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Abstract This article provides Bayesian analyses of data arising from multi-stress
accelerated life testing of series systems. The component log-lifetimes are assumed
to independently belong to some log-concave location-scale family of distributions.
The location parameters are assumed to depend on the stress variables through a linear
stress translation function. Bayesian analyses and associated predictive inference of
reliability characteristics at usage stresses are performed using Gibbs sampling from
the joint posterior. The developedmethodology is numerically illustrated by analyzing
a real data set through Bayesian model averaging of the two popular cases of Weibull
and log-normal, with the later getting a special focus in this article as a slightly easier
example of the log-location-scale family.A detailed simulation study is also carried out
to compare the performance of various Bayesian point estimators for the log-normal
case.
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1 Introduction

Testing modern, reliable hardware systems at normal usage condition for failures can
be highly time consuming. To induce early failures, it is therefore common prac-
tice in the manufacturing and defense industry to subject the developed systems to
more extreme stress levels compared to stress levels at the normal usage condition.
For instance, consider the example of Class-B electrical insulation system in electric
motors discussed in Nelson (1990, p. 418). The insulation system is designed to oper-
ate at a usage temperature of 403.15K (Kelvin). Since it is extremely unlikely for the
insulation systems to fail within any reasonable time at 403.15K, they are tested at
temperatures 423.15, 443.15, 463.15 and 493.15K to produce quick breakdown data.
Such tests are commonly known as Accelerated Life Tests (ALT henceforth). The
observations collected on the failure times of the systems at accelerated conditions
(such as the four different temperature levels mentioned above) are then used to infer
about its reliability at normal usage condition (like the 403.15K above), which is also
called usage stress. Nelson (1990) provides a comprehensive account of the relevant
statistical models and methods for analyzing such accelerated data.

In practice, a system often has more than one failure modes, which are the causes
of system failures. For example, the insulation system mentioned above has three
failure modes, called turn, phase and ground. Each of these modes of failures occurs
at different parts of the insulation system, but the insulation system as a whole fails as
soon as one of these causes takes place. Such systems which fail as soon as one of their
causes or modes of failures occurs, are called series systems. A series systemALT data
thus also consist of the causes or failure modes, along with the (observed or censored)
times to system failures at the elevated stress levels. The failure modes responsible for
system failures are also called components of the system and through-out this article
we use these two terms interchangeably.

A number of studies in the literature has considered the maximum likelihood infer-
ence of series system ALT data with a single stress variable (see Klein and Basu 1981,
1982a, b; Nelson 1990; Kim and Bai 2002; Jiang 2011, for example). These studies
exploit large-sample properties of the MLEs to infer on the component and system
lifetime distributions at usage stress. However in an ALT, the available sample size is
expected to be small. In such cases, Bayesian procedures are known to provide more
reasonable results (see Berger 1985, p. 125). There are also situations where important
prior information are available in an ALT (see Zhang and Meeker 2006). Bayesian
methods allow easy and formal incorporation of such prior information into decision-
making. Furthermore, as explained in the first paragraph, the goal of performing an
ALT is to predict the component and system lifetime distributions at usage stress.
Since the Bayesian paradigm handles the problem of prediction in a more coherent
manner (see Berger 1985, pp. 67, 157), development of such Bayesian methodologies
for analyzing ALT data seems imperative and important.

A considerable amount of literature exists on the Bayesian analysis of ALT data
for systems with a single component (see Pathak et al. 1991; Tojeiro et al. 2004; Dorp
andMazzuchi 2004, 2005, for example). However, the literature on Bayesian analysis
of accelerated data for series systems is comparatively less expansive. Bunea and
Mazzuchi (2006), Tan et al. (2009) and Xu and Tang (2011) have provided Bayesian
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analyses of single-stress series system ALT data with independent exponential or
Weibull component lives.

In these Bayesian analyses, first the Bayes’ estimates of the exponential or Weibull
model parameters are obtained at each elevated stress level. The model parameters at
usage stress are then estimated using the method of least squares through an assumed
StressTranslationFunction (STFhenceforth). Thus this approach is not fullyBayesian.
Roy and Mukhopadhyay (2013, 2014) have developed full Bayesian solutions to this
problem assuming that the component lifetimes are independent exponentials and
Weibulls with identical shape parameters (see Fan andHsu (2014) for the non-identical
Weibull case). Generalizing these analyses to amore flexible log-location-scale family,
this article now presents full Bayesian analyses of fixedmulti-stress ALT data of series
systems.

Briefly, it is assumed that the component log-lifetimes of a series system are inde-
pendent and belong to some log-concave location-scale family of distributions. The
families of these distributions may be different, like some are extreme-value while the
others are normal, but the location parameters of these distributions are assumed to
be connected with the multiple stress variables through a linear STF. The combined
choices of this log-location-scale family for the component lifetime distributions and
the form of the proposed linear STF, provide a rich and comprehensive model covering
all the practical and standard cases of fixed multi-stress ALT data of series systems.
A detailed discussion of this model is carried out in Sect. 2.

Section 3 next discusses the issue of Bayesian analyses of such models. It is first
shown that the one-dimensional conditional posterior distributions of all the model
parameters given the rest are log-concave, if so are the corresponding priors. This
fact is then used to Gibbs sample from the joint posterior which can be subsequently
utilized for standard Bayesian predictive inference for component and system lifetime
distributions at usage stresses under a fixed assumed model. Thus this approach is
fully Bayesian in the sense that it takes care of the uncertainty in the model parameters
through their joint posterior density, resulting in a coherent set of predictions.

Although log-normally distributed component lives is an important special case of
the model introduced in Sect. 2, here the general solution can be eased (in the sense of
avoiding log-concave sampling) and made more elegant through data-augmentation
and choice of priors. Unlike Weibull, the other important component life distribution
of the log-location-scale family, log-normal allows objective Bayesian analysis in
this problem. Thus Sect. 4 is devoted to the special case of log-normal distribution
demonstrating these issues and a detailed simulation study comparing different optimal
(with respect to various loss functions) Bayesian point estimates.

Section 5 illustrates Bayesian analyses of the data of the example of the electrical
insulation system introduced in the first paragraph. First an attempt is made to choose
an “appropriate” model (among exponential, Weibull and log-normal) for the com-
ponent lifetimes by computing exact Bayes’ Factor (BF henceforth) through Markov
Chain Monte Carlo (MCMC henceforth). But the BF based model selections being
inconclusive, the standard fixed model predictive Bayesian inference developed in
Sect. 3, is further enhanced by Bayesian model averaging for obtaining appropriate
Bayesian point and interval estimates of reliability characteristics at usage stress. Sec-
tion 6 concludes the article by summarizing its contributions and providing a few
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pointers towards future research needs. The proofs are deferred to Appendix 1, and
the abbreviations and notations used in the article are listed in Appendix 2.

2 Log-location-scale model with linear STF

Consider a series system with J independent causes of failure, with the j th cause hav-
ing a potential lifetime X j and log-lifetime Y j = log X j . Suppose such a system is put
on an ALT with K life acceleration factors or stress variables. Let Z = (Z1, . . . , ZK )′
denote the vector of such K stress variables acting on the system. Given Z = z, it is
assumed that the Y j s are mutually independent with Y j having p.d.f.

fY j

(
y|θ j , τ j , z

) = τ j f j
(
τ j

(
y − μ j (θ j , z)

))
, (1)

where f j (·) is a univariate log-concave p.d.f., θ j = (
θ1 j , . . . , θK j

)′ ∈ �K is a parame-
ter vector of stress coefficients determining the location μ j (θ j , z) of the distribution
of Y j , and τ j > 0 is a scale parameter. Thus as is standard in ALT (see Nelson
1990, p. 80, for example), Eq. (1) assumes that any change in the stresses results
in just a translation or shift in location of the distribution of the component log-
lifetimes (without distorting its exact shape or scaling). This iswhyμ j (θ j , z)s aremore
commonly known as the STFs in the literature (see Klein and Basu 1981, for exam-
ple). With F j (t) = ∫ ∞

t f j (u)du and h j (t) = f j (t)/F j (t), let FYj

(
y|θ j , τ j , z

) =
F j

(
τ j

(
y − μ j (θ j , z)

))
and hY j (y|θ j , τ j , z) = τ j h j

(
τ j

(
y − μ j (θ j , z)

))
respec-

tively denote the s.f. and h.r. of Y j at stress Z = z.
Equation (1) as a basic model for analyzing multi-stress ALT data is very flexible in

two respects. First, it gives the user a choice of component life-distributions in terms of
the specification of f j (·), and second, it can accommodate any multi-stress STF by an
appropriate choice of μ j (θ j , z). Though well-known (see Meeker and Escobar 1998,
p. 79, for example), for the sake of easy reference and the additional requirement of
log-concavity (which is easily checked via d2

dt2
log f j (t) ≤ 0 in most cases), Table 1

lists the standard life-distributions used in the literature that can be modeled by an
appropriate choice of log-concave f j (·), with the corresponding expressions for the
location μ j and scale τ j in terms of the original parameters. It should be noted that
for ease of recognition, Table 1 gives the names and p.d.f.s of the life-distributions in
terms of that of lifetime X j .

Equation (1) now requires specification of the location μ j through the STF
μ j (θ j , z). As introduced in Roy and Mukhopadhyay (2014), here also we assume
a linear STF given by:

μ j (θ j , z) =
K∑

k=1

θk j gk j (zk) =
K∑

k=1

θk j sk j = s j ′θ j , (2)

where s j = (
s1 j , . . . , sK j

)′ with sk j = gkj (zk), for some real valued functions gkj (·)s.
Though already explained somewhat briefly in Roy and Mukhopadhyay (2014,

2015), the reasoning behind choosing Eq. (2) as the STF is as follows. Typically in
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Table 1 Log-concave log-location-scale family of life distributions

Name p.d.f. f j (t) μ j τ j

Exponential 1
η e

−(x/η) exp(t − et ) log η 1

Weibull β
η ( xη )β−1e−(x/η)β exp(t − et ) log η β

Generalized Gamma β
ηΓ (α)

xαβ−1e−(x/η)β 1
Γ (α)

exp(αt − et ) log η β

Log-normal 1√
2πσ2x

e
− 1

2

(
log x−μ

σ

)2
1√
2π

e−
t2
2 μ 1/σ

Log-Laplace 1
2σ x e

− | log x−μ|
σ 1

2 e
−|t | log η 1/σ

Log-logistic β
α

(x/α)β−1
(
1+(x/α)β

)2
et

(1+et )2
logα β

Log-sech β
πα

(x/α)
β
2 −1

1+(x/α)β
1
π sech(t) logα β/2

an ALT there are several choices for stress variables such as temperature, voltage,
pressure, humidity, dust, vibration, etc. and are often used in combinations. Since the
final aim of an ALT requires extrapolation to usage stresses, it is imperative that the
underlying models that do so, have some engineering basis (see Meeker and Escobar
1998, p. 495). In this regard there are several multi-stress models that exist in the
engineering literature,1 which express X j , the time to failure (of the j th component in
this case) as a non-linear function of the applied stresses. A natural way to accommo-
date such (non-linear) models is to let the logarithm of these functions equal the STF
μ j (θ j , z), which in Eq. (1) is the location parameter of Y j = log X j . Now it turns out
that quite a few such standard engineering choices of STF, especially in the context
of multiple stress variables, can be expressed as in Eq. (2), and are exemplified with
further details in Table 2.

It needs to be remarked that as Eq. (1) allows one to assume different life distrib-
utions, Eq. (2) lets one choose different STFs for different components. This feature
of the model is particularly important and attractive for the problem of multi-stress
ALT of multi-component systems. This is because sometimes certain particular life
distributions get associated with a specific STF for a common underlying physical or
engineering reasoning of failures. For example, suppose a mechanical component of
a system fails due to the “weakest link” theory leading to a Weibull, and an electrical
component of the same system fails due to the “multiplicative degradation” theory
leading to a log-normal, as their respective life distributions. Then with temperature
as the common stress variable, while the Eyring interaction model with humidity as
the second stress variable is a reasonable physical choice of STF for the Weibull
component, the electromigration STF with current density as the third stress variable
becomes the most natural physical choice for the log-normal component (since the
same ionic movement phenomenon leads to electromigration as well as “multiplica-

1 http://www.itl.nist.gov/div898/handbook/apr/section1/apr153.htm.
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tive degradation” theory of failures in ICs). Such situations are easily accommodated
by the proposed model.

Now consider modeling the lifetime of such J -component series systems. Since a
series system fails as soon as one of its constituent J components fails, the system log-
lifetime T at stress Z = z is given by {T |Z = z} = Min{Y1|Z = z, . . . ,YJ |Z = z}.
Now since the J components are also assumed to be independent, the system s.f.
FT (t |θ, τ , z) is given by

FT (t |θ, τ , z) =
J∏

j=1

F j
(
τ j

(
t − s j ′θ j

))
, (3)

where θ = (
θ ′
1, . . . , θ

′
J

)′ and τ = (τ1, . . . , τJ )
′. Let the discrete random variable

I , taking values in {1, . . . , J }, denote the component causing system failure. Then,
clearly I = argmin j

{
Y j |Z = z

}
. For a series system that has failed after being put

on an ALT, one typically observes (T, I ). The joint p.d.f. of (T, I ) is given by

lim
Δt→0

1

Δt
P (t ≤ T ≤ t + Δt, I = j |θ, τ , z) = p j (t |θ, τ , z) , say,

where

p j (t |θ, τ , z) = τ j h j
(
τ j

(
t − s j ′θ j

)) J∏

j=1

F j
(
τ j

(
t − s j ′θ j

))
. (4)

The complete set of model parameters is then given by ψ = (θ ′, τ ′)′. Also, let ψ j =
(θ j

′, τ j )′.

3 Bayesian analysis

3.1 Likelihood function

Suppose N J -component series systems as in Sect. 2 are put on an ALT at different
levels of the K stress variables. For i = 1, . . . , N , let zi = (zi1, . . . , z

i
K )′ denote the

value of the stress vector Zi applied to the i th system. Let the number of systems that
fail in this ALT be denoted by n. For i = 1, . . . , n, let T i and I i respectively denote
the log-failure time and cause of failure of i th such system. For the remaining N − n
systems that do not fail in the ALT, denote the future log-failure time of the r th system
by T n+r , for r = 1, . . . , N − n. (T 1, I 1), . . . , (T n, I n), T n+1, . . . , T N are assumed
to be mutually independent of each other. For i = 1, . . . , n, let t i denote the observed
log-failure time of the i th failed system, and for r = 1, . . . , N − n, let tn+r denote
the observed log-censoring time of the r th running system. Thus the observed data is
given by

D =
{(
T 1 = t1, I 1,Z1 = z1

)
, . . . ,

(
T n = tn, I n,Zn = zn

)
,

(
T n+1 > tn+1,Zn+1 = zn+1), . . . ,

(
T N > t N ,ZN = zN

)}
. (5)
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Now by using Eqs. (3) and (4), the likelihood function of ψ given the observed data
D , is given by

L (ψ |D) =
⎡

⎣
n∏

i=1

⎧
⎨

⎩

τI i f I i
(
τI i

(
t i − si

I i
′
θ I i

))

F I i

(
τI i

(
t i − si

I i
′
θ I i

))

⎫
⎬

⎭

⎤

⎦

×
⎡

⎣
N∏

i=1

J∏

j=1

F j

(
τ j

(
t i − sij

′
θ j

))
⎤

⎦ , (6)

where sij =
(
si1 j , . . . , s

i
K j

)′
with sik j = gkj (zik). Now it is easy to see that

L (ψ |D) =
J∏

j=1

L j
(
ψ j |D

)
(7)

where

L j
(
ψ j |D

) = τ
n j
j ×

∏

1≤i≤n
& I i= j

f j
(
τ j

(
t i − sij

′
θ j

))
×

∏

1≤i≤n
& I i 
= j

F j

(
τ j

(
t i − sij

′
θ j

))

×
N∏

i=n+1

F j

(
τ j

(
t i − sij

′
θ j

))
, (8)

and n j = #{1 ≤ i ≤ n : I i = j} denotes the number of failures due to cause j so that
∑J

j=1 n j = n.
Bayesian inference is based on π (ψ |D), the posterior p.d.f. ofψ givenD , which is

proportional to the product of L (ψ |D), the likelihood function of ψ given in Eq. (6),
and π(ψ), the joint prior of ψ .

3.2 Prior distribution

Equation (7) reveals a natural independence structure among the ψ j s which is
respected in the prior distribution as well, that is, ψ1, . . . ,ψ J are assumed to be
mutually independent a priori, resulting in the joint prior p.d.f. of ψ as

π(ψ) =
J∏

j=1

π
(
ψ j

)
, (9)

whereπ
(
ψ j

)
is the joint prior p.d.f. ofψ j = (θ j , τ j )

′. Furthermore, it is also assumed
a priori that θ1 j , . . . , θK j and τ j are all mutually independent. Thus
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π(ψ j ) =
J∏

j=1

{
K∏

k=1

π
(
θk j

)
}

π
(
τ j

) = π
(
θ j

)
π

(
τ j

)
, (10)

where π
(
θ j

) = ∏K
k=1 π

(
θk j

)
and π

(
θk j

)
, π

(
τ j

)
and π

(
θ j

)
are the prior p.d.fs of

θk j , τ j and θ j respectively. In principle Bayesian computation only needs the ability
of generating observations from π(ψ j |D). Towards that end as required in Theorem 1
below, it is further assumed that π

(
θk j

)
and π

(
τ j

)
are log-concave functions of their

respective arguments.
Under such circumstances, we propose the following simple method of choosing

subjective proper priors for θk j s and τ j s. First note that as defined in Sect. 2, θk j s are
unrestricted real numbers. Thus any log-concave density such as the f j (·)s listed in
Table 1 with the entire real line as its support, may be chosen as a proper prior p.d.f. for
θk j . In case of f j (·)s of Table 1 (or even otherwise) as priors, their location and scale
hyper-parameters may be chosen by specifying a guess-interval and one’s subjective
probability of that guess-interval containing the unknown parameter value. The choice
of the particular f j (·)s among the ones listed in Table 1 may now be used to better
model one’s subjective belief, such as an additional subjective probability consistency
check, both inside but more importantly outside the guess-interval. Since τ j > 0, one
may choose any log-concave density with (0,∞) as its support (such as gamma or
Weibull with shape parameter ≥ 1) as a proper prior for τ j .

Along with the discussion of subjective proper priors, in Bayesian analysis it is also
very important to address the issue of non-informative priors (see Berger 2006). For
the location-scale regression model of Eqs. (1) and (2), a common non-informative
prior is given by (see Fernández and Steel 1999, for example)

π
(
θ j , τ j

) ∝ 1

τ j
. (11)

Note that the above non-informative prior is improper and thus as in any other situation,
care must be exercised ensuring the propriety of the resulting joint posterior before
employing such improper priors. For the problem at hand, if for instance, the X j s are
Weibull or equivalently Y j s are extreme-value, the posterior resulting from the prior
in (11) may be improper (see Kim and Ibrahim 2000; Roy and Mukhopadhyay 2014).

3.3 Posterior analysis

Asmentioned briefly at the end of Sect. 3.1, the joint posterior π(ψ |D) is proportional
to the product of L(ψ |D) given in Eq. (6), and π(ψ) given in Eq. (9). But, by Eqs. (7)
and (10), one gets

π(ψ |D) ∝
J∏

j=1

L j (ψ j |D)π(θ j )π(τ j ) ∝
J∏

j=1

π(ψ j |D), (12)
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where π
(
ψ j |D

) ∝ L j
(
ψ j |D

)
π(θ j )π(τ j ) is the joint posterior p.d.f. of ψ j given

the observed dataD . Thus posterior analysis ofψ can be performed by independently
drawing samples from π(ψ j |D) for j = 1, . . . , J .

Now as usual, one can Gibbs sample from the joint posterior π(ψ j |D), if it is easy
to generate observations from the univariate conditional posterior of each component
ofψ j , given the rest. The following theorem states why that is the case in this problem.

Theorem 1 If f j (·) [in Eq. (1)], π(θ1 j ), . . . , π(θK j ) and π(τ j ) [in Eq. (10)] are log-
concave, then so are the univariate conditional posteriors of θk j s and τ j , given the
rest, in Eq. (12).

The proof of the theorem is provided in Appendix 1. Using this result one can now
employ any efficient algorithm (such as the adaptive rejection sampling technique of
Gilks and Wild (1992)) to iteratively draw samples from these univariate log-concave
conditional posteriors, to obtain a sample {ψ (l)

j }Ll=1 from π(ψ j |D) in the limit.
The main objective of performing an ALT is to infer on component and system reli-

ability metrics at usage stress Z = zu = (zu1, . . . , zuK )′, such as MTTF, component
and system s.f.s, etc. Given Z = zu , all these are functions of ψ and some are also of
t . Let us generically denote any one of these functions by  (ψ, t), for brevity.

Given a sample
{
ψ (l) = {ψ (l)

1 , . . . ,ψ
(l)
J }

}L

l=1
from the joint posterior p.d.f.

π (ψ |D), the problem is to estimate  (ψ, t) over a sufficiently large time inter-
val [0, tmax]. Towards this goal, the interval [0, tmax] is first partitioned into a grid
of (P + 1) equispaced points given by {0 = t0, t1, . . . , tP = tmax}. Next, ∀l =
1, . . . , L and p = 0, . . . , P , one computes 

(
ψ (l), tp

)
denoted by(l)(tp), yielding

{((1)(t0), . . . ,(1)(tP )), . . . , ((L)(t0), . . . ,(L)(tP ))} as a sample of size L drawn
from the joint posterior of ((ψ, t0), . . . ,(ψ, tP )). This sample may be now used
for computing the usual Bayesian point and interval estimates of  (ψ, t), under J
fixed models f1(·), . . . , f J (·) for the J component lifetimes.

4 Log-normal model

The special case of an X j having a log-normal distribution, or equivalently the cor-
responding Y j having a normal distribution deserves particular attention for several
reasons. First, there are strong theoretical and empirical evidences for occurrence
of log-normal as a life distribution in many physical failure mechanisms, such as,
for example, the electromigration phenomenon mentioned in Sect. 2 (see Hauschildt
et al. 2007 for a more recent account). Even otherwise also from a purely statistical
perspective, it is usually required to be tested against the other popular alternative of
Weibull (see Kundu and Manglick 2004; Kim and Yum 2008, for example), which
require Bayesian analyses of both.

As mentioned in the Introduction, the analyses of the Weibull model through log-
concave sampling as in Sect. 3.3, are available in Roy and Mukhopadhyay (2014) and
Fan and Hsu (2014) (though note that the former’s model is slightly different from the
one being considered here owing to the equality of the τ j s). Obviously as a special
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case of Eq. (1), the same can also be carried out for the log-normal distribution as in
Sect. 3.3. However in this case, we propose a simple data-augmentation technique and
a conjugate prior [which unlike Eq. (10) allows a priori correlation among the θk j s
and τ j ], to circumvent the computationally expensive log-concave sampling.

4.1 Data augmentation

In the rest of this section, j is assumed to be fixed and consideration is given to the
special case of Y j , a given j th component log-lifetime, having a normal distribution
with mean μ j (θ j , z) and variance σ 2

j , given Z = z. Based on the observed data D

given in Eq. (5) with τ j = 1/σ j (see Table 1) in Eq. (8), it then follows that

L j (ψ j |D) ∝ σ
−n j
j ×

∏

1≤i≤n
& I i= j

φ

(
t i − sij

′
θ j

σ j

)

×
∏

1≤i≤n
& I i 
= j

Φ

(
t i − sij

′
θ j

σ j

)

×
N∏

i=n+1

Φ

(
t i − sij

′
θ j

σ j

)

, (13)

where ψ j = (θ j , σ
2
j )

′ and φ(·) and Φ(·) are standard normal p.d.f. and s.f. respec-
tively. In this case, the need for log-concave sampling arises due to the presence of the
Φ(·) terms in (13), which might be thought ensuing due to incomplete information.
Such situations are typically remedied by invoking a standard Bayesian tool for han-
dling missing data called data augmentation (see Tanner andWong 1987). Note that if
needed, computations may be further accelerated using refinements such as parameter
expanded data augmentation (PX-DA) algorithm (see Liu andWu 1999, for example).

For i = 1, . . . , N , let Y i
j denote the log-lifetime of the j th component of the i th

system put on the ALT. Then for i = 1, . . . , n, if I i = j , one has Y i
j = t i as part

of D , while if I i 
= j , its associated t i is its survival time from cause j , and thus
its Y i

j , which is latent, is imputed subject to the constraint Y i
j > t i . Similarly, for

r = 1, . . . , N − n, all the censored Yn+r
j values are imputed subject to the constraint

Yn+r
j > tn+r . For i = 1, . . . , N , let yij denote this observed or imputed value of Y i

j and

y j =
(
y1j , . . . , y

N
j

)′
. That is, the observed data setD is proposed to be augmentedwith

an auxiliary part-latent data setY j to form the complete data setY = {
D,Y j

}
, where

Y j =
{
Y 1
j = y1j , . . . ,Y

N
j = yNj

}
. It should be mentioned that this data augmentation

scheme is similar to that in Mukhopadhyay and Basu (2007).
This data augmentation is done to change the problem of sample generation from

π
(
ψ j |D

)
to that fromπ

(
y j ,ψ j |D

)
, since theψ j values generated fromπ(y j ,ψ j |D)

can also be regarded as a sample from π
(
ψ j |D

)
. The later task is much easier as

a Gibbs sample from π(y j ,ψ j |D) can be generated by iteratively sampling from
π

(
y j |ψ j ,D

)
and π

(
ψ j |y j ,D

) = π
(
ψ j |Y

)
as follows.
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4.2 Gibbs sampling

For i = 1, . . . , N , since Y i
j s are mutually independent,

π
(
y j |ψ j ,D

) =
N∏

i=1

π
(
yij |ψ j ,D

)
,

where for i = 1, . . . , n, if I i = j , π
(
yij |ψ j ,D

)
is degenerate at t i and if I i 
= j and

1 ≤ i ≤ n, or if n < i ≤ N ,

π
(
yij |ψ j ,D

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
σ j

φ

(
yij−sij

′
θ j

σ j

)

Φ

(
t i − sij

′
θ j

σ j

) , if yij > t i

0, otherwise

. (14)

Thus for i = 1, . . . , n, if I i = j , fix yij = t i , otherwise for all other 1 ≤ i ≤ N , one

needs to generate an yij according to the p.d.f. given in Eq. (14), which can be done in
at least two different ways. The first is a straight-forward rejection method in which

one keeps generating observations from N
(
sij

′
θ j , σ

2
j

)
until it is greater than t i . The

second is a univariate inversion method in which one numerically inverts the integral
of π(yij |ψ j ,D) given in Eq. (14). The later method is numerically more efficient for

large t i .
This generated y j is augmented toD to form the complete data Y , so that samples

may be drawn from π
(
ψ j |Y

)
, which is given by

π
(
ψ j |Y

) ∝ L j
(
ψ j |Y

)
π

(
ψ j

)
,

where L j
(
ψ j |Y

)
is the likelihood function of ψ j based on the complete data Y and

π(ψ j ) is the prior p.d.f. of ψ j . By Eq. (1),

L j
(
ψ j |Y

) =
N∏

i=1

1

σ j
φ

(
yij − sij

′
θ j

σ j

)

∝ σ−N
j exp

{

− 1

2σ 2
j

(y j − S jθ j )
′(y j − S jθ j )

}

, (15)

where S j = [s1j , . . . , sNj ]′ is the N × K stress matrix corresponding to component j .
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Now the prior π(ψ j ) is specified as follows. It is first assumed that σ 2
j ∼

Inverse Gamma
(
α j , β j

)
a priori, i.e.,

π(σ 2
j ) ∝ (σ 2

j )
−α j−1 exp

(

−β j

σ 2
j

)

, σ 2
j > 0.

Then it is assumed that θ j |σ 2
j ∼ NK

(
ζ j , σ

2
j P

−1
j

)
a priori, i.e.,

π
(
θ j |σ 2

j

)
∝

(
σ 2
j

)− K
2
exp

{

− 1

2σ 2
j

[
(θ j − ζ j )

′P j (θ j − ζ j )
]
}

.

Thus it is assumed that the joint prior p.d.f. of ψ j is given by

π
(
ψ j

) ∝
(
σ 2
j

)−α j− K
2 −1

exp

{

− 1

2σ 2
j

[
2β j + (θ j − ζ j )

′P j (θ j − ζ j )
]
}

. (16)

Apart from conjugacy with (15), (16) also allows a user to reasonably specify his
or her prior opinion about the unknown model parameters (see Gelman et al. 2013,
pp. 376–378). The prior hyper-parameters may be chosen as outlined in Sect. 3.2 with
the restriction of normal distribution, but here one also has an opportunity to model
a priori dependence among the model parameters. With τ j = (σ 2

j )
−1/2, the non-

informative prior (11) in this case [also as is standard with the likelihood in Eq. (15),
see Gelman et al. (2013, p. 355)] becomes

π
(
ψ j

) ∝ 1

σ 2
j

, (17)

which can be easily modeled by choosing α j = −K/2, β j = 0 and P j = 0 in (16).
Note that unlike the extreme-value case, here the posterior of ψ j given D with the
non-informative prior in Eq. (17) is proper (i.e.,

∫
π(ψ j |D)dψ j < ∞) provided (i)

n j > K and (ii) the rank of S j is K [this is because the Φ(·) terms in Eq. (13) are
bounded by 1 and the rest follows as in Gelman et al. (2013, p. 356)].

Now by Eqs. (15) and (16),

π
(
ψ j |Y

) ∝
(
σ 2
j

)− 2α j+N+K
2 −1

exp
{

− 1

2σ 2
j

[(
θ j − η j

)′
V j

(
θ j − η j

)
+ C j (y j )

]}
,

where V j = (S j
′S j + P j ), η j = V−1

j (S j
′y j + P jζ j ) and C j (y j ) = 2β j + y j

′y j +
ζ j

′P jζ j −η j
′V jη j . Thus we have θ j |σ 2

j ,Y ∼ NK (η j , σ
2
j V

−1
j ) and σ 2

j |Y ∼ Inverse

Gamma (
2α j+N

2 , 1
2C j (y j )). In order to generate a ψ j from π(ψ j |Y ), first generate a

σ 2
j from the inverse gamma distribution with parameters (2α j + N )/2 and C j (y j )/2;
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then with that σ 2
j , generate a θ j from the K -variate normal distribution with mean η j

and variance–covariance matrix σ 2
j V

−1
j .

Implementation of Gibbs sampling involves iterative sampling from π(y j |ψ j ,D)

and π(ψ j |Y ). Starting with an initial value ψ
(0)
j , for l ≥ 0, one iteratively draws (i)

y(l+1)
j from π

(
y j |ψ (l)

j ,D
)
and (i i) ψ

(l+1)
j from π

(
ψ j |Y (l+1)

)
, where Y (l+1) =

{
y(l+1)
j ,D

}
. This yields a Markov chain

{(
y(l)
j ,ψ

(l)
j

)
, l ≥ 1

}
, which produces an

observation from π
(
y j ,ψ j |D

)
in the limit. Thus generated {ψ (l)

j }Ll=1 can now be
used for further Bayesian analyses as detailed in Sect. 3.3.

Since from this point on the discussion is in numerical lines, at the outset it is worth
commenting on one detail regarding the collection of (Gibbs) sample from π(ψ |D) or
π(M |D) (where M is a model variable). In the numerical implementations we employ
a long chain strategy (of typically 1,001,000 elements) with a burn-in (of typical size
1000) and a thinning interval (of typical size 200) resulting in a Gibbs sample (of
size 5000). The exact values of these parameters are determined following theMCMC
convergence diagnostic tests reviewed by Cowles and Carlin (1996), which are readily
available in the R-library CODA.

4.3 Simulation study

This sub-section presents a simulation study examining the performance of different
Bayesian point estimates of lifetime parameters of the independent log-normal model.
The basic set up of the simulation study, such as the stress variable, its levels, the
number of systems allocated at each level of the stress variable in the ALT, the STF,
etc. is borrowed from the electrical insulation system example of Sect. 1.

For convenience, it is assumed that the series system has two failure modes. Now
suppose (N=) 40 such two-component series systems are put on an ALT at four
elevated temperature levels of 423.15, 443.15, 463.15 and 493.15Kwith equal number
of systems allocated at each level of temperature. It is assumed that none of the ALT
observations is censored, implying that the exact failure times are available for all the
systems. As in the insulation system example (see Nelson 1990, p. 394), the following
Arrhenius model is used as the STF for both the failure modes:

μ j
(
θ1 j , θ2 j , TK

) = θ1 j + θ2 j

(
1000

TK

)
, (18)

where TK is temperature measured in Kelvin (K). The simulation study is carried out
with two different sets of parameter values namely

– Set 1: θ11 = −24.00, θ21 = 11.00, θ12 = −22.00, θ22 = 10.00, σ1 = 1.00 and
σ2 = 1.00.

– Set 2: θ11 = −20.00, θ21 = 9.00, θ12 = −18.00, θ22 = 8.00, σ1 = 1.00 and
σ2 = 1.00.

Bayesian analyses are performed using six different Inverse-Gamma–Normal priors
of Eq. (16) with their means, variances and correlations as listed in Table 3. The
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Table 3 Prior parameters for simulation study ( j = 1, 2)

Set Prior E(θ11) E(θ21) E(θ12) E(θ22) E(σ 2
j ) Corr(θ1 j , θ2 j )

(V (θ11)) (V (θ21)) (V (θ12)) (V (θ22)) (V (σ 2
j ))

1 1 Non-informative prior given in Eq. (17)

2 −24.0 (4.0) 11.0 (2.0) −22.0 (4.0) 10.0 (2.0) 1.0 (2.0) 0.0

3 −24.0 (4.0) 11.0 (2.0) −22.0 (4.0) 10.0 (2.0) 1.0 (2.0) 0.7

4 −24.0 (9.0) 11.0 (4.0) −22.0 (9.0) 10.0 (4.0) 1.0 (3.0) 0.7

5 −28.8 (9.0) 13.2 (4.0) −26.4 (9.0) 12.0 (4.0) 1.4 (3.0) 0.7

6 −19.2 (9.0) 8.8 (4.0) −17.6 (9.0) 8.0 (4.0) 0.6 (3.0) 0.7

2 1 Non-informative prior given in Eq. (17)

2 −20.0 (4.0) 9.0 (2.0) −18.0 (4.0) 8.0 (2.0) 1.0 (2.0) 0.0

3 −20.0 (4.0) 9.0 (2.0) −18.0 (4.0) 8.0 (2.0) 1.0 (2.0) 0.7

4 −20.0 (9.0) 9.0 (4.0) −18.0 (9.0) 8.0 (4.0) 1.0 (3.0) 0.7

5 −24.0 (9.0) 10.8 (4.0) −21.6 (9.0) 9.6 (4.0) 1.4 (3.0) 0.7

6 −16.0 (9.0) 7.2 (4.0) −14.4 (9.0) 6.4 (4.0) 0.6 (3.0) 0.7

Table 4 Average Bayesian estimates (MSEs) of θ21

Set Prior Avg mean
(MSE)

Avg median
(MSE)

Avg mode
(MSE)

LINEX

a = −1 a = 1

1 1 10.99 (2.62) 10.98 (2.52) 10.92 (2.34) 13.11 (10.58) 9.01 (10.19)

TV=11 2 11.01 (0.09) 11.00 (0.09) 10.99 (0.10) 11.29 (0.20) 10.74 (0.18)

3 11.01 (0.02) 11.00 (0.02) 11.00 (0.02) 11.11 (0.03) 10.91 (0.02)

4 11.01 (0.05) 11.00 (0.05) 10.99 (0.05) 11.21 (0.10) 10.81 (0.09)

5 12.99 (3.98) 12.98 (3.95) 12.98 (3.95) 13.15 (4.67) 12.83 (3.38)

6 9.26 (3.12) 9.26 (3.14) 9.25 (3.17) 9.56 (2.21) 8.97 (4.21)

2 1 8.99 (2.74) 8.97 (2.65) 8.94 (2.56) 10.99 (10.71) 7.31 (6.67)

TV=9 2 9.00 (0.10) 8.99 (0.09) 8.99 (0.10) 9.26 (0.18) 8.75 (0.17)

3 9.00 (0.01) 9.00 (0.01) 9.00 (0.02) 9.10 (0.03) 8.91 (0.02)

4 9.00 (0.05) 8.99 (0.05) 8.99 (0.05) 9.19 (0.10) 8.82 (0.08)

5 10.64 (2.71) 10.63 (2.69) 10.63 (2.67) 10.79 (3.23) 10.49 (2.26)

6 7.56 (2.18) 7.56 (2.19) 7.55 (2.21) 7.84 (1.49) 7.30 (3.01)

prior hyper-parameters are chosen to have the prior means fixed at the respective true
values (TVs) of the parameters for priors 2, 3 and 4 (with varying degree of prior
variance), and misspecified by 20% for priors 5 and 6. For the sake of brevity, here
the simulation results are discussed only for the slope parameters θ2 j s and the scale
parameters σ j s. The findings for the intercept parameters θ1 j s are similar to that of
the slope parameters.

The simulation is carried out for 200 times. Tables 4, 5, 6 and 7 respectively report
the average posterior mean (Avg mean), median (Avg median) and mode (Avg mode)
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Table 5 Average Bayesian estimates (MSEs) of θ22

Set Prior Avg mean
(MSE)

Avg median
(MSE)

Avg mode
(MSE)

LINEX

a = −1 a = 1

1 1 9.89 (1.77) 9.89 (1.74) 9.90 (1.71) 11.22 (3.65) 8.50 (4.69)

TV = 10 2 9.98 (0.08) 9.98 (0.08) 9.99 (0.08) 10.23 (0.14) 9.74 (0.15)

3 9.99 (0.01) 9.99 (0.01) 9.99 (0.01) 10.08 (0.02) 9.90 (0.02)

4 9.99 (0.04) 9.99 (0.04) 9.99 (0.04) 10.16 (0.08) 9.81 (0.08)

5 11.76 (3.12) 11.76 (3.11) 11.75 (3.10) 11.90 (3.63) 11.62 (2.65)

6 8.44 (2.54) 8.43 (2.54) 8.43 (2.57) 8.70 (1.80) 8.17 (3.43)

2 1 7.88 (2.58) 7.89 (2.51) 7.91 (2.39) 9.28 (4.86) 6.31 (6.77)

TV = 8 2 7.99 (0.11) 7.99 (0.11) 8.00 (0.11) 8.25 (0.19) 7.74 (0.18)

3 8.00 (0.02) 8.00 (0.02) 8.00 (0.02) 8.10 (0.03) 7.91 (0.02)

4 8.00 (0.06) 8.00 (0.06) 8.00 (0.06) 8.18 (0.10) 7.81 (0.09)

5 9.43 (2.08) 9.43 (2.08) 9.43 (2.08) 9.57 (2.51) 9.29 (1.71)

6 6.74 (1.72) 6.74 (1.71) 6.74 (1.71) 7.01 (1.14) 6.47 (2.46)

Table 6 Average Bayesian estimates (MSEs) of σ1

Set Prior Avg mean
(MSE)

Avg median
(MSE)

Avg mode
(MSE)

LINEX

a = −1 a = 1

1 1 1.08 (0.06) 1.05 (0.05) 1.17 (0.06) 1.11 (0.09) 1.06 (0.05)

TV=1 2 1.02 (0.04) 0.99 (0.04) 1.13 (0.04) 1.04 (0.05) 1.00 (0.04)

3 1.02 (0.04) 1.00 (0.04) 1.13 (0.04) 1.04 (0.05) 1.00 (0.04)

4 1.02 (0.04) 0.99 (0.04) 1.11 (0.04) 1.04 (0.05) 1.00 (0.04)

5 1.09 (0.06) 1.06 (0.05) 1.19 (0.06) 1.11 (0.07) 1.06 (0.05)

6 1.03 (0.03) 1.01 (0.02) 1.15 (0.05) 1.06 (0.04) 1.02 (0.03)

2 1 1.06 (0.04) 1.03 (0.04) 1.15 (0.05) 1.08 (0.06) 1.04 (0.04)

TV=1 2 1.00 (0.03) 0.98 (0.03) 1.12 (0.04) 1.02 (0.03) 0.99 (0.03)

3 1.00 (0.03) 0.98 (0.03) 1.12 (0.04) 1.02 (0.03) 0.99 (0.03)

4 1.00 (0.03) 0.98 (0.03) 1.12 (0.04) 1.02 (0.03) 0.99 (0.03)

5 1.05 (0.04) 1.03 (0.03) 1.16 (0.05) 1.07 (0.04) 1.03 (0.03)

6 1.01 (0.03) 0.99 (0.03) 1.13 (0.04) 1.03 (0.03) 0.99 (0.03)

of θ21, θ22, σ1 and σ2 along with their mean squared errors (MSEs) over the 200
simulations. Note that all these posterior point estimators are optimal under different
symmetric loss functions. However in practice, sometimes overestimation of a lifetime
parametermay bemore serious than underestimation and vice versa. In such situations,
one may use an asymmetric loss function like the LINEX loss function introduced by
Zellner (1986). Thus Tables 4, 5, 6 and 7 also provide the average Bayes’ estimates
under the LINEX loss function and the corresponding MSEs for a = −1 and 1, where
a is as in Zellner (1986).
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Table 7 Average Bayesian estimates (MSEs) of σ2

Set Prior Avg mean
(MSE)

Avg median
(MSE)

Avg mode
(MSE)

LINEX

a = −1 a = 1

1 1 1.04 (0.03) 1.02 (0.03) 1.15 (0.04) 1.06 (0.03) 1.02 (0.03)

TV=1 2 1.00 (0.02) 0.98 (0.02) 1.12 (0.03) 1.01 (0.02) 0.99 (0.02)

3 1.00 (0.02) 0.98 (0.02) 1.12 (0.03) 1.01 (0.02) 0.99 (0.02)

4 1.00 (0.02) 0.98 (0.02) 1.12 (0.03) 1.01 (0.02) 0.99 (0.02)

5 1.04 (0.03) 1.02 (0.02) 1.16 (0.04) 1.05 (0.03) 1.02 (0.02)

6 1.02 (0.02) 1.00 (0.02) 1.14 (0.04) 1.03 (0.02) 1.01 (0.02)

2 1 1.06 (0.03) 1.04 (0.03) 1.18 (0.05) 1.08 (0.04) 1.05 (0.03)

TV= 1 2 1.02 (0.02) 1.00 (0.02) 1.14 (0.04) 1.03 (0.02) 1.01 (0.02)

3 1.02 (0.02) 1.00 (0.02) 1.15 (0.04) 1.04 (0.02) 1.01 (0.02)

4 1.02 (0.02) 1.00 (0.02) 1.15 (0.04) 1.03 (0.03) 1.01 (0.02)

5 1.05 (0.03) 1.02 (0.02) 1.16 (0.04) 1.06 (0.03) 1.03 (0.02)

6 1.03 (0.02) 1.01 (0.02) 1.16 (0.04) 1.04 (0.03) 1.02 (0.02)

Observe that the performances of the posterior mean, median and mode of the
slope parameters are almost identical under all the six priors for both sets of parameter
values. When the prior means are correctly specified (i.e., for priors 2, 3 and 4), the
Bayes’ estimates of the slope parameters under the LINEX loss function are clearly
outperformed by the posteriormean,median andmode in all the cases. This is true even
for the non-informative prior (i.e., prior 1). However, the Bayes’ estimates of the slope
parameters under the LINEX loss function are clearly better than the corresponding
posterior mean, median and mode, when the prior means are misspecified. When the
prior means of θ21 and θ22 are over-specified as in prior 5, the Bayes’ estimates under
the LINEX loss function for a = 1 is better compared to others. This is expected
since the LINEX loss function with a = 1 penalizes overestimation more heavily
than underestimation. Analogous observations may be made in case of prior 6 and
a = −1. The biases and MSEs of all the Bayesian estimators of θ21 and θ22 are
smaller under prior 3 compared to prior 2. Thus multivariate normal priors with non-
zero correlation seem to perform better than independent normal priors for estimating
the stress coefficients. Also as expected, the MSEs of the Bayesian estimators of θ21
and θ22 tend to go up with the increase in prior variances.

From Tables 6 and 7, it is evident that the posterior modes perform poorly com-
pared to other point estimates of the population SDs. Unlike the slope (and intercept)
parameters, curiously enough, here neither the priors nor the loss functions seem to
exhibit the same expected (or even otherwise) effects on the posterior estimates.

The main purpose of performing an ALT is to predict reliability at usage stress,
which is 403.15K for the underlying example of this simulation study. Thus we also
study the behavior of the posterior estimates of the mean component log-lifetimes μ j

as in (18) with T = 403.15. The results are reported in Tables 8 and 9 from which
conclusions similar to the ones for the slope parameters may be drawn. The simulation
study is also repeated for N = 80, resulting in qualitatively similar findings.
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Table 8 Average Bayesian estimates (MSEs) of μ1

Set Prior Avg mean
(MSE)

Avg median
(MSE)

Avg mode
(MSE)

LINEX

a = −1 a = 1

1 1 3.39 (0.30) 3.36 (0.27) 3.32 (0.25) 3.60 (0.57) 3.23 (0.25)

TV=3.29 2 3.34 (0.08) 3.32 (0.07) 3.33 (0.07) 3.40 (0.10) 3.29 (0.07)

3 3.34 (0.07) 3.32 (0.06) 3.35 (0.06) 3.38 (0.09) 3.30 (0.06)

4 3.34 (0.07) 3.32 (0.07) 3.34 (0.07) 3.39 (0.10) 3.30 (0.06)

5 3.94 (0.50) 3.92 (0.47) 3.93 (0.48) 3.99 (0.60) 3.89 (0.44)

6 2.87 (0.25) 2.85 (0.26) 2.85 (0.25) 2.93 (0.22) 2.82 (0.29)

2 1 2.40 (0.28) 2.37 (0.26) 2.34 (0.24) 2.60 (0.51) 2.25 (0.25)

TV= 2.32 2 2.35 (0.06) 2.33 (0.05) 2.35 (0.05) 2.41 (0.08) 2.31 (0.05)

3 2.35 (0.05) 2.34 (0.05) 2.37 (0.05) 2.39 (0.06) 2.32 (0.05)

4 2.36 (0.05) 2.34 (0.05) 2.36 (0.05) 2.40 (0.07) 2.31 (0.05)

5 2.84 (0.33) 2.82 (0.30) 2.85 (0.32) 2.89 (0.39) 2.80 (0.28)

6 1.96 (0.19) 1.94 (0.20) 1.95 (0.19) 2.01 (0.16) 1.91 (0.22)

Table 9 Average Bayesian estimates (MSEs) of μ2

Set Prior Avg mean
(MSE)

Avg median
(MSE)

Avg mode
(MSE)

LINEX

a = −1 a = 1

1 1 2.80 (0.16) 2.79 (0.16) 2.78 (0.16) 2.92 (0.19) 2.69 (0.17)

TV=2.81 2 2.80 (0.05) 2.79 (0.05) 2.80 (0.05) 2.84 (0.05) 2.76 (0.05)

3 2.80 (0.04) 2.79 (0.04) 2.82 (0.04) 2.83 (0.05) 2.77 (0.04)

4 2.80 (0.05) 2.79 (0.05) 2.80 (0.05) 2.83 (0.05) 2.77 (0.05)

5 3.30 (0.29) 3.29 (0.28) 3.31 (0.30) 3.33 (0.33) 3.26 (0.26)

6 2.39 (0.22) 2.38 (0.23) 2.39 (0.22) 2.43 (0.19) 2.35 (0.25)

2 1 1.86 (0.21) 1.85 (0.20) 1.84 (0.20) 1.98 (0.24) 1.74 (0.21)

TV=1.84 2 1.86 (0.04) 1.85 (0.04) 1.86 (0.04) 1.90 (0.05) 1.82 (0.04)

3 1.86 (0.04) 1.85 (0.03) 1.88 (0.04) 1.90 (0.04) 1.84 (0.03)

4 1.86 (0.04) 1.85 (0.04) 1.87 (0.04) 1.90 (0.04) 1.83 (0.04)

5 2.26 (0.21) 2.25 (0.20) 2.27 (0.22) 2.30 (0.25) 2.23 (0.18)

6 1.53 (0.14) 1.52 (0.15) 1.53 (0.14) 1.57 (0.12) 1.49 (0.17)

5 Data analysis

In this section, themethodologies developed in the previous two sections are illustrated
by analyzing the real data set pertaining to the electrical insulation system introduced
in Sect. 1. Though this system has three failure modes, due to lack of observations,
like Pascual (2008, 2010) we drop the failure mode Phase and pay attention only to
the remaining two failure modes Turn ( j = 1) and Ground ( j = 2). For computational
ease, the system lifetimes are re-calibrated to 104 hours. As in Sect. 4.3, here also the
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Arrhenius model given in (18) is used as the STF for both the failure modes. Now
instead of assuming a particular lifetime model f j (·) for the j th failure mode at the
outset, since the developed methodology allows one to choose different probability
distributions for different failure modes, we first attempt to resolve the issue of model
selection for both Turn and Ground, based on the data D .

5.1 Bayesian model selection

Though any one of the distributions of X j listed in Table 1 can serve as a possible
candidate for an appropriate lifetime model for Turn or Ground, here for illustrative
purpose,we consider only the three popular alternatives in the reliability literature, viz.,
exponential, Weibull and log-normal. Among the standard model selection methods
that are currently available in the literature, two of the most popular ones are the
Akaike information criterion (AIC) and the Bayes information criterion (BIC) (see
Kadane and Lazar 2004, for example). Table 10 reports the maximized value of the
log-likelihood, AIC and BIC for the three models for the two failure modes. Based on
these preliminary numbers, though exponential can be clearly ruled out in favor of the
other two, evidences for Weibull against log-normal are not so convincing. Thus the
exponential model is dropped from further consideration.

The two criteria reported in Table 10 are “preliminary” in the sense that they have
their own asymptotic interpretations for their validity as “goodness-of-fit” measures
for model selection, despite possessing the attractive property of being independent
of priors for the individual model parameters. The standard Bayesian criterion for
assessing this is off course the BF (see Kass and Raftery 1995, for example), and thus
concentration is now focused on obtaining the values of these BFs. Computation of BF
has two related issues, namely the choice of priors and the integrals of the likelihoods
with respect to them. While the second issue, though important, is essentially com-
putational, the first issue of choice of prior is more critical (see Berger and Pericchi
1996, for example).

First of all the priors need to be proper. Since they also subsume the degree of
knowledge about individual parameters of an underlying model, while comparing two
models using a BF, it is crucial that the same level of information (be they correct or
not, precise or not) is conveyed by the priors of the parameters of both the models.
Towards this goal, the level of prior knowledge about a parameter value is similized
to its first two prior moments. Now in order to change the level of this knowledge,

Table 10 Preliminary comparison of goodness-of-fit for different models

Model Turn Ground

Log-likelihood AIC BIC Log-likelihood AIC BIC

Exponential −0.57 5.14 6.42 −8.73 21.45 23.12

Weibull 18.32 −30.65 −28.73 −2.38 10.77 13.27

Log-normal 18.22 −30.45 −28.54 −3.13 12.28 14.78

123



108 C. Mukhopadhyay, S. Roy

the prior means and SDs of all the involved parameters (of both the models—Weibull
and log-normal for both Turn and Ground) are respectively varied through the three
values of theirMLEs andMLEs± SEs, and SEs and SEs∗/2, resulting in nine different
choices for the prior hyper-parameters.

Once one has the prior means and SDs of the model parameters, the prior specifi-
cation now proceeds as explained in Sect. 3.2. Specifically, independent normal priors
for the stress coefficients of both the Weibull and log-normal models, and gamma and
inverse-gamma priors respectively for the Weibull shape (β j ) and log-normal vari-
ance (σ 2

j ), are used with their respective hyper-parameters matching their first two
prior moments. Thus one now needs to compute nine BFs corresponding to the nine
different priors (at any given instance, the priors of all the parameters for both the
models should be fixed at the same level for fair comparison as explained above).

Laplace approximations of the integrals of products of likelihoods and priors,
expressed in terms of the posterior modes and the Hessian of the log-posteriors, as in
equation (4) of Kass and Raftery (1995), may be readily used to compute a BF for a
given set of priors. Like the AIC and BIC, this approximation is theoretically valid
only for large N , but 40, its value in the present example, may not be adequate for
that (with 6 unknown parameters). Currently the most popular method of computing a
BF to an arbitrary degree of accuracy (limited only to time and computing resources)
for any N , is the reversible jump MCMC introduced by Green (1995). In this method,
if one has already developed MCMC algorithms for the individual models (as in this
article), the best way to exploit them would be to use them as part of the genera-
tion of proposal samples in the Metropolis–Hastings iteration of the reversible jump
MCMC (see Godsill 2001, for further details). But an easier approach, in the sense of
avoiding “rejection” in the Metropolis–Hastings, is offered by Carlin and Chib (1995)
(CC henceforth) through a Gibbs sampling, which also incorporates the developed
MCMC algorithms for the individual models within it. However the CC approach
requires one to specify, what they call “pseudo-priors”. Following their suggestion as
well as that of Godsill (2001), here we use multivariate normal approximations (with
posterior moments) of the joint posteriors of the parameters of the “other” model as
pseudo-priors in their equation (2), together with equal prior probabilities for both
the Weibull and log-normal models, denoted by π(W ) = π(L) = 1/2. Equation (1)
of CC is same as sampling from the posteriors of the Weibull and log-normal model
parameters, which can be done following the methods developed in Sects. 3, 4 and
elsewhere.

We compute the nine BFs using this CC method, which we call CCBF henceforth,
for all the nine priors mentioned above. Along with the CCBF for each of the nine
priors, BF is also calculated (with π(W ) = π(L) = 1/2 for both Turn and Ground)
using the Laplace approximation mentioned above. Both these BFs for log-normal
versus Weibull for Turn and Ground are reported in Table 11.

Note that there is a wide discrepancy between the CCBF and the Laplace approxi-
mation of the corresponding BF. Though very different, even in terms of the direction
of the evidence inmost cases, none of theseBFs actually even “positively” supports one
model over the other in case of Turn. Here we use words like “positive” or “strong”
in accordance to the second table in Section 3.2 of Kass and Raftery (1995). This
interpretation of the BF values in case of Ground however leads one to two different
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Table 11 CCBF (Laplace approximated BF) for log-normal versus Weibull

Prior mean Prior SD

Turn Ground

0.5 × SE SE 2 × SE 0.5 × SE SE 2 × SE

MLE−SE 0.72 (0.87) 0.58 (0.86) 0.45 (0.78) 46.32 (0.41) 17.21 (0.39) 12.54 (0.36)

MLE 0.65 (1.05) 0.58 (1.05) 0.50 (1.04) 19.27 (0.47) 10.80 (0.47) 11.02 (0.46)

MLE+SE 0.69 (1.04) 0.58 (1.10) 0.53 (1.15) 29.64 (0.48) 12.75 (0.50) 12.19 (0.51)

Table 12 Posterior summary measures for turn

Parameter Prior Mean Median Mode LINEX SD 95% HPDCS

a = −1 a = 1

θ11 1 −24.65 −24.65 −24.44 −24.06 −25.29 1.11 (−26.79, −22.47)

2 −24.66 −24.64 −24.52 −24.10 −25.27 1.08 (−26.69, −22.51)

θ21 1 10.82 10.81 10.81 10.96 10.69 0.52 (9.79, 11.81)

2 10.82 10.81 10.84 10.95 10.70 0.50 (9.83,11.79)

β1 1 5.42 5.38 5.24 5.68 5.18 0.71 (4.06, 6.82)

2 5.43 5.42 5.42 5.57 5.30 0.52 (4.43, 6.47)

conclusions. While according to the Laplace approximations, there isn’t any evidence
“worth more than a bare mention”, in favor of Weibull over log-normal; the CCBFs
say that there is “positive” to “strong” evidence in favor of log-normal over Weibull.
Thus according to the Laplace approximations, there is no clear choice between the
two models for either of the failure modes, while the CCBFs suggest the log-normal
model for Ground. Hence for the purpose of illustration, we present Bayesian analyses
for Turn and Ground under Weibull and log-normal model respectively.

5.2 Bayesian analyses

Through out this sub-section and the next, we work with normal priors for the stress
coefficients of both the Weibull and log-normal models. The means and SDs of these
normal priors are assumed to be respectively same as the MLE and SE of the corre-
sponding parameters (i.e. the same prior as case (2,2) of Table 11). The corresponding
priors for theWeibull-β j and log-normal-σ 2

j are also assumed to be same as case (2,2)
of Table 11. In the sequel, this prior is referred as prior-2 for both the Weibull and
log-normal models. For the log-normal model, prior-1 is same as the non-informative
prior given in (17), while for Weibull, prior-1 refers to π(θ11) ∝ 1, π(θ21) ∝ 1 and
β1 ∼ Gamma(29.80, 5.47).

Table 12 presents posterior mean, median, mode and Bayes’ estimates under the
LINEX loss function for θ11, θ21 and β1, the Weibull lifetime parameters for Turn.
Table 12 also provides the posterior SDs and 95%Highest Posterior Density Credible
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Fig. 1 Density estimates of marginal posteriors of the lifetime parameters for turn

Sets (HPDCS). The posterior p.d.f.s of the model parameters are plotted in Fig. 1.
Note that for both the priors, the Bayesian point estimates of the slope parameter θ21
is positive and their 95% HPDCS exclude 0. This is suggestive of the fact that the
mean log-lifetime of Turn reduces as the temperature increases.

Similarly the posterior p.d.f.s of the log-normal parameters θ12, θ22 and σ2 for
Ground are plotted in Fig. 2, and their posterior mean, median, mode, Bayes’ estimates
under the LINEX loss function, SD and 95% HPDCS are reported in Table 13. Note
that here also, as expected,temperature seems to reduce the mean log-lifetime.

Inferences on particular distributional parameters are meaningful if and only if
the distribution is adequately supported by the data. In this case as seen in Sect. 5.1,
neither the Weibull nor the log-normal model is “positively” supported by the data
against each other for Turn. Though there is “positive” to “strong” evidence in favor
of log-normal against Weibull for Ground, it will not be correct to behave as if one
is “hundred percent certain” that it is so. That is, in either case there are uncertainties
regarding the model—in case of Turn it is acute, much less for Ground. In such
situations where there are model uncertainties, proper Bayesian inferences can still
be drawn about different model-independent aspects of life distributions, which are
indeed the quantities of actual interest in an ALT rather than the model parameters
themselves, through Bayesian Model Averaging or BMA (see Hoeting et al. 1999, for
example).
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Fig. 2 Density estimates of marginal posteriors of the lifetime parameters for ground

Table 13 Posterior summary measures for ground

Parameter Prior Mean Median Mode LINEX SD 95% HPDCS

a = −1 a = 1

θ12 1 −22.75 −22.77 −23.17 −17.86 −27.73 2.63 (−27.95, −17.63)

2 −22.75 −22.73 −22.62 −21.86 −23.67 1.34 (−25.29,−20.13)

θ22 1 9.93 9.92 9.82 10.75 9.17 1.19 (7.55, 12.24)

2 9.91 9.89 9.84 10.10 9.72 0.61 (8.73, 11.09)

σ2 1 0.76 0.73 0.94 0.77 0.75 0.16 (0.47, 1.07)

2 0.69 0.68 0.83 0.69 0.68 0.09 (0.52, 0.87)

5.3 Bayesian model averaging

In the context of ALT of series systems, where one is finally concerned with drawing
inferences about reliability characteristics at usage stress, examples of such model-
independent quantities of interest include component MTTF and component and
system failure s.f. at usage stress. The component MTTFs for the j th component at

usage stress are given by eμ j (θ1 j ,θ2 j ,403.15)Γ (1+ 1/β j ) and e
μ j (θ1 j ,θ2 j ,403.15)+ 1

2 σ 2
j for
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Fig. 3 Posterior densities of MTTF at usage stress for Turn and Ground

Table 14 Posterior summary measures of MTTF at usage stress for Turn and Ground

Turn Ground

Log-normal Weibull BMA Log-normal Weibull BMA

Mean 7.72 8.33 8.11 8.17 6.75 8.04

SD 0.91 1.57 1.39 2.26 1.99 2.26

HPDCS (6.01, 9.46) (5.69, 11.58) (5.81, 10.73) (4.56, 12.49) (3.63, 10.64) (4.27, 12.22)

the Weibull and log-normal models respectively (where μ j (θ1 j , θ2 j , 403.15) is as in
(18)). The expressions for component s.f. at usage stress in log-scale (for convenience
of plotting) are similarly obtained fromTable 1. Denoting these quantities by(ψ j , t)
in Sect. 3.3, it was shown how to obtain a sample from the posterior distributions of
such (ψ j , t)s for a given fixed model, like Weibull (W) and log-normal (L). Now it
will be convenient to denote them byW (t) andL(t) respectively. The uncertainties
between W and L for drawing inference about (t) are accounted through BMA as
follows.

In theBayesian paradigm, if one startswith priormodel uncertainties givenbyπ(W )

and π(L) (here taken to be 1/2 each), in light of the observed data (and off course
also the assumed priors on the individual model parameters), these uncertainties get
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Fig. 4 Predictive survival function at usage stress for Turn and Ground

naturally quantified by their respective posterior probabilities given by π(W |D) and
π(L|D). The BFs reported in Table 11 are nothing but π(L|D)/π(W |D)

π(L)/π(W )
and thus here

π(L|D) = BF/(1+BF) andπ(W |D) = 1−π(L|D).Withmodel uncertainties thus
quantified, it is now easy to see that this model-uncertainty-adjusted posterior of (t)
is just a mixture of posteriors of W (t) and L(t) with respective mixing proportions
π(W |D) and π(L|D) (see, for example, equation (1) of Hoeting et al. (1999)). Thus
a BMA sample of a (t) (such as a component MTTF or s.f.) is easily obtained by
first drawing a 0–1 valued random variate with Pr(1) = π(W |D), and then drawing a
sample from the posteriors of either W (t) or L(t), if it is 1 or 0 respectively. Such
samples are needed for computation of a BMA HPDCS for (t) for instance, but are
not required if one is just interested in the first two BMA moments of (t) (by using
equations (18) and (19) of Kass and Raftery (1995), for example). For the later case it
is enough to just have the value of π(W |D) and samples from the posteriors ofW (t)
andL(t). The BMAmean, the Bayes’ estimate with respect to the squared error loss,
is an important Bayesian estimate of (t). For example, if (t) denotes a component
s.f. (or p.d.f. or c.d.f.), its BMA mean is same as its BMA predictive s.f. (or p.d.f. or
c.d.f.).

For the data set at hand, for illustrative purpose, we use the aforementioned prior-
2 for both Weibull and log-normal. Recall that Gibbs samples from the respective
posteriors of ψ j s under this prior for both j = 1, 2 have already been obtained for
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Fig. 5 Predictive survival function of motor at usage stress

computing the (2,2) entries of Table 11. At each of these sampled values we now
compute W (t) and L(t) as in Sect. 3.3 to obtain samples from the posteriors of
W (t) and L(t). Now the BMA sample generations and moment calculations, as
explained above, are done using the (2,2) CCBFs of Table 11. The posterior densities
of MTTF at usage stress for both Turn and Ground for both the models and their BMA
counterparts are plotted in Fig. 3. The corresponding posterior summary measures are
presented in Table 14. Figure 4 depicts the Weibull, log-normal and BMA predictive
s.f. together with the BMA 95% HPDCS band for the s.f. at usage stress for Turn and
Ground.

We finish this section by estimating the system s.f. at usage stress. In this case,
because of the assumed independence between the two failure modes, the BMA pre-
dictive system s.f. at usage stress is simply their product for each failure mode (which
are already depicted in Fig. 4). A BMA sample of the system s.f. FT (t) is generated
by repeatedly, independently and randomly drawing one element each from the BMA
samples of F1(t) and F2(t) and forming their product. This BMA sample on FT (t) is
then used to compute a BMA 95%HPDCS band for FT (t), which is plotted in Fig. 5,
together with the BMA predictive system s.f. computed as explained above.

6 Concluding remarks

This article presents full Bayesian analyses of fixed multi-stress ALT data of J -
component series systems. It is assumed that the component log-lifetimes belong
to independent arbitrary log-concave log-location-scale family of distributions. The
location parameters of the component log-lifetimes are assumed to depend on the
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stress variables through a linear STF, which covers almost all the standard ones used
in the engineering literature and practice, as special cases.

Next, a Bayesian methodology is developed for such generic log-concave log-
location-scale family of component lifetime models. It is proved that the one-
dimensional univariate conditional posteriors of each lifetime parameter given the
rest is log-concave, provided the corresponding priors of these lifetime parameters are
also log-concave. This fact is then utilized to carry out Bayesian analyses by drawing
samples from the joint posterior of the model parameters via the ubiquitous Gibbs
sampling. It is shown how the sample generated from the joint posterior of the life-
time parameters can be used for predictive inferences on the component and system
reliability metrics at the usage stress, given fixed assumed models for component
lifetimes.

Later this article focuses on the special case of log-normally distributed component
lifetime, for its importance as a theoretical lifetime model, especially in the context
of ALT. It is observed that for the log-normal model one can avoid computationally
intensive log-concave sampling by adopting a data-augmentation scheme. A detailed
simulation of the log-normal model reveal that there is hardly any difference in the
performances of the posterior mean, median and mode of the stress coefficients and
MTTF, provided the prior means are correctly specified. However if the prior means
are misspecified, the Bayes’ estimates under LINEX loss may be a better choice.
Furthermore it is also found that, in case of the SDs of the component log-lifetimes,
the posterior modes perform poorly compared to other Bayesian point estimators, and
the LINEX loss does not seem to exhibit the same expected (or otherwise) influence
like in case of the location parameters.

Next the developedmethodology is illustrated by analyzing a real data set pertaining
to the electrical insulation system of a motor with two failure modes. First as is tacit in
the rest of the article, an effort is made to choose a “correct” model for the two failure
mode lifetimes based on the BFs. After not being able to conclusively arrive at such a
“correct” model for at least one of the failure-modes (while for the other failure mode,
curiously enough arriving at the log-normal model, having a special section in this
article), subsequent Bayesian analyses of quantities of interest from a series system
ALT are carried out using Bayesian model averaging.

Thus this article now provides methods of performing Bayesian analyses of fixed
multi-stress series system ALT data, with standard models that are expected to be
encountered in practice. However there are still issues such as objective criteria,
utilization of prior information etc. for optimally planning or designing such fixed
multi-stress ALTs. There are both design and analyses issues with other types of
ALTs which are not fixed stress such as the step-stress ALT (Nelson 1980). These are
a few future directions, research towards which will be fruitful and appreciated by reli-
ability practitioners, apart from off course theoretical developments with dependent
component lives or more complex systems.
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7 Appendix 1: Proof of Theorem 1

It is enough to show that log L j
(
ψ j |D

)
(= � j

(
ψ j |D

)
, say) is a concave function of

θk j and τ j . From Eq. (8), one gets

� j
(
ψ j |D

) = n j log τ j +
∑

1≤i≤n
&I i= j

log f j
(
τ j

(
t i − sij

′
θ j

))

+
∑

1≤i≤n
&I i 
= j

log F j

(
τ j

(
t i − sij

′
θ j

))

+
N∑

i=n+1

log F j

(
τ j

(
t i − sij

′
θ j

))
,

which implies

∂2� j
(
ψ j |D

)

∂θ2k j
=

∑

1≤i≤n
&I i= j

(
−τ j s

i
k j

)2 ∂2 log f j (uij )

∂uij
2 +

∑

1≤i≤n
&I i 
= j

(
−τ j s

i
k j

)2 ∂2 log F j (uij )

∂uij
2

+
N∑

i=n+1

(
−τ j s

i
k j

)2 ∂2 log F j (uij )

∂uij
2 ,

and

∂2� j
(
ψ j |D

)

∂τ 2j
= −n j

τ 2j
+

∑

1≤i≤n
&I i= j

(
uij
τ j

)2
∂2 log f j (uij )

∂uij
2 +

∑

1≤i≤n
&I i 
= j

(
uij
τ j

)2
∂2 log F j (uij )

∂uij
2

+
N∑

i=n+1

(
uij
τ j

)2
∂2 log F j (uij )

∂uij
2 ,

where uij = τ j

(
t i − sij

′
θ j

)
. Note that

∂2 log f j (uij )

∂uij
2 < 0, since f j (·) is log-concave.

Furthermore, the log-concavity of f j (·) implies the same for F j (·) (see Basu et al.

2003). Thus,
∂2 log F j (uij )

∂uij
2 < 0. Therefore,

∂2� j
(
ψ j |D

)

∂θ2k j
< 0 and

∂2� j
(
ψ j |D

)

∂τ 2j
< 0, which

completes the proof.
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8 Appendix 2: Acronyms and notations

BF Bayes’ factor
BMA Bayesian Model Averaging
h.r. Hazard rate
MCMC Markov Chain Monte Carlo
MLE Maximum likelihood estimate
MTTF Mean time to failure
p.d.f. Probability density function
SD Standard deviation
SE Standard error
s.f. Survival function
J , j Number of components in series sys-

tem and dummy in {1, . . . , J }
K , k Number of stress variables and and

dummy in {1, . . . , K }
N , i Number of systems put on an ALT and

dummy in {1, . . . , N (n)}
n Number of failed systems in an ALT
X j , Y j Lifetime and log-lifetime of the j th

component
T , I System log-lifetime and cause of fail-

ure
Z = (Z1, . . . , ZK )′ K × 1 vector of stress variables
U , u A variable U and its observed value

with or without an i in the super-script
(like Ui or ui ) for the i th system

f (·|·), F (·|·), h (·|·) p.d.f., s.f., and h.r. of random variables
gkj (·) Known transformationof the kth stress

variable acting on the j th component
of the system

s j = (s1 j , . . . , sK j )
′ with sk j = gkj (zk) K × 1 vector of transformed stress

variables for the j th component
S j = [s1j , . . . , sNj ]′ N × K stress matrix corresponding to

component j
φ(·), Φ(·) p.d.f. and s.f. of the standard normal

distribution
θ j = (θ1 j , . . . , θK j )

′, θ = (θ ′
1, . . . , θ

′
J )

′ K × 1 and K J × 1 vectors of STF
parameters for the j th component and
system

μ j (θ j , z), τ j , σ 2
j STF (location) and scale parameters of

Y j and its variance when normal
ψ j = (θ ′

j , τ j )
′, ψ = (ψ ′

1, . . . ,ψ
′
J )

′ (K + 1) × 1 and (K J + J ) × 1 vec-
tors of lifetime parameters for the j th
component and system
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 A model-independent quantity
D , Y j , Y Observed, augmented and complete

data
L j

(
ψ j |D

)
, L j (ψ j |Y ), L (ψ |D) Likelihood functionofψ j andψ given

D or Y
π(·), π(·|D), π(·|Y ) Prior and posterior of relevant quanti-

ties usually clear from the context
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