p, (2.6)

cmax = pm − m(m − 1)

2
. (2.7)

Here, (2.6) prevents A from having an empty row if c goes below the limit p, i.e., the
number of variables. On the other hand, it is considered in (2.7) that M = m(m−1)/2
elements in A can be set to zeros without the change in the values of loss function
(1.1): they are equivalent among c = pm − M, . . ., pm.

3 Algorithm

The USLPCA algorithm is outlined in Sect. 3.1. It comprises of two steps which are
alternately iterated until convergence. The two steps are described in details respec-
tively in Sects. 3.2 and 3.3, while the algorithm as a whole is considered/recounted in
Sect. 3.4.

3.1 Outline

The solution for USLPCA (2.1) can be obtained by alternately iterating the update of
F and A. Indeed, making use of (1.2) and (2.3), we can expand the loss function (1.1)
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in USLPCA as

LS (F,A) = trX′X + trAF′FA′ − 2trX′FA = ntrS + ntrAA′ − 2ntrBA′, (3.1)

with

S = 1

n
X′X (3.2)

being the sample covariance matrix. Here, the loss function is found to be a function
of B (and A), though it must be kept in mind that B is a function of the PC score
matrix F satisfying (1.2) as seen in (2.3). The problem (2.1) can thus be attained by
alternately iterating

[B-step] minimizing (1.1) or (3.1) over B subject to (1.2) and (2.3) with A kept
fixed,
[A-step] minimizing (1.1) over A subject to (1.3) with B being kept fixed,

until convergence is reached.

3.2 B-step

As B is a function of F, we first consider minimizing (1.1) over F subject to (1.2) for a
givenA. Since (1.1) is expanded as (3.1), theminimization is equivalent tomaximizing
ntrBA′ = trX′FA′ = tr(XA)′F′ subject to (1.2). It is attained for

F = √
nKL′ = XAL�−1L′, (3.3)

where K and L are given by the SVD of n−1/2XA defined as

1√
n
XA = K�L′ (3.4)

with K′K = L′L = Ip and � a diagonal matrix (e.g., Seber 2008). This SVD can be
rewritten as K = n−1/2XAL�−1 which leads to the last identity in (3.3). It implies
that F is column-centered:

1′
nF = 0′

m, (3.5)

as X is, with 1n the n × 1 vector of ones and 0m the m × 1 zero vector.
Using (3.3) in the definition (2.3) for B, we find that

B = 1

n
X′XAL�−1L′ = SAL�−1L′ (3.6)

is to be obtained in this step. Here, it should be noted in (3.6) that K is not included
and thematrix productL�−1L′ can be obtained through the eigenvalue decomposition
(EVD)

A′SA = L�2L′ (3.7)
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following from (3.2) and (3.4). This EVD and (3.6) show that, in the B-step, [1] F
may not be obtained and [2] the original data matrix X may not be available only if
the covariance matrix S in (3.7) is given.

3.3 A-step

For fixed B, the minimization of (1.1) over constrained A is equivalent to the mini-
mization of g(A) = ‖B−A‖2, since of the decomposition (2.2). UsingA = (ai j ) and
B = (bi j ), we can rewrite g(A) as

g (A) = ‖B − A‖2 =
∑

(i, j)∈Z
b2i j +

∑

(i, j)∈Z⊥
(bi j − ai j )

2 ≥
∑

(i, j)∈Z
b2i j . (3.8)

Here, Z denotes the set of the q = pm − c indexes (i, j)’s indicating the locations of
the loadings ai j to be zero. The complement set Z⊥ is the set containing the c indexes
(i, j)’s of the nonzero ai j . The inequality in (3.8) shows that g(A) attains its lower
limit �(i, j)∈Z b2i j when the non-zero loadings ai j with (i, j)∈Z⊥ are taken equal to

the corresponding bi j . Moreover, the limit �(i, j)∈Z b2i j is minimal, when Z contains

the indexes for the q smallest b2i j among all squared elements of B. Thus, g(A) is
minimized for A = (ai j ) being

ai j =
{
0 iff b2i j ≤ b2[q]
bi j otherwise

(3.9)

with b2[q] the qth smallest value among all b2i j .
The loading matrix A updated by (3.9) satisfies

a2i j = ai j bi j , or equivalently, A•A = A•B, (3.10)

where • denotes the Hadamard element-wise matrix product. This property is impor-
tant to prove the expression of the explained variance discussed later.

3.4 Whole steps

The value of loss function (1.1) or (3.1) attained after the A-step is given by

LS (A) = ntrS + ntrAA′ − 2ntrBA′ = ntrS − ntrAA′, (3.11)

which is derived using (3.10) in (3.1). Further, the loss function value (3.11) is divided
by ntrS to yield

LSN (A) = 1 − trAA′

tr S
, (3.12)

which is convenient for checking convergence, as it is normalized so as to take values
within the range [0, 1].
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We should note that (3.12) does not include the original data matrix X, which is
also unnecessary in the B- and the A-steps. In other words, USLPCA can be used if
the covariance matrix S is available only. This is convenient when n > p, as the p× p
matrix S is smaller thanX (n× p). Further, the updating of F described in Sect. 3.2 can
be avoided. Thus, the USLPCA algorithm for obtaining the optimal A can be shorten
as follows:

[1] Initialize A
[2] Perform EVD (3.7) to obtain B with (3.6)
[3] Obtain A with (3.9)
[4] Finish if �LSN(A) ≤ ε; otherwise go back to [2]

Here, �LSN(A) denotes the change in (3.12) from the previous round, and ε is set
to 0.17 in this paper. This algorithm is run multiple times by starting with different
initial A in the procedure described in Appendix “Multiple-runs procedure”. Among
the resulting multiple solutions, we select the A with the lowest LSN(A) value as the
optimal one, in order to avoid local minimizers. After those processes, the PC score
matrix F can be obtained using the optimal A, X, and (3.7) in (3.3), if F is of interest.

4 Interpreting solutions

As described in Sect. 1, the weight matrixW is sparsified in the existing sparse PCA,
which implies that W is supposed to be interpreted. On the other hand, the loading
matrix A is to be interpreted in USLPCA with A sparsified. In Sect. 4.1, we start with
contrasting the interpretations of W and A. In Sect. 4.2, we show that the nonzero
loadings in USLPCA are also the covariances of components to variables and further
equal the correlation coefficients when X is standardized. Finally, the indices of the
percentage of explained variances are introduced in Sect. 4.3.

4.1 Interpreting weights versus interpreting loadings

In this section, we compare the proposed USLPCA with other approaches in which
the weights inW are sparsified.

The role ofW is toweight the original variables to formF = XW, which is rewritten
in the vector form as

f j = Xw j = w1 jx1 + · · · + wpjxp =
∑

i∈Mj

wi jxi ( j = 1, . . . ,m) . (4.1)

Here, f j and w j are the j th columns of F and W = (wi j ), respectively, xi denotes
the i th column (variable) of X, and M j denotes the set of indexes {i} corresponding
to the nonzero weights in w j . That is, component j is interpreted as summarizing the
variables x j weighted by nonzero wi j . This explains why the existing sparse PCA
procedures produce sparseW.
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On the other hand, USLPCA solutions can be interpreted with the equation

X = FA′ + E, (4.2)

which may be called a PCA model, since the squared Frobenius norm of the error
matrix E in (4.2) leads to the PCA loss function (1.1). Using ã′

i (1×m) for the i th row
of A = (ai j ) and ei for the i th column of E, (4.2) is rewritten in the vector from

xi = Fãi = ai1f1 + · · · + aimfm + ei =
∑

j∈Ni

ai j f j + ei (4.3)

with Ni is the set of index { j} corresponding to nonzero loadings in ãi . They can be
regarded as the coefficients in the multiple regression of xi onto f j ’s. That is, variable
i is interpreted as a dependent variable explained by the components with nonzero
ai j . To what extent the variable are explained by the components, or equivalently, the
smallness of the sizes of errors in ei , are indicated by the percentage of explained
variances introduced in Sect. 4.3.

Beside the above interpretation for each variable, USLPCA solutions can also be
interpreted component-wise. For describing it, we use a j for the j th column of A to
rewrite (4.2) as X = f1a′

1 + · · · + fma′
m + E = f ja′

j + (�k 	= j fka′
k + E), i.e.,

[
x1, . . . , xp

] = f j
[
a1 j , . . . , apj

] + H[ j]. (4.4)

Here, a′
j = [a1 j , . . ., apj ], andH[ j] = �k 	= j fka′

k +Ewhose columns are uncorrelated
with those of f ja′

j = f j [a1 j , . . ., apj ] as proved in Appendix “No correlation for
components and errors”. Equation (4.4) thus allows component j to be interpreted as
a common factor exclusively explaining the variables associated with nonzero ai j . In
Sect. 4.3, the percentage is introduced that indicates how well the component explains
the variables.

4.2 Nonzero loadings as covariances

Since F is column-centered with (3.5) as X is, the cross-product matrix B = n−1X′F
in (2.3) contains the covariances between p variables and m components. By taking
this into account in (3.9), we can find that the nonzero loadings in the resulting A
equal the corresponding covariances in B: nonzero ai j equals the covariance between
the i th original variable and the j th component. Further, this implies that the nonzero
loadings equal the correlation coefficients of variables to components, when a data
set to be analyzed is a standardized data matrix X with unit variances or a correlation
matrix S, since the PC scores, constrained as (1.2), have unit variances. It allows us to
easily capture the magnitudes of loadings, as their ranges are restricted within [−1, 1].

The above equivalence of nonzero loadings to covariances motivates us to relate the
optimization in USLPCA to covariances as follows: using (1.2) and (2.3), the decom-
posed loss function (2.2) can be rewritten as ntrS− n‖B‖2 + n‖B−A‖2, whose min-
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imization amounts to maximizing ‖B‖2 −‖B−A‖2. USLPCA can thus be viewed as
maximizing the sumof squared covariances ‖B‖2 subject toB approximating sparseA.

4.3 Percentages of explained variances

From the standardized loss function value (3.12), we can derive a goodness-of-fit index

PEV = 100 × tr AA′

tr S
= 100 ×

∥∥FA′∥∥2

‖X‖2 = 100 ×
(
1 −

∥∥X − FA′∥∥2

‖X‖2
)

. (4.5)

Here, the last identity is added to stress that this index directly follows from the loss
function (1.1). Note, that it attains the value (3.11) divided by ntrS = ‖X‖2 to give
(3.12), one minus which leads to (4.5). This index can be called total percentage of
explained variance (PEV), as the denominator trS in (4.5) is the total variance of
variables, while the numerator trAA′, which is found to equal n−1‖FA′‖2 using (1.2),
is the total variance for FA′, since (3.5) implies FA′ being column-centered.

The total PEV (4.5) can be decomposed as a sum of

PEV ( j) = 100 ×
∥∥a j

∥∥2

tr S
(4.6)

over j = 1, . . .,m. Since (1.2) leads to ‖a j‖2 = n−1‖f ja′
j‖2, the percentage (4.6) is

regarded as the amount of total variance of variables explained by component j and
used for the interpretation of the component with (4.4).

The PEV for each variable is derived from (4.5), which can be rewritten as
n

∑p
i=1 (sii − ‖ã‖2) = n

∑p
i=1 sii (1 − ‖ãi‖2 /sii ) ≥ 0 with sii the i th diagonal ele-

ment of S, i.e., the variance of variable i . This gives the statistic

PEV [i] = 100 × ‖ãi‖2
sii

. (4.7)

Since (1.2) implies ‖ãi‖2 = n−1 ‖Fãi‖2, the percentage (4.7) expresses the amount
of the variance of variable i explained by the components associated with the nonzero
loadings in ãi . Therefore, (4.7) is used for the interpretationwith themodel (4.3) which
expresses the regression of a variable onto components.

In the same forms as (4.5), (4.6), and (4.7), the PEV indices are defined for the
standard PCA, which can be formulated as minimizing (1.1) subject to (1.2) and A′A
being a diagonal matrix. The solution of A is expressed as A = R�, with � is
the m × m diagonal matrix including the m largest singular values of n−1/2X and
the corresponding right singular vectors being the columns of R. The substitution of
A = R� into (4.5), (4.6), and (4.7) gives the PEV indices for PCA, with its total PEV
expressed as PEVPCA = tr�2/trS. The same form of the PEV definition between
USLPCA and PCA implies that the increase in the cardinality value c in (1.3) allows
the total PEV of USLPCA (4.5) to approach and finally equal PEVPCA. It suggests
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that we can find the acceptable cardinality for USLPCA with the corresponding value
of (4.5) being not substantially less than PEVPCA. However, whether the difference
in PEV values is substantial must be decided subjectively. A procedure without such
a decision is discussed in the next section.

5 Cardinality selection by information criteria

The cardinality selection problem (2.5) can be viewed as a model selection problem
for the optimal combination of the goodness-of-fit for a data set, and the number of
parameters to be estimated. Here, the latter is directly related to the cardinality which
is the number of the loadings whose values are to be estimated. For such a model
selection, indices usually called information criteria can be used, which include AIC
and BIC as popular ones (Akaike 1974; Schwarz 1978). Their useful feature is that a
model with the least index value is selected as the optimal one: model selection can
be attained numerically without subjective decision.

The information criteria are based on the maximum likelihood (ML) method, while
USLPCA is formulated as a least squares (LS) method. However, USLPCA can be
reformulated as an ML procedure, by assuming that X is generated with the PCA
model (4.2) with each error in E = (eti ) distributed independently and identically
according to the normal distribution with its mean 0 and variance σ 2:

eti ∼ N (0, σ 2). (5.1)

The model (4.2) with the normality assumption (5.1) leads to the log likelihood whose
part relevant to F and A is expressed as

l (F,A) = −np

2
log ‖X − FA‖2. (5.2)

This is derived using the fact that the ML estimate of the variance must satisfy σ 2 =
(np)−1‖X − FA‖2, as described in Appendix “Likelihood for PCA model”. The ML
version ofUSLPCA is formulated asmaximizing (5.2) subject to (1.2) and (1.3), which
is equivalent to the LS-based one in Sects. 2 and 3.

By substituting the USLPCA solution into (5.2), it can be rewritten as

l (A) = −np

2
log{LSN (A) × ntrS} = −np

2
log

(
1 − PEV

100

)
− Const (5.3)

with Const = (np/2) log(ntrS) irrelevant to A. Here, we have used that ‖X − FA‖2
attains the value expressed as (3.11), which is the product of ntrS and (3.12) with the
latter leading to the PEV in (4.5). Using (5.3), AIC and BIC are given by

AIC (c) = −2l (A) + 2 × η (c) (5.4)

BIC (c) = −2l (A) + log (np) × η (c) (5.5)

123



1414 K. Adachi, N. T. Trendafilov

as functions of cardinality c, where the number of parametersη(c) is just the cardinality
of the loading matrix A with η(c) = c, since (5.3) is a function of only the loading
matrix A with the values of its c elements to be estimated.

We use either (5.4) or (5.5) as the index I (c) in the cardinality selection problem
(2.5). Thus, it is rewritten as

Choose ĉ = arg min
cmin≤c≤cmax

BIC (c) as the optimal cardinality (5.6)

if (5.5) is used; otherwise BIC(c) is replaced by AIC(c). Here, cmin and cmax are given
by (2.6) and (2.7). That is, the best cardinality can be selected through the runs of the
USLPCA algorithm with c set to cmin, . . ., cmax. As a result, we have �c solutions
with

�c = cmax − cmin + 1. (5.7)

Those solutions give the �c BIC/AIC values, among which the least one gives the
best cardinality with (5.6) or its AIC version.

6 Simulation study

We performed a simulation study to assess [1] how often local minima arise and to
what degree local minimizers differ from the optimal solution in USLPCA, [2] how
well the true loadings are recovered by USLPCA when the cardinality c in (1.3) is
set to the true value, and [3] how exactly the true cardinality is identified by AIC and
BIC. The procedure for synthesizing data is described in Sect. 6.1, which is followed
by the assessment of [1] in Sect. 6.2, that of [2] in 6.3, and the results for [3] in 6.4.

6.1 Data synthesis procedure

We generate data matricesX having more observations than variables with n = 150 >

p = 15 and horizontal ones having more variables with n = 15 < p = 150, on the
basis of the PCA model (4.2) subject to (1.2), (1.3), and (5.1). Here, the approximate
PEV for X = FA′ + E,

APEV = 100 ×
∥∥FA′∥∥2

‖FA′‖2 + ‖E‖2
∼= 100 ×

∥∥FA′∥∥2
∥∥FA′ + E

∥∥2
= 100 ×

∥∥FA′∥∥2

‖X‖2 , (6.1)

is controlled to be 80, 60, or 40. As described below, F and E are mutually inde-
pendently generated, so that F′E is close to the zero matrix. Thus, ‖FA′ + E‖2 ∼=
‖FA′‖2 + ‖E‖2, and (4.5) is approximated by (6.1). Its values 80, 60, and 40 corre-
spond to the error sizes being small, medium, and large, respectively. A set of F, A,
and E is synthesized by setting m = 3 with the following steps.

[1] An integer within the interval [p, pm/2] is randomly chosen as the cardinality of
the true A.
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[2] The locations of the nonzero elements in A are randomly chosen subject to that
each row of A includes at least one nonzero loading and each column includes at
least two nonzero ones.

[3] Each of the nonzero elements in A is drawn randomly from U (0.5, 1) or
U (−1,−0.5), with U (α, β) the uniform distribution over the range [α, β].

[4] F is filled with the standard normal variables and then orthonormalized so as to
satisfy (1.2).

[5] Each element of E is drawn with (5.1) independently of F, where σ 2 is set so that
APEV is 0.8, 0.6, or 0.4.

For each of the 2 (n > p and n < p)× 3 (APEV values) combinations,we generated
100 data matrices. For the resulting data sets, we setm at 3 to carry out USLPCA with
the cardinality selection procedure from Sect. 5.

6.2 Local minima

For Card(A) set to a specific c, the USLPCA algorithm is run multiple (Kc) times
in the procedure described in Appendix “Multiple-runs procedure”. As defined there,
the solution A resulting from the kth run (k = 1, . . ., Kc) with this c is denoted by
Ack , and Ac = argmin1≤k≤Kc

LSN(Ack). Let Ac be the optimal solution. We define

Ack as a local minimizer (LM), if the averaged absolute difference of Ack = (a(ck)
i j )

to Ac = (a(c)
i j ), which is defined as AAD(Ack,Ac) = (pm)−1�i� j |a(ck)

i j − a(c)
i j |, is

greater than 0.001. We count the frequency Lc with which LMs are observed during
the Kc runs of the algorithm, and obtain the average of the LMs’ proportion of Lc/Kc

over c, i.e., PLM = �−1
c

∑cmax
c=cmin

Lc/Kc, where�c is given in (5.7). Further, we define
the difference of LMs to the optimal solution as DLM(c) = L−1

c �Γ AAD(Ack,Ac)

and obtained its average over c, i.e., DLM = �−1
c

∑cmax
c=cmin

DLM(c), where Γ denotes
the set of Ack being LMs.

Table 1 shows the percentiles and averages of PLM and DLM over 100 data sets.
There, PLM are found to be very high, in particular, whenAPEV is lower, i.e., errors are
larger. In particular, the 10 percentile of PLM in the bottom row is 0.94, which shows

Table 1 Statistics of the proportions of local minimizers (LMs) and their differences from the optimal
solution

Data form APEV Proportion (PLM) Difference (DLM)

10% 50% 90% Ave. 10% 50% 90% Ave.

n > p 80 0.793 0.837 0.881 0.837 0.106 0.133 0.179 0.138

60 0.827 0.866 0.918 0.867 0.109 0.141 0.194 0.146

40 0.851 0.904 0.951 0.902 0.120 0.158 0.217 0.166

p > n 80 0.743 0.784 0.829 0.784 0.084 0.100 0.123 0.102

60 0.835 0.871 0.919 0.873 0.082 0.102 0.131 0.105

40 0.940 0.965 0.980 0.962 0.115 0.151 0.204 0.155
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that the 94 percents of the solutions were LMs for the 90% (=100 − 10 percentile)
of data sets of n < p with APEV = 40%. The DLM values are also found to be large:
those averages exceed 0.1 for all conditions, which implies that an LM corresponding
to the optimal loading 0.5 is less than 0.4 or larger than 0.6. We can thus conclude that
USLPCA is sensitive to local minima and LMs are not similar to the optimal solutions.
Despite these rather disappointing results, the optimal USLPCA solutions are close to
the true values as shown next.

6.3 Recovery of true loadings

Let us use Â for the solution Ac obtained for c being the true cardinality. We define
two recovery indices for each pair of the true A = (ai j ) and its estimate Â = (âi j ).
One is themisidentification rate of zero loadingsMR0 = 1−N00/N0, where N0 is the
number of the true zero loadings and N00 is the number of (i, j)’s with ai j = âi j = 0.
The other index is the averaged absolute differences of Â to its true counterpart, i.e.,
AAD(Â,A) = (pm)−1�i� j |âi j −ai j |. Table 2 presents the percentiles and averages
of the indices over 100 solutions.

First, let us note the results for the data sets of n > p in Table 2. The Panel for
MR0 in Table 2 shows that no misidentification occurred for any data set of n > p,
except the rare cases in the condition of APEV = 40% with the average 0.005. The
statistics of AAD(Â,A) are also found to be satisfactorily small. Indeed, even the
worst value 0.069 (the 90 percentile for APEV = 40%) is not considered to indicate
large differences between A and Â in that the examples of [ai j , âi j ] giving the value
0.069 such as [0.500, 0.569] and [−0.800,−0.869] never impress us as showing bad
recovery. We can thus conclude that sparse loadings were recovered fairly well for
n > p, when the cardinality is set to the true value.

Next, we consider the case p > n. Compared with n > p, the recovery for p > n
is worse and clearly depends on APEV. When it is 80%, the statistics of MR0 and
AAD(Â,A) are small enough and show fairly good recovery, but they are not small
for APEV = 40%. Also for the 10% of the data sets for APEV = 60%, the recovery is
found to be unsatisfactory, as the 90 percentile of AAD(Â,A) exceeds 0.1. The results

Table 2 Statistics of the indices for the recovery of sparse loadings

Data form APEV Misidentification rate (MR0) Difference (AAD(Â,A))

10% 50% 90% Ave. 10% 50% 90% Ave.

n > p 80 0.000 0.000 0.000 0.000 0.009 0.013 0.019 0.014

60 0.000 0.000 0.000 0.000 0.020 0.027 0.035 0.027

40 0.000 0.000 0.000 0.005 0.039 0.052 0.069 0.055

p > n 80 0.000 0.004 0.013 0.006 0.031 0.042 0.054 0.042

60 0.025 0.047 0.069 0.047 0.062 0.083 0.103 0.082

40 0.086 0.124 0.185 0.131 0.123 0.154 0.197 0.157
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Table 3 Statistics of the relative biases of the cardinality selected by AIC and BIC

Data form APEV AIC BIC

10% 50% 90% Ave. 10% 50% 90% Ave.

n > p 80 0.107 0.214 0.286 0.201 0.000 0.000 0.036 0.018

60 0.111 0.214 0.321 0.220 0.000 0.036 0.071 0.025

40 0.146 0.250 0.357 0.246 0.000 0.036 0.071 0.036

p > n 80 0.152 0.195 0.251 0.203 0.000 0.007 0.020 0.009

60 0.145 0.186 0.241 0.188 −0.144 −0.081 −0.030 −0.081

40 0.057 0.121 0.185 0.125 −0.224 −0.122 −0.030 −0.127

imply that good recovery of the loadings is guaranteed for data sets with PEV of 80%,
but is not true for those with PEV less than 60%.

6.4 Identification of true cardinality

Let us use c for the true cardinality and ĉ for the cardinality selected by AIC or BIC.
For each data set, we obtain the relative bias (ĉ − c)/�c, and its percentiles over the
100 data sets are shown in Table 3. For the data sets of n > p, we find that AIC
overestimates the cardinality, but it is fairly well identified by BIC, which shows that
BIC should be used for the cases of n > p. On the other hand, the behavior of AIC and
BIC depend on APEV for the data sets with p > n. That is, although BIC identified the
cardinality well for the cases with APEV = 80%, it is found that the overestimation of
the cardinality by AIC is reduced and the underestimation by BIC is reinforced with
the decrease in APEV. Eventually, AIC works better for data sets with p > n and less
APEV, so its performance is almost equivalent to that of BIC in the absolute values
of averages for APEV = 40%. As BIC is still superior for APEV = 60%, the results
suggest that BIC should be used for APEV ≥ 60%, but it is inconclusive whether
AIC or BIC is to be used for APEV ≤ 40%.

7 Examples

In this section, we illustrate USLPCA with two data matrices of n > p and n < p,
respectively. Each data set is standardized or given as a correlation matrix, so that the
nonzero loadings to be obtained stand for the correlations of variables to components.
The zero loadings are left blank in the following tables.

7.1 Pitprop data

The first example is Jeffers’s (1967) Pitprop data matrix of n = 180 by p = 13,
which has been used as a benchmark for testing sparse PCA procedures. We carried
out USLPCAwithm = 6 following the previous studies. Then, local minimizers were
often obtainedwith the average proportion PLM = 0.852 and they are not similar to the
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Fig. 1 Total PEV and BIC against the cardinality of A for Pitprop data

Table 4 USLPCA loadings with the least BIC for Pitprop data together with PCA’s PEV in the final row
and column

Variable USLPCA: Card(A)=37 PCA

C1 C2 C3 C4 C5 C6 PEV PEV

topdiam 0.66 −0.68 90.6 90.9

length 0.68 −0.68 92.3 92.5

moist −0.52 0.84 0.06 97.6 97.8

testsg −0.42 0.29 0.81 −0.23 97.6 97.5

ovensg 0.25 0.56 −0.69 86.1 86.8

ringtop 0.40 0.82 0.16 86.5 86.4

ringbut 0.75 0.58 −0.16 92.8 92.7

bowmax 0.76 −0.28 66.2 68.4

bowdist 0.72 −0.33 62.5 64.0

whoris 0.80 −0.48 86.9 87.2

clear 0.11 −0.11 0.11 0.96 96.5 95.9

knots −0.46 −0.44 0.36 0.13 0.53 82.7 80.4

diaknot −0.39 −0.69 −0.28 −0.32 −0.30 90.0 90.7

PEV 28.8 17.0 13.2 11.6 9.3 7.0 86.8 87.0

PEVPCA 32.5 18.3 14.5 8.5 7.0 6.3 87.0

optimal onewith the average ofAAD(Ack,Ac) being DLM = 0.151. The resulting PEV
andBICvalues are plotted againstCard(A) in Fig. 1. For choosingCard(A),we useBIC
which showed the good performances for the cases of n > p in the simulation study.

BIC showed the least value for Card(A) = 40 among all possible cardinalities. The
corresponding loadings are shown in Table 4. The resulting total PEV 86.8 is found
to be almost equivalent to the PEV 87.0 for the standard PCA: the USLPCA solution
approximates the data very well, nearly as PCA does, and is more interpretable with
13 × 6 − 40 = 38 vanishing loadings. Bold font is used in Table 4 for the PEV
for variables which exceeds the corresponding ones for PCA: it is noted that five
variables are better explained by the sparse USLPCA components, with PEV for the
other variables not very different between USLPCA and PCA.
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Although the solution in Table 4 is optimal according to the BIC-based cardinality
selection, the 40nonzero loadings still seem toomany to capture quickly the underlying
variable-component relationships. This motivates us to choose a sparser solution using
PEV rather than BIC. A procedure for the choice is trying a so-called scree test for
the PEV plot in Fig. 1, i.e., to find the Card(A) value at which the increment in PEV
begins to be less pronounced. However, such values are found at several points, among
which we cannot choose the best one. In place of this approach, it can be considered
to use a benchmark PEV value. As the value we choose the PEV 80 which is the
integer × 10% closest to the PEV 87.0 for the standard PCA, to select the solution of
Card(A) = 17 with its PEV nearly greater than 80. The solution is depicted in Table 5,
where the variables are found to be clearly clustered with every variable loading only
one or two components.

In contrast to the USLPCA solutions with sparse loadings A, the weights inW are
sparsified in the existing procedures. As an example of the latter, Table 6 shows the
sparseW obtained by Zou et al’s (2013, Table 3) SPCA, which is related to USLPCA
asmentioned in Sect. 1. All six components in Table 6 can be considered to correspond
to those in Table 5, except the differences of a few nonzero loadings. However, the
interpretation of W and A is quite different as discussed in Sect. 4.1. This difference
is illustrated in the next paragraph.

For example, the sparse W in Table 6 shows that the PC scores for Component 3
(C3) are defined by four variables as

C3 = .64 × ovensg + .59 × ringtop + .49 × ringbut − .02 × diaknot.

Table 5 USLPCA loadings with Card(A)=17 for Pitprop data together with PCA’s EV in the final row
and column

Variable USLPCA: Card(A)=17 PCA

C1 C2 C3 C4 C5 C6 PEV PEV

topdiam 0.89 79.2 90.9

length 0.91 82.9 92.5

moist 0.96 92.4 97.8

testsg 0.94 88.6 97.5

ovensg 0.81 64.9 86.8

ringtop 0.37 0.79 76.7 86.4

ringbut 0.67 0.62 83.4 92.7

bowmax 0.61 −0.51 63.4 68.4

bowdist 0.80 63.5 64.0

whoris 0.75 0.44 75.1 87.2

clear −0.98 95.3 95.9

knots 0.92 85.5 80.4

diaknot −0.96 91.6 90.7

PEV 29.1 13.9 12.8 8.8 8.6 7.0 80.2 87.0

PEVPCA 32.5 18.3 14.5 8.5 7.0 6.3 87.0
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Table 6 Zou et al.’s (2006) solution for Pitprop data, where the signs of weights in C1 and C6 have been
changed from the original table

Variable C1 C2 C3 C4 C5 C6

topdiam 0.48

length 0.48

moist 0.79

testsg 0.62

ovensg −0.18 0.64

ringtop 0.59

ringbut 0.25 0.49

bowmax 0.34 −0.02

bowdist 0.42

whoris 0.40

clear −1.00

knots 0.01 −1.00

diaknot −0.02 −1.00

On the other hand, the USLPCA loadingsA in Table 5 show that those same variables
without diaknot are explained by Component 3 as

[
ovensg, ringtop, ringbut

] = [.81, .79, .62] × C3 + e′, (7.1)

which is a row vector version of (4.4) and e′ (1× 7) expresses the part �k 	= j fka′
k +E

in (4.4). Equation (7.1) shows that Component 1 is interpreted as a common factor
explaining those variables. The explanation power of Component 3 can be assessed by
the corresponding PEV 12.8. Beside this column-wise interpretation ofA, we can also
interpret A in a row-wise manner. For example, we find in Table 4 that the variable
“ringbut” is explained by Components 1 and 3 as

ringbut = 0.67 × C1 + 0.62 × C3 + error, (7.2)

where the corresponding PEV shows that the 83.4% of the variance of “ringbut” is
explained by the two components.

The USLPCA loadings in Tables 4 and 5 are also the correlation coefficients as
described in Sect. 4.2, since the data set is given as a correlation matrix. For example,
it is found in Table 5 that the coefficient between “clear” and C4 is −0.98, which is
close to the lower limit −1 and shows their very high negative correlation. On the
other hand, the coefficient 0.37 between “ringtop” and C1 stands for that their relation
is not high as 0.37 is rather close to the zero implying no correlation in the range of
the zero to the upper limit one.

An anonymous reviewer was interested in the transition of nonzero loadings into
zero ones and vice versa with respect to the increase of Card(A), i.e., the cases of

a(c)
i j 	= 0 and a(c+1)

i j = 0 (7.3)
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Fig. 2 Switch-rates and the averages of absolute loadings against the cardinality of A

and
a(c)
i j = 0 and a(c+1)

i j 	= 0, (7.4)

where a(c)
i j denotes the (i, j) elements of the resulting A for Card(A) = c. We thus

obtained the switch-rate SRc = qc/c, with qc the number of the indices (i, j) with
(7.3). It implies that qc + 1 is the number of (i, j) with (7.4). The rate SRc is plotted
against Card(A) = c left in Fig. 2. We find that SRc is low (the same loadings steadily
remain zero/nonzero) when Card(A) is smaller, in contrast to the cases of greater
Card(A) where the switchover is remarkable.

The contrast may be related to the results shown right in Fig. 2, where four curves
express the different averages of absolute nonzero loadings. In the figure, except for
Card(A) being cmin and 36, the simple average of absolute nonzero loadings AV(c) =
c−1�i, j

∣∣∣a(c)
i j

∣∣∣ is found to exceed the average AVNZ(c) = q−1
c �(i, j)∈N Z

∣∣∣a(c)
i j

∣∣∣ of the

nonzero a(c)
i j switched into zero, where NZ denotes the set of (i, j) satisfying (7.3). It

shows that the nonzero a(c)
i j with smaller

∣∣∣a(c)
i j

∣∣∣ tends to become zero. Further, we can

find that AV(c) decreases with an increase in c and approaches AVNZ(c) when c is

greater. This suggests that, for greater c, a number of
∣∣∣a(c)

i j

∣∣∣ are small enough to switch

a(c)
i j into zero, which leads to the uncertainty for what nonzero loadings are turned
into zero, i.e., higher switch-rates. The other two curves in the right figure express the

average AVZN(c) = T−1
ZN�(i, j)∈ZN

∣∣∣a(c+1)
i j

∣∣∣ for the nonzero a(c+1)
i j switched from a(c)

i j

= 0, and AVNN(c) = T−1
NN�(i, j)∈NN

∣∣∣a(c)
i j

∣∣∣ for the nonzero a(c)
i j being not switched.

Here, ZN is the set of (i, j) with (7.4), and NN is the set of the (i, j) satisfying
a(c)
i j 	= 0 and a(c+1)

i j 	= 0, with TZN and TNN the numbers of (i, j) in ZN and NN,
respectively. We can find that AVNZ(c) < AVNN(c) and AZN(c) < ANN(c) except
for Card(A) = cmin: the absolute values of the switched loadings tend to be smaller
than those of the ones which did not switch. It suggests that the interpretation for
Card(A) = c + 1 cannot be changed drastically from that for Card(A) = c, if one
note the loadings with great absolutes.
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Fig. 3 Total PEV and BIC against the cardinality of A for gene expression data

7.2 Gene expression data

The second example is the yeast cell cycle data matrix of n = 17 time points (observa-
tions) by p = 384 genes (variables) presented by Yeung and Ruzzo (2001). The data
matrix, publicly available at http://faculty.washington.edu/kayee/pca, have been first
log-transformed and then standardized so that the column averages and variances are
zero and one, respectively. The 384 genes are categorized into five phases of cell cycles,
which suggests that m = 5 components corresponding to the five phases might be
obtained. However, the preliminary trial detailed in Appendix “Component-wise con-
strained USLPCA” showed that the solution withm = 5 included a component whose
PEVwasvery low.Such a trivial componentwas also extracted byEnki andTrendafilov
(2012, p. 620), where the genes were classify into five groups, but one of them cannot
be well related to the phases. We thus reduced m to 4 for performing USLPCA for the
data set. Then, local minimizers were often obtained with PLM = 0.771 and they are
not similar to the optimal one with DLM = 0.119. The resulting PEV and BIC values
are plotted against Card(A) in Fig. 3, where PEV values are found to range from 60
to 81%. For such PEV values, BIC is working better than AIC as suggested by the
results for p > n and the approximate PEV=60 and 80% in Sect. 6.4. In Fig. 3, BIC
is found to give the least value for Card(A)=616 among all possible cardinality, with
the corresponding PEV 73.4.

The loadings for Card(A) = 616 are presented block-wise in Fig. 4. There, the
blocks (genes × components) correspond to the five phases, with white, red, and blue
standing for zero, positive values, and negative ones. The PEV for components 1, 2,
3, and 4 were 16.0, 37.0, 13.4, and 7.0, respectively. The solution is considered to be
reasonable, as each phase has a unique feature of loadings: [a] The genes in Phases
1, 2, and 4 are positively loaded by Components 1, 2, and 3, respectively; [b] Phases
5 are characterized by positive loadings for Component 4 and negative ones for 2; [c]
Phases 3 consists of the genes positively loaded by Component 2 or 3 and by both.

8 Discussion

In this paper, we proposed an unpenalized sparse PCA procedure USLPCA, in which
component loadings rather thanweights are sparsifiedwithout using penalty functions.
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Fig. 4 Heat map of the loadings for gene expression data, which was produced by polarmap.m from
MATLAB file exchange

In USLPCA, the loss function of PCA is minimized subject to the direct cardinality
constraint on the loadings and the orthonormality constraint on the component score
matrix. The latter condition makes it possible to decompose the loss function as a sum
of two terms, one of which is irrelevant to the loadings, and the other one is a function
easily minimized subject to the cardinality constraint. Using this decomposition, we
formed the alternate least squares algorithm for USLPCA. This algorithm has two
important features. First, the updating of the PC score matrix F can be avoided, and
second, the algorithm can operate with either a data or covariance matrix as an input.

We also presented the cardinality selection procedure using AIC and BIC. This
selection can be easily attained by considering all possible values of cardinality, owing
to the cardinality being prespecified to be an integer in USLPCA. The simulation
study shows that the true cardinality can be identified fairly well by BIC, though AIC
overestimates the cardinality considerably.

In USLPCA, the total percentage of explained variances (PEV), the PEV index for
components, and the one for variables are defined in the same form as the standard
PCA. It facilitates comparing USLPCA solutions with the PCA one in the goodness-
of-fit for a data set. As the total PEV of PCA is the upper limit of those of USLPCA,
we can ascertain that a USLPCA solution is satisfactory if its total PEV is not very
lower than that of PCA, as illustrated in the examples. There, it was also demonstrated
that the variables can exist that are well explained by sparse USLPCA components
than the PCA ones being not sparse.

One of the most critical differences of USLPCA to the existing sparse PCA is that
the loadings in A are to be interpreted in the former, while the weights in W is of
interest in the latter. As the weights must be inspected for finding how the PC scores
in F = XW are defined, the existing procedures are suitable in particular when PC
scores are of interest. On the other hand, the loadings express how the original variables
are regressed onto components. Thus, USLPCA is to be used when components are
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treated as the factors explaining the variables. To what extent they are explained by
components are assessed by the PEV indices discussed above.

One may be interested in modifying USLPCA for obtaining sparse W, that is,
minimizing the PCA loss function (1.1) over W and A subject to Card(W) = c.
Unfortunately, this modification is not easy, as the key point of USLPCA is using the
decomposition of (1.1) into (2.2), but this strategy is difficult to use for W. That is,
(2.2) reduces the cardinality constrained minimization of (1.1) over A into that of a
simple function g(A) = ‖B−A‖2. Unfortunately, such a simple function forW does
not seem to exist.

In this paper, we did not present a systematic procedure for selecting dimensionality,
i.e. the number of components (m). For this selection, we can perform the cardinality
selection over different dimensionality to find the best combination of cardinality and
dimensionality. For example, the combination with the least BIC can be chosen as the
best one. Assessing such a procedure and considering other approaches remains for
future studies.
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9 Appendices

9.1 Multiple-runs procedure

To choose the number of the runs of the USLPCA algorithm, we assume that the value
of the objective function (3.12) should decrease monotonically with the increase of
Card(A) = c in the constraint (1.3):

LSN (Ac) ≤ LSN (Ac−1) (9.1)

withAc andAc−1 being the optimal solutions with Card(A) = c and Card(A) = c−1
respectively. That is, we run the algorithm until Ac satisfying (9.1) is found. Let Ack

denote the solution of A resulting in the kth run. Then, our multiple-runs procedure
for Card(A) = c is described as follows:

1. Run the algorithm Kc = 50 times and set Ac = argmin1≤k≤Kc
LSN(Ack).

2. Finish if Ac satisfies (9.1); otherwise go to 3.
3. Increase Kc by one, run the algorithm, and set Ac = argmin1≤k≤Kc

LSN(Ack).
4. Finish if Ac satisfies (9.1) or Kc = 1000; otherwise back to 3.

Here, the number of runs is denoted by Kc with subscript c, as it cannot be the same
among different c values.

When Kc = 1, the initial loading matrix A is taken to be the matrix of the standard
PCA loadings. For Kc > 1, each element A is set to amax × u[−1,1], with u[−1,1] a
variable following the uniform distribution over the range [−1, 1] and amax being the
maximum absolute value of the elements in the initial A for the first run.

The value of LSN(Ac−1) must be known before the above multiple-runs procedure
is carried out with Card(A) = c. Thus, the procedure (2.5) should be applied for
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increasing sequence of values c = cmin, . . ., cmax. We thus evaluate I (c)with increas-
ing c from cmin to cmax one by one. Only when c = cmin, the multiple-runs procedure
only consist of 1 and 2.

9.2 No correlation for components and errors

Here, we prove that no correlation exists between the two terms in the right-side hand
of (4.4), i.e. the columns of f ja′

j is uncorrelated with those of H[ j] = �k 	= j fka′
k + E.

The proof can be attained by showing that

[1] f ja′
j and H[ j] are column-centered;

[2] (f ja′
j )

′H[ j] = O.

First, [1] follows from thatX andF being column-centered implies f ja′
j , �k 	= j fka′

k ,
and E = X − FA′ being also column-centered.

Next, [2] can be proved by showing that (f ja′
j )

′�k 	= j fka′
k = O and (f ja′

j )
′E = O.

The former equality follows from that (1.2) implies f ′j fk = 0(k 	= j). The left-side
hand of the latter equality is expanded as

(f ja′
j )

′E = (f ja′
j )

′(X − FA′) = a j f ′jX − a j f ′jFA′. (9.2)

Here, a j f ′jX can be rewritten into

a j f ′jX = na jb′
j (9.3)

with b j = X′f j the j th column of B defined in (2.3), while a j f ′jFA
′ can be expressed

as

a j f ′jFA′ = na ja′
j (9.4)

using (1.2). The Eq. (3.10) implies the equality between (9.2) and (9.3), which leads
to that (9.2) equals O. It completes the proof.

9.3 Likelihood for PCA model

Normality assumption (5.1) implies that the log likelihood for X is expressed as

l(F,A, σ 2) = −np

2
log 2π − np

2
log σ 2 − 1

2σ 2 ‖X − FA′‖2 (9.5)

By solving the equation dl(F,A, σ 2)/dσ 2 = 0, we can find the ML estimate of σ 2

must satisfy σ 2 = (np)−1‖X − FA′‖2. Substituting this into (9.5) lead to

l (F,A) = −np

2
log 2π + np

2
log np − np

2
log ‖X − FA′‖2 − np

2
, (9.6)

whose part relevant to F and A is expressed as (5.2).
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9.4 Component-wise constrained USLPCA

In the preliminary analysis of Yeung and Ruzzo’s (2001) data, we used a version of
USLPCA in which (1.3) is replaced by

card(a j ) = c j (9.7)

for j = 1, . . .,m, with card(a j ) the cardinality of the j th column of A and c j an
integer. The algorithm for this version is the same as in Sect. 3, except that (3.9) is
replaced by setting

ai j =
{
0 i f f b2i j ≤ b2[q] j
bi j otherwise

(9.8)

over j = 1, . . .,m. Here, b2[q] j denotes the q j th smallest value among the squares of
the elements in b j .

As described in Sect. 7.2, the 384 variables in the data are classified into the five
clusters (genes). We performed the above version of USLPCA with m = 5 by setting
the cardinality c j in (9.6) to the number of the variables belonging to each cluster. If the
five clusters correspond to the components columns, the nonzero loadings would be
obtained that stand for the clustermemberships of the variables. However, the resulting
solution did not have such a feature, with including a trivial component whose PEV
was very low (3.2%).

References

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723
d’Aspremont A, Bach F, Ghaoui LE (2008) Optimal solutions for sparse principal component analysis. J

Mach Learn Res 9:1269–1294
Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika

1:211–218
Enki DG, Trendafilov NT (2012) Sparse principal components by semi-partition clustering. Comput Stat

27:605–626
Izenman AJ (2008) Modern multivariate statistical techniques: regression, classification, and manifold

learning. Springer, New York
Jeffers JNR (1967) Two case studies in the application of principal component analysis. Appl Stat 16:225–

236
Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York
Jolliffe IT, Trendafilov NT, Uddin M (2003) A modified principal component technique based on the

LASSO. J Comput Graph Stat 12:531–547
Journée M, Nesterov Y, Richtárik P, Sepulchre R (2010) Generalized power method for sparse principal

component analysis. J Mach Learn Res 11:517–553
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464
Seber GAF (2008) A matrix handbook for statisticians. Wiley, Hoboken
Shen H, Huang JZ (2008) Sparse principal component analysis via regularized low rank matrix approxi-

mation. J Multivar Anal 99:1015–1034
SPSS Inc (1997) SPSS 7.5 statistical algorithms. SPSS Inc, Chicago
Takane Y (2014) Constrained principal component analysis and related techniques. CRC Press, Boca Raton
Trendafilov NT (2014) From simple structure to sparse components: a review. Comput Stat 29:431–454

123



Sparse principal component analysis subject to... 1427

Trendafilov NT, Adachi K (2015) Sparse versus simple structure loadings. Psychometrika. doi:10.1007/
s11336-014-9416-y

Van Deun K, Wilderjans TF, van den Berg RA, Antoiadis A, Van Mechelen I (2011) A flexible framework
for sparse simultaneous component based data integration. BMC Bioinformatics 12:448–464

Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applications to sparse
principal components and canonical correlation analysis. Biostatistics 10:515–534

Yeung KY, Ruzzo WL (2001) Principal component analysis for clustering gene expression data. Bioinfor-
matics 17:763–774

Zou DM, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15:265–
286

123

http://dx.doi.org/10.1007/s11336-014-9416-y
http://dx.doi.org/10.1007/s11336-014-9416-y

	Sparse principal component analysis subject  to prespecified cardinality of loadings
	Abstract
	1 Introduction
	2 Unpenalized sparse loading PCA
	3 Algorithm
	3.1 Outline
	3.2 B-step
	3.3 A-step
	3.4 Whole steps

	4 Interpreting solutions
	4.1 Interpreting weights versus interpreting loadings
	4.2 Nonzero loadings as covariances
	4.3 Percentages of explained variances

	5 Cardinality selection by information criteria
	6 Simulation study
	6.1 Data synthesis procedure
	6.2 Local minima
	6.3 Recovery of true loadings
	6.4 Identification of true cardinality

	7 Examples
	7.1 Pitprop data
	7.2 Gene expression data

	8 Discussion
	Acknowledgments
	9 Appendices
	9.1 Multiple-runs procedure
	9.2 No correlation for components and errors
	9.3 Likelihood for PCA model
	9.4 Component-wise constrained USLPCA

	References




