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Abstract By using instrumental variable technology and the partial group smoothly
clipped absolute deviation penalty method, we propose a variable selection procedure
for a class of partially varying coefficient models with endogenous variables. The
proposed variable selection method can eliminate the influence of the endogenous
variables. With appropriate selection of the tuning parameters, we establish the oracle
property of this variable selection procedure. A simulation study is undertaken to
assess the finite sample performance of the proposed variable selection procedure.

Keywords Partially varying coefficient model · Variable selection · Endogenous
variable

1 Introduction

In many disciplines, some covariates may be endogenous in regression modeling.
In this situation, the estimator based on the classical method, such as the ordinary
least squares method, is not consistent any more (see Newhouse and McClellan 1998;
Greenland 2000; Hernan and Robins 2006). The instrumental variable method pro-
vides a way to correct the possible endogeneity between covariates and structural
errors, and can obtain consistent parameter estimators. Recently, this method has been
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widely used in applied statistics, econometrics, andmore generally related disciplines.
Because the linear instrumental variable model, which assumes that the coefficients
of all covariates are constant, is sometimes too restrictive for real economic models
(see Schultz 1997; Card 2001), many papers have considered the statistical infer-
ences for semiparametric models. For example, Yao (2012) considered the efficient
estimation for partially linear instrumental variable models, and proposed a semipara-
metric instrumental variable estimation procedure. Zhao and Xue (2013) considered
the confidence region construction for regression coefficients in partially linear instru-
mental variable models based on the empirical likelihood method. Zhao and Li (2013)
considered the variable selection for varying coefficient instrumental variable models
by using the smooth-threshold estimating equations method. The varying coefficient
instrumental variable model allows the effect of endogenous covariates to be vary-
ing with a covariate, and is commonly used for analysis of data measured repeatedly
over time, such as time series analysis, longitudinal data analysis and functional data
analysis. In practice, however, only some of the coefficients vary with certain covari-
ate, hence one useful extension of the varying coefficient instrumental variable model
is the partially varying coefficient model with endogenous variables.

{
Yi = X T

i θ(Ui ) + Z T
i β + εi

Zi = Γ ξi + ei , i = 1, . . . , n,
(1)

where θ(u) = (θ1(u), . . . , θp(u))T is a p × 1 vector of unknown functions, β =
(β1, . . . , βq)T is a q × 1 vector of unknown parameters, Γ is a q × k matrix of
unknown parameters. Yi is the response variable, and εi and ei are zero-mean model
errors. Furthermore, we assume that Xi and Ui are exogenous covariates, Zi is the
endogenous covariate, and ξi is the corresponding instrumental variable. This implies
that the covariate Zi is correlated with the model error εi , but Xi , Ui and ξi are
uncorrelated with εi . Then we have

E(εi |Zi ) �= 0, and E(εi |Xi , Ui , ξi ) = 0.

Model (1) is more flexible, and the linear instrumental variable model, the partially
linear instrumental variable model and the varying coefficient instrumental variable
model are all special cases of model (1). For model (1), Cai and Xiong (2012) consid-
ered the efficient estimation problem, and proposed a three-step estimation procedure
to estimate the parametric components and the nonparametric components. However,
when the number of covariates in model (1) is the large, an important problem is to
select the important variables in such model.

Variable selection is a very important topic inmodern statistical inference. Recently,
based on some penalty methods, many variable selection procedures have been
proposed. For example, Frank and Friedman (1993) proposed a variable selection
procedure based on the bridge regression technology. Tibshirani (1996) proposed a
variable selection procedure based on the least absolute shrinkage and selection oper-
ator (LASSO) technology. Fan and Li (2001) proposed a variable selection procedure
based on smoothly clipped absolute deviation penalty (SCAD), which include bridge
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regression and LASSO penalty. Wang et al. (2008) extended the SCAD variable selec-
tion method to the varying coefficient model, and proposed a group SCAD (gSCAD)
variable selection procedure. Zhao and Xue (2009) proposed a partial gSCAD vari-
able selection method for the varying coefficient partially linear model. Recently,
many papers considered the variable selection for varying coefficient models with high
dimensional data. For example, Lin and Yuan (2012) considered the variable selection
for generalized varying coefficient partially linear models with diverging number of
parameters. Lian (2012) considered the variable selection for high-dimensional gener-
alized varying coefficient models.Wang et al. (2013) considered the polynomial spline
estimation for generalized varying coefficient partially linear models with a diverging
number of components. However, for the case that some covariates are endogenous,
these variable selection methods are not consistent, and can not be directly used any
more.

To overcome this problem, in this paper, we extend the partial gSCAD variable
selection method, used by Zhao and Xue (2009), to the varying coefficient partially
linear regression model with endogenous covariates. We propose an instrumental vari-
able based partial gSCAD variable selection procedure which can select significant
variables in the parametric components and nonparametric components simultane-
ously. With the proper choice of regularization parameters, we show that the variable
selection procedure is consistent, and the penalized estimators have the oracle property
in the sense of Fan andLi (2001). In addition, it is noteworthy that the proposedmethod
can attenuate the effect of the endogeneity of covariates, which is an improvement of
the variable selection method used in Zhao and Xue (2009).

The rest of this paper is organized as follows. In Sect. 2, we propose the instru-
mental variable based partial gSCAD variable selection procedure, and establish some
asymptotic properties, including the consistency and the oracle property. In Sect. 3,
based on the local quadratic approximation technology, we propose an iterative algo-
rithm for finding the penalized estimators. In Sect. 4, some simulations are carried out
to assess the performance of the proposed methods. Finally, the technical proofs of all
asymptotic results are provided in “Appendix”.

2 Methodology and main results

We let B(u) = (B1(u), . . . , BL(u))T denote B-spline basis functions with the order
of M , where L = K + M + 1, and K is the number of interior knots. Then, θk(u) can
be approximated by

θk(u) ≈ B(u)T γk, k = 1, . . . , p.

Substituting this into model (1), we can get

Yi = W T
i γ + Z T

i β + εi , (2)

where Wi = Ip ⊗ B(Ui ) · Xi and γ = (γ T
1 , . . . , γ T

p )T . Model (2) is a standard linear
regression model. Note that each function θk(u) in (1) is characterized by γk in (2).
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Then, motivated by the idea of Zhao and Xue (2009), we propose the following partial
gSCAD regularized estimation

Q(γ, β) =
n∑

i=1

{
Yi − W T

i γ − Z T
i β

}2 + n
p∑

k=1

pλ(‖γk‖H ) + n
q∑

l=1

pλ(|βl |), (3)

where ‖γk‖H = (γ T Hγ )1/2, H = (hi j )L×L is a matrix with hi j = ∫
Bi (u)B j (u)du,

and pλ(·) is the SCAD penalty function with λ as a tuning parameter (see Fan and Li
2001), defined as

p′
λ(w) = λ{I (w ≤ λ) + (aλ − w)+

(a − 1)λ
I (w > λ)},

with a > 2, w > 0 and pλ(0) = 0.
If Zi , i = 1, . . . , n in model (1) are exogenous as well, then by Zhao and Xue

(2009), it can be shown that we can get a consistent sparse solution by minimizing
(3). However, Zi , i = 1, . . . , n in model (1) are endogenous covariates, and then
E(εi |Zi ) �= 0. In this case, one can show that the resulting estimator, based on (3),
is biased. Hence, (3) cannot be used directly to select the important variables and
estimate regression coefficients any more.

Next, we propose an adjustment for (3) based on instrumental variables ξi , i =
1, . . . , n. From model (1), we have E(Zξ T ) = Γ E(ξξ T ). Hence, the moment esti-
mator of Γ can be given by

Γ̂ = Γ̂1Γ̂
−1
2

where

Γ̂1 = 1

n

n∑
i=1

Ziξ
T
i , and Γ̂2 = 1

n

n∑
i=1

ξiξ
T
i ,

By the proof in the “Appendix”,wehave Γ̂ = Γ +op(1). Note that E(Zi |ξi ) = Γ ξi ,
then an unbiased adjustment of Zi can be given by Ẑi = Γ̂ ξi . Hence, an instrumental
variable based partial gSCAD regularized estimation function can be given by

Q̂(γ, β) =
n∑

i=1

{
Yi − W T

i γ − Ẑ T
i β

}2 + n
p∑

k=1

pλ(‖γk‖H ) + n
q∑

l=1

pλ(|βl |). (4)

Remark 1 Because the endogeneity of the covariate Zi will result in the inconsistent
estimation and variable selection, we replace Zi in Q(γ, β) by the adjustment Ẑi .
Note that Γ̂ = Γ + op(1), we have Ẑi = Γ ξi + op(1). Hence, invoking that the
instrumental variable ξi is an exogenous covariate, the following asymptotic results
show that such an adjustment can attenuate the effect of endogenous covariates, and
give a consistent regularity estimation procedure.
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Let β̂ and γ̂ = (γ̂ T
1 , . . . , γ̂ T

p )T be the solution by minimizing (4). Then, β̂ is the
penalized least squares estimator of β, and the estimator of θk(u) can be obtained by
θ̂k(u) = BT (u)γ̂k .

Next, we study the asymptotic properties of the resulting penalized least squares
estimators. Similar to Zhao and Xue (2009), we let θ0(·) and β0 be the true value
of θ(·) and β respectively. Without loss of generality, we assume that βl0 = 0, l =
s+1, . . . , q, and βl0, l = 1, . . . , s are all nonzero components of β0. Furthermore, we
assume that θk0(·) = 0, k = d + 1, . . . , p, and θk0(·), k = 1, . . . , d are all nonzero
components of θ0(·). Let

a1n = max
l

{|p′
λ(|βl0|)| : βl0 �= 0

}
, a2n = max

k

{|p′
λ(‖γk0‖H )| : γk0 �= 0

}
,

and

b1n = max
l

{|p′′
λ(|βl0|)| : βl0 �= 0

}
, b2n = max

k

{|p′′
λ(‖γk0‖H )| : γk0 �= 0

}
.

Furthermore, we let an = max{a1n, a2n} and bn = max{b1n, b2n}. Then, the following
theorem gives the consistency of the penalized least squares estimators.

Theorem 1 Suppose that the regularity conditions C1-C5 in “Appendix” hold and the
number of knots K = Op(n1/(2r+1)), wherer is defined in condition C1 in “Appendix”.
If an → 0 and bn → 0, as n → ∞, then,

(i) ‖β̂ − β0‖ = Op(n
−r

2r+1 + an).

(ii) ‖θ̂k(u) − θk0(u)‖ = Op(n
−r

2r+1 + an), k = 1, . . . , p.

Remark 2 For the SCAD penalty function that used in this paper, it is clear that an = 0
if λ → 0 when n is large enough. Hence, under the regularity conditions defined in the
“Appendix”, the consistent penalized estimator indeed exists with probability tending
to one.

Furthermore, under some conditions, we show that such consistent estimators must
possess the sparsity property, which is stated as follows

Theorem 2 Suppose that the regularity conditions in Theorem 1 hold, and

lim inf
n→∞ lim inf|βl |→0

λ−1 p′
λ(|βl |) > 0, l = s + 1, . . . , q,

lim inf
n→∞ lim inf‖γk‖H →0

λ−1 p′
λ(‖γk‖H ) > 0, k = d + 1, . . . , p.

If nr/(2r+1)λ → ∞ and λ → 0, as n → ∞. Then, with probability tending to 1, β̂

and θ̂ (u) must satisfy

(i) β̂l = 0, l = s + 1, . . . , q.

(ii) θ̂k(u) = 0, k = d + 1, . . . , p.
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Remark 3 From remark 1 in Fan and Li (2001), we have that, if λ → 0 as n → ∞,
then an = 0. Then from Theorems 1 and 2, it is clear that, by choosing a proper
λ, the proposed variable selection method is consistent and the estimators achieve
the convergence rate as if the subset of true zero coefficients is already known. This
implies that the penalized estimators have the oracle property.

3 Algorithm

Note that the penalty function pλ(·) in Q̂(γ, β) is irregular at the origin, then the
classical gradient method can not be used to solve Q̂(γ, β). In this section, we give
an iterative algorithm based on local quadratic approximation technology that used in
Fan and Li (2001) and Zhao and Xue (2009). More specifically, for any given non-zero
w0, in a neighborhood of w0, we have the following approximation

pλ(|w|) ≈ pλ(|w0|) + 1

2

p′
λ(|w0|)
|w0| (w2 − w2

0).

Hence, for the given initial value β ini
l with |β ini

l | > 0, l = 1, . . . , q, and γ ini
k with

‖γ ini
k ‖H > 0, k = 1, . . . , p, we can obtain that

pλ(|βl |) ≈ pλ(|β ini
l |) + 1

2

p′
λ(|β ini

l |)
|β ini

l |
(
|βl |2 − |β ini

l |2
)

,

pλ(‖γk‖H ) ≈ pλ(‖γ ini
k ‖H ) + 1

2

p′
λ(‖γ ini

k ‖H )

‖γ ini
k ‖H

(
‖γk‖2H − ‖γ ini

k ‖2H
)
.

Let Z̃i = (Ẑ T
i , W T

i )T and α = (βT , γ T )T be pL + q-dimensional vectors. Further-
more, we let


(αini) = diag

{
p′
λ(|β ini

1 |)
|β ini

1 | , . . . ,
p′
λ(|β ini

q |)
|β ini

q | ,
p′
λ(‖γ ini

1 ‖H )

‖γ ini
1 ‖H

H, . . . ,
p′
λ(‖γ ini

p ‖H )

‖γ ini
p ‖H

H

}
,

where αini = (β iniT , γ iniT )T . Then, except for a constant term, Q̂(γ, β) that defined
in (4) can be written as

Q̂(α) =
n∑

i=1

{Yi − Z̃ T
i α}2 + n

2
αT 
(αini)α.

It is clear that Q̂(α) is a quadratic form, and it can be solved by

(
n∑

i=1

Z̃i Z̃ T
i + n

2

(αini)

)
α =

n∑
i=1

Z̃i Yi . (5)
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Hence, we can give an iterative algorithm as follows

S1. Initialize α(0) = αini.
S2. Set α(0) = α(k), solve α(k+1) by Eq. (5).
S3. Iterate the step S2 until convergence, and denote the final estimator of α as α̂.

Then β̂ = (Iq×q , 0q×pL)α̂, and γ̂ = (0pL×q , IpL×pL)α̂. In the initialization step,

we obtain an initial estimator αini = (β iniT , γ iniT )T by using ordinary least squares
method based on the following objective function

Q̂∗(γ, β) =
n∑

i=1

{
Yi − W T

i γ − Ẑ T
i β

}2
.

Furthermore, to implement this method, the number of interior knots K , and the tuning
parameters a and λ in the penalty function should be chosen. Fan and Li (2001) showed
that the choice of a = 3.7 performs well in a variety of situations. Hence, we use this
suggestion throughout this paper. In addition, we estimate λ and K by minimizing the
following cross-validation score function

CV (K , λ) =
n∑

i=1

{
Yi − X T

i θ̂[i](Ui ) − Ẑ T
i β̂[i]

}2
, (6)

where θ̂[i](·) and β̂[i] are estimators of θ(·) and β respectively based on (4) after
deleting the i th subject.

Although maybe some nonzero parameters will be incorrectly set to zeros in this
algorithm, from the following simulation studies, we can see that the number of the
nonzeros incorrectly set to zero is very small, and it decreases rapidly when the sample
size n increases. This implies that the proposed iterative algorithm is workable.

4 Simulation studies

In this section, we conduct someMonte Carlo simulations to evaluate the finite sample
performance of the proposed variable selection method. And as in Zhao and Xue
(2009), the performance of estimator β̂ will be assessed by using the generalized
mean square error (GMSE), defined as

GMSE = (β̂ − β0)
T E(Z Z T )(β̂ − β0).

The performance of estimator θ̂ (·)will be assessed by using the square root of average
square errors (RASE)

RASE =
{

1

M

M∑
s=1

p∑
k=1

[
θ̂k(us) − θk0(us)

]2}1/2

,
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where us, s = 1, . . . , M are the grid points at which the function θ̂ (u) are evaluated.
In our simulation, M = 200 is used.

We simulate data from model (1), where β = (β1, . . . , β10)
T with β1 = 3, β2 =

2, β3 = 1 and β4 = 0.5, and θ(u) = (θ1(u), . . . , θ10(u))T with θ1(u) = 2.5 +
0.5 exp(2u − 1), θ2(u) = 2 − sin(πu) and θ3(u) = 0.5 + 0.8u(1 − u). While the
remaining coefficients, corresponding to the irrelevant variables, are given by zeros.
To perform this simulation, we take the covariates U ∼ U (0, 1), Xk ∼ N (1, 1.5),
and the instrumental variables ξk ∼ N (1, 1), k = 1, . . . , 10. The covariate Zk =
ξk +αε, where ε ∼ N (0, 0.5) and α = 0.2, 0.4 and 0.6 to represent different levels of
endogeneity of covariates. This setting upmakes sure E(Zkε) �= 0, which implies that
the covariate Zk is endogenous. In the following simulations, we use the quadratic B-
splines, and the interior knots are taken equidistantly. Furthermore, the sample size is
taken as n = 100, 200 and 300 respectively, and for each case, we take 1000 simulation
runs.

To evaluate the performance of the proposed variable selection method, two meth-
ods are compared: the instrumental variable based partial gSCAD variable selection
method (IV-gSCAD) based on Theorem 1, and the naive partial gSCADvariable selec-
tion method (Naive-gSCAD). The latter is neglecting the endogeneity of covariate Zi ,
and using the partial gSCAD penalty method based on (3) directly. Based on the 1000
simulation runs, the average number of zero coefficients for parametric components
is reported in Table 1, and the average number of zero coefficients for nonparametric
components is reported in Table 2. In Tables 1 and 2, the column labeled “C” presents
the average number of coefficients of the true zeros correctly set to zero, and the
column labeled “I” presents the average number of the true nonzeros incorrectly set
to zero. Tables 1 and 2 also present the average false selection rate (FSR), which is
defined as FSR = IN/TN, where “IN” is the average number of the true zeros incor-
rectly set to nonzero, and “TN” is the average total number set to nonzero. In fact,
FSR represents the proportion of falsely selected unimportant variables among the

Table 1 Variable selection results for parametric components based on different variable selectionmethods

n α IV-gSCAD Naive-gSCAD

C I FSR GMSE C I FSR GMSE

100 0.2 5.388 0.031 0.134 0.035 5.347 0.028 0.141 0.038

0.4 5.374 0.034 0.136 0.038 4.423 0.036 0.285 0.154

0.6 5.365 0.036 0.139 0.041 3.804 0.039 0.357 0.261

200 0.2 5.725 0.014 0.064 0.014 5.648 0.015 0.081 0.018

0.4 5.726 0.016 0.064 0.016 4.583 0.018 0.262 0.143

0.6 5.722 0.019 0.065 0.019 4.024 0.019 0.332 0.217

300 0.2 6 0.003 0 0.007 5.734 0.005 0.062 0.014

0.4 5.980 0.004 0.005 0.009 5.176 0.008 0.171 0.082

0.6 5.974 0.007 0.006 0.012 4.348 0.013 0.293 0.161
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Table 2 Variable selection results for nonparametric components based on different variable selection
methods

n α IV-gSCAD Naive-gSCAD

C I FSR RASE C I FSR RASE

100 0.2 6.136 0.042 0.226 0.084 6.127 0.049 0.228 0.095

0.4 6.071 0.044 0.239 0.088 5.343 0.067 0.361 0.158

0.6 5.962 0.049 0.260 0.094 4.836 0.088 0.426 0.272

200 0.2 6.768 0.022 0.072 0.036 6.534 0.034 0.136 0.056

0.4 6.752 0.025 0.077 0.041 5.439 0.056 0.347 0.134

0.6 6.744 0.028 0.079 0.043 5.127 0.079 0.391 0.247

300 0.2 6.993 0.015 0.002 0.019 6.763 0.025 0.074 0.041

0.4 6.990 0.019 0.003 0.025 5.581 0.052 0.325 0.125

0.6 6.985 0.021 0.005 0.028 5.287 0.072 0.369 0.232

total variables selected in the variable selection procedure. From Tables 1 and 2, we
can make the following observations:

(i) The performances of IV-gSCAD method for parametric components and non-
parametric components are both better than those of Naive-gSCADmethod, and
this is especially truewhen the level of endogeneity of covariates is large. Because
the Naive-gSCAD variable selection method cannot eliminate some unimportant
variables in the parametric and nonparametric components, and gives signifi-
cantly larger model errors. This implies that the Naive-gSCAD variable selection
procedure is biased.

(ii) For the given level of endogeneity of covariates, the GMSE, RASE and FSR,
obtained by the IV-gSCAD variable selection method, all decrease as the sample
size n increases. This implies that the proposed IV-gSCAD variable selection
procedure is consistent.

(iii) For given n, the IV-gSCAD variable selection method performs similar in terms
of model error and model complexity for all levels of endogeneity of covariates.
This indicates that the proposed instrumental variable based variable selection
can attenuate the effect of the endogeneity of covariates. In general, the proposed
variable selection method works well in terms of model error and the model
complexity.

Acknowledgments This paper is supported by the National Natural Science Foundation of China
(11301569), the Higher-education Reform Project of Guangxi (2014JGA209), and the Project of Out-
standing Young Teachers Training in Higher Education Institutions of Guangxi.

Appendix: Proof of theorems

For convenience and simplicity, let c denote a positive constant whichmay be different
value at each appearance throughout this paper. Before we prove our main theorems,
we list some regularity conditions which are used in this paper.
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C1. θ(u) is r th continuously differentiable on (0, 1), where r > 1/2.
C2. Let c1, . . . , cK be the interior knots of [0, 1]. Furthermore, we let c0 = 0, cK+1 =

1, hi = ci − ci−1 and h = max{hi }. Then, there exists a constant C0 such that

h

min{hi } ≤ C0, max{|hi+1 − hi |} = o
(

K −1
)

.

C3. The density function of U , says f (u), is bounded away from zero and infinity on
[0, 1], and is continuously differentiable on (0, 1).

C4. Let G1(u) = E{Z Z T |U = u}, G2(u) = E{X X T |U = u} and σ 2(u) =
E{ε2|U = u}. Then, G1(u), G2(u) and σ 2(u) are continuous with respect to
u. Furthermore, for given u, G1(u) and G2(u) are positive definite matrix, and
the eigenvalues of G1(u) and G2(u) are bounded.

C5. The penalty function pλ(·) satisfies that
(i) lim

n→∞ λ = 0, and lim
n→∞

√
nλ = ∞.

(ii) For any given non-zero w, lim
n→∞

√
n p′

λ(|w|) = 0, and lim
n→∞ p′′

λ(|w|) = 0.

(iii) lim
n→∞ sup

|w|≤cn−1/2
p′′
λ(|w|) = 0, and lim

n→∞ λ−1 inf
|w|≤cn−1/2

p′
λ(|w|) > 0, where c is

a positive constant.

These conditions are commonly adopted in the nonparametric literature andvariable
selection methodology. Conditions C1 is the continuity condition of nonparametric
components which is common in the nonparametric literature. Condition C2 indicates
that c0, . . . , cK+1 is a C0-quasi-uniform sequence of partitions of [0, 1] (see Schu-
maker 1981, p. 216), and this assumption is used in Zhao and Li (2013), Zhao and
Xue (2009), Wang et al. (2013). Conditions C3 and C4 are some regularity conditions
for covariates, which are similar to those used in Zhao and Xue (2013), Cai and Xiong
(2012), Wang et al. (2008). Condition C5 contains some assumptions for the penalty
function. These conditions on the penalty function are similar to those used in Fan and
Li (2001), Wang et al. (2008), Zhao and Xue (2009), and it is easy to show that the
SCAD, Lasso penalty functions satisfy these conditions.

Proof of Theorem 1 Let δ = n−r/(2r+1) + an, β = β0 + δM1, γ = γ0 + δM2 and
M = (MT

1 , MT
2 )T . For part (i), we show that, for any given ε > 0, there exists a large

constant c such that

P

{
inf‖M‖=c

Q̂(γ, β) > Q̂(γ0, β0)

}
≥ 1 − ε. (7)

Let Rk0(u) = θk0(u) − B(u)T γk0, then note that Wi = Ip ⊗ B(Ui ) · Xi , we have

X T
i θ0(Ui ) − W T

i γ0 = X T
i R0(Ui ), (8)

where R0(Ui ) = (R10(Ui ), . . . , Rp0(Ui ))
T . Hence, we have
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n∑
i=1

{Yi − W T
i γ0 − Ẑ T

i β0}2

=
n∑

i=1

{X T
i θ0(Ui ) + Z T

i β0 + εi − W T
i γ0 − Ẑ T

i β0}2

=
n∑

i=1

{X T
i R0(Ui ) + (Zi − Ẑi )

T β0 + εi }2. (9)

Then, invoking β = β0 + δM1, γ = γ0 + δM2 and (9), we can obtain that

n∑
i=1

{Yi − W T
i γ − Ẑ T

i β}2

=
n∑

i=1

{Yi − W T
i (γ0 + δM2) − Ẑ T

i (β0 + δM1)}2

=
n∑

i=1

{Yi − W T
i γ0 − Ẑ T

i β0 − δW T
i M2 − δ Ẑ T

i M1}2

=
n∑

i=1

{X T
i R0(Ui ) + (Zi − Ẑi )

T β0 + εi − δ(Ẑ T
i M1 + W T

i M2)}2. (10)

By (9) and (10), and based on the formula a2 − b2 = (a + b)(a − b), we have that

n∑
i=1

{Yi − W T
i γ − Ẑ T

i β}2 −
n∑

i=1

{Yi − W T
i γ0 − Ẑ T

i β0}2

=
n∑

i=1

{X T
i R0(Ui ) + (Zi − Ẑi )

T β0 + εi − δ(Ẑ T
i M1 + W T

i M2)}2

−
n∑

i=1

{X T
i R0(Ui ) + (Zi − Ẑi )

T β0 + εi }2

=
n∑

i=1

[−δ(Ẑ T
i M1 + W T

i M2)]{2[X T
i R0(Ui ) + (Zi − Ẑi )

T β0 + εi ] − δ(Ẑ T
i M1 + W T

i M2)}

= −2δ
n∑

i=1

[Ẑ T
i M1 + W T

i M2][X T
i R0(Ui ) + (Zi − Ẑi )

T β0 + εi ]

+δ2
n∑

i=1

[Ẑ T
i M1 + W T

i M2]2. (11)

Let �(γ, β) = K −1{Q̂(γ, β) − Q̂(γ0, β0)}, then from (11), we have that

�(γ, β) = 1

K

{
n∑

i=1

{Yi − W T
i γ − Ẑ T

i β}2 −
n∑

i=1

{Yi − W T
i γ0 − Ẑ T

i β0}2
}
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+ n

K

q∑
l=1

[
pλ(|βl |) − pλ(|βl0 |)

] + n

K

p∑
k=1

[
pλ(‖γk‖H ) − pλ(‖γk0‖H )

]

= −2δ

K

n∑
i=1

[
εi + X T

i R(Ui ) + (Zi − Ẑi )
T β0

] [
Ẑ T

i M1 + W T
i M2

]

+δ2

K

n∑
i=1

[Ẑ T
i M1 + W T

i M2]2 + n

K

q∑
l=1

[pλ(|βl |) − pλ(|βl0 |)]

+ n

K

p∑
k=1

[pλ(‖γk‖H ) − pλ(‖γk0‖H )]

≡ I1 + I2 + I3 + I4.

From conditions C1, C2 and Corollary 6.21 in Schumaker (1981), we get that
‖R(u)‖ = O(K −r ). Then, invoking condition C4, a simple calculation yields

n∑
i=1

X T
i R(Ui )[Ẑ T

i M1 + W T
i M2] = Op(nK −r‖M‖). (12)

Invoking E{εi |ξi , Xi } = 0 and Ẑi = Γ ξi + Op(n−1/2), we can prove that

1√
n

n∑
i=1

εi [Ẑ T
i M1 + W T

i M2] = Op(‖M‖). (13)

In addition, note that Zi − Ẑi = (Γ − Γ̂ )ξi + ei , then invoking Γ̂ = Γ + Op(n−1/2)

and E{ei |ξi , Xi } = 0, we can prove that

1√
n

n∑
i=1

(Zi − Ẑi )
T β0[Ẑ T

i M1 + W T
i M2] = Op(‖M‖). (14)

Hence, from (12) to (14), it is easy to show that

I1 = Op(nK −1−rδ)‖M‖ + Op(
√

nK −1δ)‖M‖ = Op(1 + n
r

2r+1 an)‖M‖.

Similarly, we can prove that

I2 = Op(nK −1δ2)‖M‖2 = Op(1 + 2n
r

2r+1 an)‖M‖2.

By the condition C5(ii), we have that limn→∞
√

n p′
λ(|w|) = 0, for any given

nonzero w. Then invoking the definition of an , we can obtain
√

nan → 0 when n is
large enough. Hence, we obtain that

n
r

2r+1 an <
√

nan → 0.
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Hence we have I2/I1 = Op(1)‖M‖. Then, by choosing a sufficiently large c, I2 can
dominate I1 uniformly in ‖M‖ = c. Furthermore, invoking pλ(0) = 0, and by the
standard argument of the Taylor expansion, we get that

I3 ≤ K −1n
s∑

l=1

[pλ(|βl |) − pλ(|βl0 |)]

≤
s∑

l=1

[K −1nδp′
λ(|βl0|)sgn(βl0)|M1l | + K −1nδ2 p′′

λ(|βl0|)|M1l |2{1 + o(1)}]

≤ √
sK −1nδan‖M‖ + K −1nδ2bn‖M‖2

= Op

(
n

r
2r+1 an

)
‖M‖ + Op(1 + 2n

r
2r+1 an)bn‖M‖2.

Note that n
r

2r+1 an → 0 and bn → 0, we obtain that I3 = op(1)‖M‖2. Hence, we have
that I3 is dominated by I2 uniformly in ‖M‖ = c. With the same argument, we can
prove that I4 is also dominated by I2 uniformly in ‖M‖ = c. In addition, note that I2
is positive, then by choosing a sufficiently large c, (7) holds.

By the continuity of Q̂(·, ·), the inequality (7) implies that Q̂(·, ·) should have a
local minimum on {‖M‖ ≤ c} with probability greater than 1− ε. Hence, there exists
a local minimizer β̂ such that ‖β̂ − β0‖ = Op(δ), which completes the proof of part
(i).

Next, we prove part (ii). Note that

‖θ̂k(u) − θk0(u)‖2 =
∫ 1

0
{θ̂k(u) − θk0(u)}2du

=
∫ 1

0
{BT (u)γ̂k − BT (u)γk + Rk(u)}2du

≤ 2
∫ 1

0
{BT (u)γ̂k − BT (u)γk}2du + 2

∫ 1

0
Rk(u)2du

= 2
∫ 1

0
(γ̂k − γk)

T B(u)BT (u)(γ̂k − γk)du + 2
∫ 1

0
Rk(u)2du.

With the same arguments as the proof of part (i), we can get that ‖γ̂ − γ ‖ =
Op(n−r/(2r+1) + an). Then, a simple calculation yields

∫ 1

0
(γ̂k − γk)

T B(u)BT (u)(γ̂k − γk)du = Op

{
(n

−r
2r+1 + an)2

}
. (15)

In addition, it is easy to show that

∫ 1

0
Rk(u)2du = Op(n

−2r
2r+1 ). (16)

Invoking (15) and (16), we complete the proof of part (ii). ��
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Proof of Theorem 2 We first prove part (i). Invoking the condition λ → 0, it is easy
to show that an = 0 for large n. Then by Theorem 1, it is sufficient to show that, for
any given βl , l = 1, . . . , s, which satisfy ‖βl − βl0‖ = Op(n−r/(2r+1)), and a small
ε which satisfies ε = cn−r/(2r+1), with probability tending to 1, we have

∂ Q̂(γ, β)

∂βl
> 0, for 0 < βl < ε, l = s + 1, . . . , q, (17)

and

∂ Q̂(γ, β)

∂βl
< 0, for − ε < βl < 0, l = s + 1, . . . , q. (18)

Thus, (17) and (18) imply that the minimizer attains at βl = 0, l = s + 1, . . . , q.
By a similar the proof of Theorem 1, we have that

∂ Q̂(γ, β)

∂βl
=

n∑
i=1

Ẑil(Yi − Ẑ T
i β − W T

i γ ) + np′
λ(|βl |)sgn(βl)

= −2
n∑

i=1

Ẑil [εi + X T
i R(Ui )] − 2

n∑
i=1

Ẑil Z T
i (β0 − β)

−2
n∑

i=1

Ẑil(Zi − Ẑi )
T β − 2

n∑
i=1

Ẑil W
T
i (γ0 − γ ) + np′

λ(|βl |)sgn(βl)

= nλ{λ−1 p′
λ(|βl |)sgn(βl) + Op(λ

−1n− r
2r+1 )}.

Since limn→∞ lim infβl→0 λ−1 p′
λ(|βl |) > 0 and λn

r
2r+1 → ∞, the sign of the deriva-

tive is completely determined by the sign of βl , then (17) and (18) hold. This completes
the proof of part (i).

Applying the similar techniques as in the analysis of part (i) in this theorem, we
have, with probability tending to 1, that γ̂k = 0, k = d + 1, . . . , p. Then, the result of
this theorem is immediately achieved form θ̂k(u) = BT (u)γ̂k . ��
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