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Abstract The key issues involved in two sample tests in high dimensional problems
arise due to large dimension of the mean vector for a relatively small sample size.
Recently, Wang et al. (Stat Sin 23:667–690, 2013) proposed a jackknife empirical
likelihood test that works under weak assumptions on the dimension of variables (p),
and showed that the test statistic has a chi-square limit regardless of whether p is
finite or diverges. The sufficient condition required for this statistic is still restrictive.
In this paper we significantly relax the sufficient condition for the asymptotic chi-
square limit with models allowing flexible dependence structures and derive simpler
alternative statistics for testing the equality of two high dimensional means. The pro-
posed statistics have a chi-squared distribution or the maximum of two independent
chi-square statistics as their limiting distributions, and the asymptotic results hold for
either finite or divergent p. We also propose a data-adaptive method to select the coef-
ficient vector, and compare the various methods in simulation studies. The proposed
choice of coefficient vector substantially increases power in the simulation.
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1 Introduction

High dimensional problems have become increasingly important with the advance-
ment of technology that increased the capacity to collect high dimensional data. For
genomic or microarray data, thousands of gene expressions can be collected for each
subject, in which case the number of variables is very large compared to sample size.
When there is an interest in identifying mean differences for gene sets in two samples,
this leads to a simultaneous testing problem of differences in the means of two differ-
ent gene sets with large number of genes in each set (Nettleton et al. 2008; Newton
et al. 2007). In such fields there is a growing demand for methods for handling high
dimensional data when the number of variables is very large compared to sample size.

Key issues involved in two sample tests in high dimensional problems arise due to
a large dimension of the mean vector for a relatively small sample size, and because
Hotelling’s T 2 statistic has poor performancewith singular covariancematrix. In order
to overcome this issue, a test statistic using Moore–Penrose inverse is proposed by
Srivastava andKhatri (1979), and covariance shrinkage techniques are introduced to be
able to work with positive definite sample covariance matrix (Ledoit and Wolf 2004).
The question of the possibility of getting around the issues related to inverse covariance
matrix remains for two sample tests in high dimensional problems. Among the various
contributions made to the literature, Bai and Saranadasa (2004) proposed to modify
Hotelling’s T 2 statistic by excluding sample covariance matrix under the assumption
p/n → c, where c is a constant with c ≤ ∞. However, in high dimensional problems,
it is in general too restrictive to assume that p/n will converge to c. Chen and Qin
(2010) noted this and constructed a test statistic that allows p to be arbitrarily large
without restriction of p being of the same order of n, under given assumptions. Wang
et al. (2013) proposed a jackknife empirical likelihood (JEL) test, which works under
weaker conditions than those proposed by Chen and Qin, and results in good statistical
power. Wang et al. (2013) showed that their proposed statistic has a chi-square limit
regardless of whether p is finite or diverges. The key idea in Wang et al. (2013)’s
methodology is (1) to split the samples into two independent groups, (2) the use of
empirical likelihood, and (3) the use of the jackknife samples. Point (1) is essential
for the derivation of the necessary asymptotic results. However, the extent to which
(2) and (3) contribute to power has not been explored in detail. This understanding
is important because this leads to an insight on what should be considered primarily
in more complicated problems. There are sufficient conditions that need to be met
for Wang et al. (2013)’s methodology as given in the “Appendix”, and the conditions
are restrictive, requiring the rate of increase of p to be controlled. Relaxing these
conditions would lead to important improvement in the methodology.

In this paper, the restrictive conditions in Wang et al. (2013)’s approach are signif-
icantly relaxed in our proposed model allowing flexible dependence structures. The
explicit form of the model is given in (2.1). In addition, we derive simpler alterna-
tive statistics for testing the equality of two high dimensional means and study the

123



On high-dimensional two sample mean testing statistics... 453

contribution of the use of empirical likelihood and jackknife samples. The proposed
statistics result in a chi-square or the maximum of two independent chi-square statis-
tics as limit distributions, and the asymptotic results hold regardless of whether p is
finite or diverges.

To study the contribution of the jackknife samples, we investigate one statistic
based on the jackknife sample, and another that is not. The proposed statistics are not
based on the empirical likelihood, and does not require any optimization procedure.
A simulation study is performed to compare the performance of the new statistics not
based on empirical likelihood with Wang et al. (2013)’s statistics. In the simulation
study, we consider various factors that can affect the performance of the two sample
test, including the skewness of distribution, correlation between variables, sample size,
the number of variables, and the sign of themean shifts. It turns out that the sign ofmean
shifts is critical in obtaining good power. In order to take into account that mean shifts
can be in different directions, we investigate different choices of coefficient vectors.
In Wang et al. (2013)’s approach, the coefficient vector is chosen a priori to boost the
statistical power, taking (1, . . . , 1) as a convenient choice. Although this method is
useful in some settings, the simulation results show that the use of (1, . . . , 1) does not
always yield good power in some practical settings. This vector can be chosen based
on prior information (Wang et al. 2013), but we often do not have such information
in practice. In this paper, we propose a data-adaptive method to select the coefficient
vector, and show by simulation that the proposed choice substantially improves the
power. The simple statistics proposed in this paper together with the data adaptive
choice of coefficient vector yields good power, and can be used for high dimensional
problems in various areas of research.

The organization of this paper is as follows. In Sect. 2, we review Wang et al.
(2013)’s approach in detail and explain how we derive the new alternative statistic for
two sample tests. A numerical study is given in Sect. 3. The data-adaptive choice of
the coefficient vector is explained in Sect. 4 followed by simulation results. We apply
the methods in the analysis of gene expression data in Sect. 5. Concluding remarks are
given in Sect. 6. All the details of the simulation results are given in the supplementary
document.

2 Review of Wang et al. (2013) and proposed statistics

Since our proposed statistics are closely related to the setting inWanget al. (2013) in the
sense that it requires common asymptotic results, we start this section with a detailed
review of the JEL approach in Wang et al. (2013). To avoid introducing additional
difficulty for the readers, we intend to keepmost of notation used inWang et al. (2013).
Assume that Xi = (Xi1, . . . , Xip)

T (i = 1, . . . , n1) and Y j = (Y j1, . . . ,Y jp)
T ( j =

1, . . . , n2),where p denotes the dimensionof the variables andn1 andn2 are the sample
sizes of each group, respectively. Xi andY j are assumed to be two independent random
samples with mean vectors μ1 and μ2, respectively. In this paper, we are concerned
with testing H0 : μ1 = μ2 while allowing different covariances for the two groups.
Note that this null hypothesis is equivalent to testing H0 : (μ1 −μ2)

T (μ1 −μ2) = 0.
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Letm1 = [n1/2],m2 = [n2/2],m = m1+m2, and let X̃i = Xi+m1 for i = 1 . . . ,m1,
and Ỹ j = Y j+m2 for j = 1 . . . ,m2.

To test H0, Wang et al. (2013) proposed a JEL method. The jackknife sample is
formulated as

Zk,1 = m1 + m2

m1m2

m1∑

i=1

m2∑

j=1

(Xi − Y j )
T (X̃i − Ỹ j ) − m1 + m2 − 1

(m1 − 1)m2

m1∑

i=1,i �=k

m2∑

j=1

(Xi − Y j )
T (X̃i − Ỹ j )

Zk,2 = m1 + m2

m1m2

m1∑

i=1

m2∑

j=1

{
αT (Xi − Y j ) + αT (X̃i − Ỹ j )

}

− m1 + m2 − 1

(m1 − 1)m2

m1∑

i=1,i �=k

m2∑

j=1

{
αT (Xi − Y j ) + αT (X̃i − Ỹ j )

}

for k = 1, . . . ,m1, and

Zk,1 = m1 + m2

m1m2

m1∑

i=1

m2∑

j=1

(Xi − Y j )
T (X̃i − Ỹ j ) − m1 + m2 − 1

m1(m2 − 1)

m1∑

i=1

m2∑

j=1, j �=k−m1

(Xi −Y j )
T (X̃i −Ỹ j )

Zk,2 = m1 + m2

m1m2

m1∑

i=1

m2∑

j=1

{
αT (Xi − Y j ) + αT (X̃i − Ỹ j )

}

− m1 + m2 − 1

m1(m2 − 1)

m1∑

i=1

m2∑

j=1, j �=k−m1

{
αT (Xi − Y j ) + αT (X̃i − Ỹ j )

}

for k = m1 + 1, . . . ,m. Here, α denotes the coefficient vector previously referred to
in the introduction. The JEL ratio function for testing H0 : μ1 = μ2 is given by

Lm = sup

{
m∏

i=1

(mpi ) : pi ≥ 0,
m∑

i=1

pi = 1,
m∑

i=1

pi Zi = (0, 0)T
}

.

where Zi = (Zi,1, Zi,2)
T . Under either condition A1 or A2 in “Appendix”,Wang et al.

(2013) showed that −2 log Lm → χ2
2 in distribution. A remarkable property of this

statistic is that the asymptotic result holds regardless of whether p is finite or diverges.
However, this works under restrictive situations since the sufficient conditions A1 and
A2 are required for this property to hold. For instance, to satisfy condition A2, we

need p = o

(
m

δ+min(δ,2)
2(2+δ)

)
for some δ > 0. Since δ+min(δ,2)

2(2+δ)
≤ 1/2 for any δ > 0, p

should increase at slower rate than m1/2. In order to relax these restrictive conditions,
we consider models that allow flexible dependence structures. Let

Σ = E
[
(X1 − μ1)(X1 − μ1)

T
]

Σ̃ = E
[
(Y1 − μ2)(Y1 − μ2)

T
]

ρ1 = tr(Σ2) = E

[(
(X1 − μ1)

T (X2 − μ1)
)2]

ρ2 = tr(Σ̃2) = E

[(
(Y1 − μ2)

T (Y2 − μ2)
)2]

.
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Our model assumes

Xi − μ1 = Σ1/2εi and Yi − μ2 = Σ̃1/2ε̃i (2.1)

where the elements in εi and ε̃i are i.i.d random variables with mean 0 and finite fourth
moment. If

λ4p p
2

m1ρ
2
1

= o(1),
λ̃4p p

2

m2ρ
2
2

= o(1).

hold where λp and λ̃p are the largest eigenvalues of Σ and Σ̃ , respectively, then the
asymptotic chi-square limiting distribution is obtained as described before.

In fact, our model provides a significantly relaxed condition on p. Specifically,
if we impose the boundedness on all the eigenvalues of Σ and Σ̃ as in Wang et al.
(2013),

λ4p p
2

m1ρ
2
1

= O

(
1

m1

)
→ 0,

λ̃4p p
2

m2ρ
2
2

= O

(
1

m2

)
→ 0.

Therefore, the asymptotic chi-square limiting distribution is obtained for any order of
p. More details and proofs are given in “Appendix 2 and 3”.

Now we propose a new statistic for testing the equality of two high dimensional
means that can be used instead of the JEL. This is a simpler statistic that follows from
an intermediate step instead of deriving the JEL.

DenoteU1 = 1
m1m2

∑m1
i=1

∑m2
j=1(Xi −Y j )

T (X̃i − Ỹ j ) andU2 = 1
m1m2

∑m1
i=1

∑m2
j=1

αT (Xi −Y j )+αT (X̃i − Ỹ j ). Under either condition A1 or A2 or B1 in the “Appendix”
and H0 : μ1 = μ2, we have

√
m

( U1√
ρ

U2√
τ

)
→d N (0, I2) (2.2)

where ρ = m
m1

ρ1 + m
m2

ρ2 and τ = m
m1

τ1 + m
m2

τ2,

τ1 = 2tr(αTΣα) = 2E
(
(αT (X1 − μ1))

2
)

τ2 = 2tr(αT Σ̃α) = 2E
(
(αT (Y1 − μ2))

2
)

We immediately have

m

(
U 2
1

ρ
+ U 2

2

τ

)
→d χ2

2 .

Replacingρ and τ with their consistent estimators provides uswith simple statistics for
two sample high dimensional testing without introducing the empirical likelihood. In
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fact, Wang et al. (2013) developed two consistent estimators for ρ and τ . First, denote
ρ̂ jack = 1

m

∑m
k=1 Z

2
k,1 and τ̂ jack = 1

m

∑m
k=1 Z

2
k,2. The subscript “jack” highlights the

use of the jackknife samples. Following Wang et al. (2013), we have

ρ̂jack

ρ
→p 1 and

τ̂jack

τ
→p 1. (2.3)

Secondly, let ρ̂ss = m
m2
1m

2
2

∑m1
k=1(

∑m2
j=1 ukj )

2 + m
m2
1m

2
2

∑m2
k=1(

∑m1
i=1 uik)

2 and τ̂ss =
m

m2
1m

2
2

∑m1
k=1(

∑m2
j=1 vk j )

2+ m
m2
1m

2
2

∑m2
k=1(

∑m1
i=1 vik)

2 where ui j = (Xi −Y j )
T (X̃i −Ỹ j )

and vi j = αT (Xi − Y j ) + αT (X̃i − Ỹ j ). Then, we have

ρ̂ss

ρ
→p 1 and

τ̂ss

τ
→p 1 (2.4)

By combing the results above, we have the following:

Theorem 2.1 Under either condition A1 or A2 or B1 in “Appendix” and H0 : μ1 =
μ2, for both i = jack and i = ss, we have

m

(
U 2
1

ρ̂i
+ U 2

2

τ̂i

)
→d χ2

2 . (2.5)

Proof Assume that

ρ̂

ρ
→p 1 and

τ̂

τ
→p 1.

By (2.2) and Slutsky’s theorem, we have

√
m

⎛

⎝
U1√

ρ̂

U2√
τ̂

⎞

⎠ →d N (0, I2).

which in turn concludes (2.5) along with (2.3) and (2.4). �	
We will call these simple χ2

2 statistics S1 and S2 where (ρ, τ ) is replaced by
(ρ̂jack, τ̂jack) and (ρ̂ss, τ̂ss), respectively. Furthermore, by exploiting the asymptotic
independence of U1 and U2,

max

(
mU 2

1

ρ̂
,
mU 2

2

τ̂

)

can be used for testing H0 : μ1 = μ2 as well. Here, the null distribution is the
maximum of two independent chi-square statistics with one degree of freedom. We
call these maximum statistics M1 and M2 where (ρ, τ ) is replaced by (ρ̂jack, τ̂jack)

and (ρ̂ss, τ̂ss), respectively.
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3 Simulation study

In this section we compare several approaches in a simulation study by investigating
the sizes and powers of our proposed methods (S1,S2,M1,M2) as well as the JEL
test (JEL). For comparison, we consider simulation settings that are similar to those
in Wang et al. (2013), but diversify the factors that can affect the statistical power.
Assume that W1, . . . ,Wp are iid random variables, and W̄1, . . . , W̄p are iid random
variables independent of Wi ’s. We consider eight different simulation settings: Four
settings (Setting I) are under independence assumption between the variables, and the
other four (Setting II) are correlated settings.Within the four independent or correlated
settings, we investigate the differences in skewness, and also allow the mean shifts to
have opposite signs. In each of these settings, 100c2 % of the components of Y1 have
a shifted mean compared to the mean of X1. Detailed descriptions are given below for
each simulation setting:

– Setting I (Independent cases)
– Setting I-1: Let Wi ∼ N (0, 1) and W̄i ∼ t (8). Define X1,1 = W1, X1,2 =

W2, . . . , X1,p = Wp,Y1,1 = W̄1 + μ2,1,Y1,2 = W̄2 + μ2,2, . . . ,Y1,p = W̄p +
μ2,p, where μ2,i = c1 if i ≤ [c2 p], and μ2,i = 0 if i > [c2 p].

– Setting I-2: The same setting as I-1, except that μ2,i = c1 for odd i , μ2,i = −c1
for even i .

– Setting I-3: W̄i ∼ χ2(1) − 1 where μ2,i = c1 if i ≤ [c2 p], and μ2,i = 0 if
i > [c2 p].

– Setting I-4: The same setting as I-3, except that μ2,i = c1 for odd i , μ2,i = −c1
for even i .

– Setting II (Correlated cases used in Wang et al. (2013))
– Setting II-1 : Let Wi ∼ N (0, 1) and W̄i ∼ t (8). Define X1,1 = W1, X1,2 =

W1 + W2, . . . , X1,p = Wp−1 + Wp,Y1,1 = W̄1 + μ2,1,Y1,2 = W̄1 + W̄2 +
μ2,2, . . . ,Y1,p = W̄p−1 + W̄p +μ2,p, where μ2,i = c1 if i ≤ [c2 p], and μ2,i = 0
if i > [c2 p].

– Setting II-2: The same setting as II-1, except that μ2,i = c1 for odd i , μ2,i = −c1
for even i .

– Setting II-3: W̄i ∼ χ2(1) − 1 , where μ2,i = c1 if i ≤ [c2 p], and μ2,i = 0 if
i > [c2 p].

– Setting II-4: The same setting as II-3, except that μ2,i = c1 for odd i , μ2,i = −c1
for even i .

In this simulation, the null hypothesis to be tested is H0 : E(X1) = E(Y1). Note that
if c1 is zero there is no shift in the mean vector, so the size of tests can be investigated
in this case. After generating 1000 random samples of sizes n1 = 30, 100, 150 from
X = (X1,1, . . . , X1,p)

T and independently generating 1000 random samples of sizes
n2 = 30, 100, 200 from Y = (Y1,1, . . . ,Y1,p)T with p = 10, 20, . . . , 100, 300, 500,
c1 = 0, 0.1 and c2 = 0.25, 0.75, we compute the powers of the five tests.

For comparisons of the five methods, we report the empirical sizes and powers for
each simulation setting. The results are given in Tables S1 to S8 in the supplementary
document, showing the proportion of rejecting the null H0 : μ1 = μ2 out of 1000
replications. Each table is divided into three sections where the top part shows the
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sizes and powers of our proposed tests (S1,M1,S2,M2) and the JEL for (n1, n2) =
(30, 30), the middle part shows the results for (n1, n2) = (100, 100), and the bottom
part for (n1, n2) = (150, 200). For M1 and M2, a rejection is declared when the
statistic is larger than 5, which corresponds to the 95% quantile of the maximum of
two independent χ2

1 . Assuming that no prior information is available, α = (1, . . . , 1)
was used. Key findings from the simulation study can be summarized as below:

– S2 and M2 yield very low statistical power in (n1, n2) = (30, 30) and (100,100),
illustrating that the use of jackknife samples is critical in boosting the statistical
power when the sample sizes are not so high.

– Type I error of JEL is a little higher than its nominal counterpart (0.05) when (n1,
n2) = (30, 30), whereas that of S1 and M1 is a little lower than 0.05. This explains
the reason why JEL has power that is a little higher than S1 and M1 when (n1,
n2) = (30, 30). The performances of JEL and S1 are comparable for (n1, n2) =
(100, 100) and (150,200). Thus, the use of empirical likelihood does not seem to
be critical.

– When the mean shifts have opposite signs, all the statistics have extremely low
power. See Tables S2 and S4.

– The skewness of the distribution of data does not seem to affect the power much.
This can be seen by comparing Tables S1 and S3.

4 The choice of α

The simulation study in Sect. 3 showed that both JEL as well as our proposed statis-
tics perform badly when the shifted means have opposite signs. The reason for low
statistical power in this case is mainly due to inappropriate choice of α. To under-
stand this, suppose that α = (1, . . . , 1) and the signs of μ1 − μ2 alternate. Then
αT (Xi − Yi ) ≈ αT (μ1 − μ2) ≈ 0 because positive and negative mean shifts cancel
each other out. We expect that the choice α = (1, . . . , 1) is effective only when either
positive or negative shifts dominate in μ1 − μ2. Otherwise we need a clever choice
for α so that the mean shifts don’t cancel each other out.

In particular, we consider the situation where there is no strong prior knowledge on
the variables. Our strategy is to estimate the signs of the shifted means from the data.
We first split the samples into three independent parts instead of splitting into two.
The first two parts will be used to construct the two sample statistics as described in
Sect. 2, and the remaining part will be used to estimate the signs. Let

α∗ = I
( ˜̃X − ˜̃Y > 0

)
− I

( ˜̃X − ˜̃Y < 0
)

where ˜̃X and ˜̃Y correspond to the part of the dataset that is used to estimate the signs.
Since α∗ is independent of the construction of the two sample statistics, the choice of
α∗ does not change the asymptotic property of JEL and our proposed statistics under
some regularity conditions. This can be rephrased as the following:

Corollary 1 Suppose that for any s ∈ S, Var(sT Xi ) > 0 and Var(sT Yi ) > 0
where S = {(s1, . . . , sp)|si = ±1}. Under either condition A1 or A2 or B1 and
H0 : μ1 = μ2, (2.5) holds by conditioning on α = α∗.
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Var(sT Xi ) > 0 and Var(sT Yi ) > 0 simply requires that Xi and Yi should not be
degenerate for any sign combination s. A different estimation method for α is possible
as discussed inWang et al. (2013). However, as they pointed out, the derived theorems
cannot be applied to their choice directly, while they can be applied to our proposed
choice directly.

A simulation study was implemented to evaluate the performance of the proposed
approach. We use the same setting as in Settings II-2 and II-4 except that we now have
c1 = 0.5. The proportion of rejecting H0 : μ1 = μ2 are shown in Tables S9–S12 in
the supplementary file. Statistical power can be improved with larger c1 even when
α = (1, . . . , 1), so c1 should be fixed when comparing the results from α = (1, . . . , 1)
and the data-adaptive α. Tables S9 and S10 provide the results for α = (1, . . . , 1),
and Tables S11 and S12 are the results when α is estimated from 10% of the dataset
that was randomly selected. A substantial increase in the statistical power is observed
in the results by using our data-adaptive method.

5 Analysis of Gene expression data

There are two major categories of gene set tests: competitive gene set tests and self-
contained gene set tests (Goeman and Bühlmann 2007). Competitive gene set tests
are concerned with the comparison of the set of genes of interest, say G, with the
complementary set of genes which are not inG. On the other hand, self-contained gene
set tests focus on the gene set of interest itself without reference to the complementary
set of genes. An example of the former is Wu and Smyth (2012), which considered
inter-gene correlation. The proposed two sample statistics in this paper belong to the
category of self-contained gene set tests.

We analyze the Colon data available in the R-package “plsgenomics”. This data
set is from the microarray experiments of Colon tissue samples of Alon et al. (1999),
and has 2000 gene expression levels where 22 of them are (n1) normal tissues and 40
are (n2) tumor tissues. To see the effect of genes with significant difference of sample
means, Wang et al. (2013) applied those genes satisfying

∣∣∣∣∣
1

n1

n1∑

i=1

Xi j − 1

n2

n2∑

i=1

Yi j

∣∣∣∣∣ ≤ c3

for some given threshold c3 > 0. We report the p values for testing the equality of
means of the geneswith absolute difference in the samplemeans less than the threshold
c3 given in Table 1.

For c3 = 3000, the p values of JEL and S1 are 0.136 and 0.182, respectively. These
results are based on α = (1, . . . , 1) as the coefficient vector. However, since the
direction of differentially expressed genes can be inconsistent, it would be reasonable
to apply the data-adaptive choice for α for the analysis. Two tissues are randomly
selected from the normal group, and four tissues from tumor group, and α is computed
based on these selected tissues. Then the two sample mean test is performed on the
remaining samples with 20 from the normal group, and 36 in tumor group. The results
are given in Table 1. When c3 is greater than 1000 and α is estimated, p values from
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Table 1 Colon data: p values for testing equal means of those genes with the absolute difference of sample
means less than the threshold c3

c3 Number
of genes

S1 M1 JEL S1 (sign) M1 (sign) JEL (sign)

50 1158 0.25348 0.20599 0.21311 0.85591 0.84307 0.81001

100 1501 0.26248 0.24469 0.28235 0.18407 0.14564 0.13870

200 1742 0.29280 0.38249 0.38669 0.47060 0.43985 0.44518

500 1913 0.31903 0.37390 0.37484 0.23655 0.21193 0.17051

1000 1978 0.36252 0.30409 0.34012 0.00119 0.00059 0.00000

3000 2000 0.18160 0.30019 0.13591 0.00119 0.00124 0.00001

Table 2 Colon data (logarithm scale): p values for testing equal means of those genes with the absolute
difference of sample means less than the threshold c3

c3 Number
of genes

S1 M1 JEL S1 (sign) M1 (sign) JEL (sign)

50 1158 0.07402 0.05116 0.02228 0.82515 0.86620 0.83694

100 1501 0.08650 0.07259 0.04217 0.17510 0.16022 0.14834

200 1742 0.09718 0.10602 0.07158 0.39625 0.31875 0.37152

500 1913 0.13240 0.18140 0.13368 0.07160 0.08697 0.03647

1000 1978 0.16000 0.23252 0.17692 0.00689 0.00340 0.00034

3000 2000 0.17991 0.26182 0.20634 0.00022 0.00006 0.00000

all the methods show highly significant results. Although this is an encouraging result,
this should be interpreted carefully because few observations with large differences
can have a large influence on the test results. In order to see whether the results are
still significant when the effects by the large observations are removed, we apply log
transformations to the 2000 gene expression levels. The results are given in Table 2.
For testing the equality of means of the logarithms of the 2000 gene expression levels
on normal colon tissues and tumor colon tissues, JEL and S1 with α = (1, . . . , 1)
give p values of 0.206 and 0.180, respectively. However, when we consider the data-
adaptive α, all the results are highly significant. Normal and tumor tissues seem to
have different mean vectors, but instead of making a quick judgement based on the
results, it is recommended to investigate how such a large difference can be obtained
from experiments, and to check the possibility of the biological justification for the
mean difference.

6 Conclusion

In this paper, we propose alternative statistics for testing the equality of two high
dimensional means, and study their finite sample properties. In our simulation study,
we observe that the use of jackknife samples is substantial to gaining good statistical
power, but the contribution of the empirical likelihood does not seem substantial. We
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propose a new statistic that does not involve the empirical likelihood, eliminating the
need for optimization procedures. We also provide significantly relaxed the sufficient
conditions compared to what was required by Wang et al. (2013). Simulation results
show that the choice of the coefficient vector is critical in all of the proposedmethods. In
many practical settings, α = (1, . . . , 1) is a naive choice, so we propose a simple data-
adaptive estimation for α. A numerical study shows substantial increase in statistical
power for the practical settings that was considered, and this is also observed in the
analysis results of the gene expression data.

There are some issues that remain as possible future research topics. First, we
may consider different functional forms for U2 to complement U1, but to keep the
necessary asymptotic theory simple, they are needed to havemean zero and correlation
zero with U1 under H0. Otherwise, new theoretical developments will be required. It
would be interesting to seewhether powerwill increase substantially by using different
functional forms ofU2. Second, there are enormous amount of accumulated biological
information inmodern research environment, and itwould be interesting to incorporate
the biological information to estimate α.
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Appendix 1: Condition A

In the following we give sufficient conditions for Theorem 2.1. For complete mathe-
matical details, we refer to Wang et al. (2013):

min (n1, n2) → ∞
τ1 = 2αTΣα > 0
τ2 = 2αT Σ̃α > 0
For some δ > 0,

E[(X1 − μ1)
T (X̃1 − μ1)]2+δ

ρ
(2+δ)/2
1

= o

(
m

δ+min(δ,2)
4

1

)
,

E[(Y1 − μ2)
T (Ỹ1 − μ2)]2+δ

ρ
(2+δ)/2
2

= o

(
m

δ+min(δ,2)
4

2

)
,

E[αT (X1 + X̃1 − 2μ1)]2+δ

τ
(2+δ)/2
1

= o

(
m

δ+min(δ,2)
4

1

)
,

E[αT (Y1 + Ỹ1 − 2μ2)]2+δ

ρ
(2+δ)/2
2

= o

(
m

δ+min(δ,2)
4

2

)
.

We call this condition A1.
Suppose that λ1 ≤ · · · ≤ λp are the p eigenvalues of Σ(= E((X1 − μ1)(X1 −

μ1)
T )), and λ̃1 ≤ · · · ≤ λ̃p are the p eigenvalues of Σ̃(= E((Y1 − μ2)(Y1 − μ2)

T )).
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From Wang et al. (2013), it can be shown that if

0 < lim inf
n1→∞ λ1 ≤ lim inf

n1→∞ λp < ∞
0 < lim inf

n2→∞ λ̃1 ≤ lim inf
n2→∞ λ̃p < ∞

For some δ > 0,
1

p

p∑

i=1

E
{
|X1,i − μ1,i |2+δ + |Y1,i − μ2,i |2+δ

}
= O(1)

p = o

(
m

δ+min(δ,2)
2(2+δ)

)
.

holds, Theorem 2.1 holds. Thus, these four conditions (condition A2) can replace
condition A1.

Consider the following Factor model as described in Wang et al. (2013): Xi =
Γ1Bi + μ1 for i = 1, . . . , n1, Y j = Γ2 B̃ j + μ2 for j = 1, . . . , n2 where Γ1 and Γ2

are p×k with Γ1Γ
T
1 = Σ and Γ2Γ

T
2 = Σ̃ , Bi = (Bi1, . . . , Bip) (i = 1, . . . , n1) and

B̃ j = (B̃ j1, . . . , B̃ jp) ( j = 1, . . . , n2). These are two independent random samples
with EBi = E B̃i = 0, Var(Bi ) = Var(B̃i ) = Ik×k . E(B4

i, j ) = 3 + ξ1 < ∞,

E(B̃4
i, j ) = 3+ξ2 < ∞, E

∏k
l=1 B

νl
il = ∏k

l=1 E(Bνl
il ) and E

∏k
l=1 B̃

νl
il = ∏k

l=1 E(B̃νl
il )

whenever ν1 + · · · + νk = 4 for distinct nonnegative integer νl ’s.
Wang et al. (2013) showed that under this condition, their asymptotic arguments

hold without any restriction on p. Likewise, under this factor model assumption,
Theorem 2.1 also holds for arbitrary p.

Appendix 2: Condition B

min (n1, n2) → ∞
τ1 = 2αTΣα > 0
τ2 = 2αT Σ̃α > 0
Xi − μ1 = Σ1/2εi and Yi − μ2 = Σ̃1/2ε̃i where the elements in εi and ε̃i are i.i.d

random variables with mean 0 and finite fourth moment.

λ4p p
2

m1ρ
2
1

= o(1),
λ̃4p p

2

m2ρ
2
2

= o(1).

We call this condition B1.
The following two boundedness conditions on the eigenvalues are called condition

B2.

0 < lim inf
n1→∞ λ1 ≤ lim inf

n1→∞ λp < ∞
0 < lim inf

n2→∞ λ̃1 ≤ lim inf
n2→∞ λ̃p < ∞
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Appendix 3: Proof of the asymptotic chi-square limiting distribution for
arbitrary order of p

Without loss of generality, we assume that E(Xi ) = E(X̃i ) = 0. The key step inWang
et al. (2013) showing that the condition A1 is sufficient for Theorem 2.2 is obtained
from the following two results.

(1) For 0 < δ ≤ 2,

E

[
m1∑

i=1

(XT
i X̃i )

2 − m1ρ1

](2+δ)/2

≤ O(m1E |XT
1 X̃1|2+δ)

(2) For δ > 2,

E

[
m1∑

i=1

(
XT
i X̃i

)2 − m1ρ1

](2+δ)/2

≤ O
(
m(2+δ)/4)

1 E |XT
1 X̃1|2+δ

)
.

Instead of these, we directly evaluate

E

[
m1∑

i=1

(
XT
i X̃i

)2 − m1ρ1

]2

= m1E

[(
XT
1 X̃1

)2 − ρ1

]2

= m1

(
E

[(
XT
1 X̃1

)]4 − ρ2
1

)
.

Let X1 = Σ1/2ε1 and X̃1 = Σ1/2ε̄1 where the elements in ε1 and ε̃1 are i.i.d random
variables with mean 0 and finite fourth moment. Then,

E[(XT
1 X̃1)]4 = E[(εT1 Σε̄1)]4 ≤ λ4pE[(εT1 ε̄1)]4

= λ4p

⎛

⎝
p∑

j=1

E(ε1 j ε̄1 j )
4 + 6

∑

j �=k

E[(ε1 j ε̄1 j )2(ε1k ε̄1k)2]
⎞

⎠

= λ4p

⎛

⎝
p∑

j=1

(E(ε1 j )
4)2 + 6

∑

j �=k

(E(ε1 jε1k)
2)2

⎞

⎠

= O(λ4p p
2).

Thus,

P

⎛

⎜⎝|
∑m1

i=1

(
XT
i X̃i

)2

m1ρ1
− 1| > ε

⎞

⎟⎠ ≤ O

(
m1λ

4
p p

2

m2
1ρ

2
1

)
.
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If the condition B1 holds,

∑m1
i=1(X

T
i X̃i )

2

m1ρ1
→p 1.

The rest can be shown in the same way as proved in Wang et al. (2013).
Note that if the condition B2 holds, then λ4p/ρ

2
1 = O(1/p2). Thus, for any order

of p, since

λ4p p
2

m1ρ
2
1

= O

(
p2

m1 p2

)
= O

(
1

m1

)
→ 0,

λ̃4p p
2

m2ρ
2
2

= O

(
1

m2

)
→ 0,

Theorem 2.2 holds.
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