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Abstract Statistical estimation of the model parameters of component lifetime distri-
bution based on system lifetime data with known system structure is discussed here. We
propose the use of stochastic expectation-maximization (SEM) algorithm for obtain-
ing the maximum likelihood estimates of model parameters based on complete and
censored system lifetimes. Different ways of implementing the SEM algorithm are
also studied. We have shown that the proposed methods are feasible and are easy
to implement for various families of component lifetime distributions. The proposed
methodologies are then illustrated with two popular lifetime models—the Weibull
and Birnbaum-Saunders distributions. Monte Carlo simulation is then used to com-
pare the performance of the proposed methods with the corresponding estimation by
direct maximization. Finally, two illustrative examples are presented along with some
concluding remarks.
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1 Introduction

In system reliability engineering, systems are made up of different components and
these systems can be complex in their form and structure. For various purposes, engi-
neers and statisticians are often interested in the lifetime distribution of the system
as well that of the components that form the system. In many cases, the lifetimes of
an n-component system can be observed, but not the lifetime of its components. For
example, we will encounter this problem when n-component systems are placed on the
field to work and our interest is then in monitoring the reliability of the components in
the system as well as the reliability of the system. Therefore, novel statistical methods
are required for the analysis of these system-level lifetime data; the development of
statistical inference for the lifetime distribution of components based on these system
lifetimes then becomes of interest. To develop statistical inference based on system-
level data, information about the system structure of the n-component system become
essential. System signature (Samaniego 2007), which is an effective way to express
the system structure of a n-component system, is considered here. Through the use
of system signature, parametric and nonparametric inferential procedures have been
developed for component lifetime characteristics based on system-level data (see, for
example, Balakrishnan et al. 2011a, b; Bhattacharya and Samaniego 2010; Chahkandi
et al. 2014; Ng et al. 2012).

In industrial engineering, censoring is common in life-testing experiments due to
time or budget constraints. One of the commonly used censoring schemes is Type-II
right censoring scheme, in which testing of systems gets terminated when a pre-fixed
number of system failures have been observed. Complete sample can be considered as
a special case of Type-II censoring. Based on Type-II right censored system-level data
with known system signature, best linear unbiased estimation (BLUE) (Balakrishnan
et al. 2011b), maximum likelihood estimation (MLE) (Balakrishnan et al. 2011b; Ng
et al. 2012), and regression-based method (Zhang et al. 2015) have all been devel-
oped for different statistical distributions for the estimation of model parameters of
the component lifetime distribution. However, the development of these estimation
methods are specific for certain families of distributions and moreover, the theoretical
derivations of the estimators are tedious. Therefore, it is of interest to develop an easy-
to-use method for the estimation of model parameters that can be applied generally to
any component lifetime distribution.

In principle, the MLE of the unknown parameters can be obtained by directly
maximizing the likelihood function. Due to the complexity of the likelihood function
based on system lifetime data, the MLEs can only be calculated through numerical
approaches such as the Newton—Raphson algorithm and the Nelder—Mead algorithm.
But, these numerical methods require heavy computation and/or complicated second
derivatives of the log-likelihood function.

Moreover, the convergence of these numerical approaches cannot be guaranteed.
Even when these algorithms converge, they may not converge to the global maxi-
mum if inappropriate initial values are used. Furthermore, when the rate of missing
data is high and numerical approximations are involved in the likelihood func-
tion, these direct maximization methods may not be stable (see, for example, Ye
and Ng 2014). In practice, therefore, engineers and practitioners may prefer to use
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some simple tools that do not require heavy computational efforts. For this reason,
we propose the use of stochastic expectation-maximization (SEM) algorithm, pro-
posed by Celeux and Diebolt (1985), as an alternative method to approximate the
MLEs of the component lifetime distribution parameters based on complete or cen-
sored system-level data. In this paper, we discuss the implementations as well as
some merits of the SEM algorithm and then exam the performance of the proposed
methods.

The rest of this article is organized as follows. In Sect. 2, we introduce the
notation and the definitions of system signature and ordered system signature.
We also describe here the maximum likelihood estimation method for the para-
meter estimation. Then, in Sect. 3, the SEM algorithm is discussed and different
approaches of implementing the SEM algorithm are proposed based on complete
and Type-II censored system-level data. An extensive Monte Carlo simulation
study is used to evaluate the performances of the proposed approaches and the
obtained results are presented in Sect. 4. Two commonly used lifetime models—
Weibull and Birnbaum—Saunders (BS) distributions—are considered in the Monte
Carlo simulation study. Finally, in Sect. 5, the proposed methodologies are illus-
trated with two numerical examples, and some concluding remarks are made at the
end.

2 System signature and likelihood inference based on system-level data

Consider an n-component system with the component lifetimes, denoted by
X1, X, ..., X,, being independent and identically distributed (i.i.d.) with probability
density function (p.d.f.) fx(x; @), cumulative distribution function (c.d.f.) Fx(x; @)
and survival function (s.f.) Fx(x; #), where @ is the vector of parameters. We fur-
ther denote the lifetime of the n-component system by 7', with p.d.f. fr(z;8), c.d.f.
Fr(t;0) and s.f. Fr(t;0). Suppose m such n-component systems are placed on a
life-testing experiment and only the first 7 (r < m) system failure times are observed.
The remaining (m — r) system failure times are censored resulting in a Type-II cen-
sored sample with ordered system lifetimes, denoted by T1., < Toup < ... < Trup.
Our interest then is to estimate the parameter 6 based on the observed ordered system
lifetimes T < Toom < ... < Tyrum.

In system reliability study, a system is said to be coherent if every component
is relevant and if its structure function is monotone (Barlow and Proschan 1965).
We consider coherent and mixed reliability systems with n components having i.i.d.
lifetimes, where a mixed reliability system is defined as a stochastic mixture of coherent
systems (Boland and Samaniego 2004). In the study of coherent systems, system
signature, introduced by Samaniego (1985) and discussed further by Kochar et al.
(1999), is an index that characterizes a system with i.i.d. components in a simple and
elegant probabilistic way. The system signature is an n-dimensional probability vector
s = (s1, 52, ..., Sy), where the i-th element s; is the probability that the i-th ordered
component failure causes the failure of the system, i.e.,

si =Pr(T =X;.), i =1,2,...,n,
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Fig. 1 A 3-component /;\
series-parallel system \ZJ
®
Table 1 Six possible Arrangements System
arrangements of the component lifetime T
lifetimes in a 3-component
series-parallel system X1 < X2 < X3 X153
X1=X3=Xp X133
X2 =X1=X3 X233
X2 =X3=X X233
X3=X1=Xp X2:3
X3=Xy =Xy X2:3

and > | s; = 1. For example, let us consider a 3-component series-parallel system,
as shown in Fig. 1. Let the lifetimes of these three components be X1, X», X3. There
are then six possible arrangements of the component lifetimes (see Table 1).

In the first two cases, the system lifetime 7" = X.3, and therefore 51 = Pr(T =
X1.3) = 2/6. In the last four cases, the system lifetime 7' = X»7.3, so thatsy = Pr(T =
X7.3) = 4/6, and similarly s3 = Pr(7 = X3.3) = 0. The signature of this system is,
therefore, (2/6,4/6,0) = (1/3,2/3,0).

Note that many of the systems used in industry can be described by system signa-
ture and hence the methodology developed here can readily be used in these cases.
For instance, Frenkel and Khvatskin (2006) considered a real-life prototype for n-
component phosphor acid filter system used in Rotem/Deshanim Chemical Processing
Facility, Arad, Israel. The filter system has n identical turning rollers and a system
failure occurs when two adjacent rollers stop working according to the technical spec-
ification. The system described in Frenkel and Khvatskin (2006) is a consecutive
2-out-of-n: F system with i.i.d. components, whereas the system structure can be
described by using a system signature. For example, the system signatures of consec-
utive 2-out-of-n: F system with n = 4, 6 and 8 components are s = (0, 1/2, 1/2, 0),
s = (0,1/3,7/15,1/5,0,0), and s = (0,1/4,11/28,2/7,1/14,0,0, 0), respec-
tively. For more information on the signature-based analysis of consecutive k-out-of-n:
F systems, one can refer to Eryilmaz (2010), Eryilmaz et al. (2010) and the references
cited therein.

System signature is a distribution-free representation of the system structure mean-
ing that it does not depend on the distribution of the component lifetimes. For an n
component system with i.i.d. components, the p.d.f. and s.f. of the system lifetime T
can be expressed as (Kochar et al. 1999, p. 512)

fr;0)=>"si (’;)ifx(r; 0)[Fx(1; ) ' [Fx (t; 6)1"™ ()

i=1
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and

n i—1
Fr(t,0) =) s (’;)[Fx (t; 0)1 [Fx(t; 0)1" ™/, 2)
=0

i=1

respectively.
The log-likelihood function for # based on Type-II censored system lifetime data
is ,
1O: tioms taoms -+ trm) = D10 fr(tems 0) + (m = 1) In Fr(trm; 0),  (3)
k=1

where fr and Fr can be expressed in terms of fy and Fy as given in Eqs. (1) and (2),
respectively. For a specific parametric component lifetime density fx (or equivalently
Fx or Fy), the MLE of @ can be obtained by maximizing the log-likelihood function
in Eq. (3).

Based on the ordered system lifetimes, Balakrishnan and Volterman (2014) recently
provided an extension of the system signature, called the ordered system signature.
Consider the lifetimes of the » components in the k-th system tobe X¢1, X«2, - - ., Xkn,»
k = 1,2,...,m, and denote the corresponding ordered component lifetimes as
Xi1n < Xk2n < ... < Xk.nn. Intuitively, for an early failed system among the
m systems in the life-testing experiment, the failure would be more likely be due
to more critical components. In other words, if the information about the ranks of
the system lifetimes is given, then the system signature vectors of a system with
lifetime 7., and of a system with lifetime 7., (¢ < b) should be different.
More specifically, Balakrishnan and Volterman (2014) denoted the system signa-
ture vector of the k-th ordered system lifetime, Tj.,,, as glkm) — (s(k m), - (k m))
where

m
k: .
Si( " = E Pr(Tim = Xj,i:n)a i=1,...,n,
Jj=1

is the probability that the k-th ordered system failure time correspond to its i -th ordered
component failure. Let ¢; denote the number of systems that failed due to their i-th
ordered component failure,i =1, ...,n,and L={= ({1, ..., ) : L1+ -+, = m}.
Then, si(k:m) could be represented as (Balakrishnan and Volterman 2014)

: 14
5 = Z(z] ) Hs’ pi" )

cey

where pl.(lkém) is the conditional probability that the kth ordered system failed due to the

i-th ordered component failure, given that £; systems failed due to the j-th ordered

component failure, for j = 1, ..., n. If the system lifetimes are i.i.d., then s(k ™) can

also be represented as
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Table 2 Elements used to calculate the ordered system signature form =2, n =3 and s = (1/3,2/3,0)

2 0 6 0 (1:2) (1:2) (1:2) 2:2) @2 a2
G b B () SIS Py P P Pije P P3je
2 0 0 1 1/9 1 0 0 1 0
2 2/9 4/5 1/5 0 1/5 4/5
0 2 0 1 4/9 0 1 0 0 1

s —Pr(T; = XjinlTem =Tj), i=1,2,...,n.

For the 3-component series-parallel system presented in Fig. 1, suppose we have two
systems, i.e., m = 2, n = 3 and s = (s1,52,53) = (1/3,2/3,0). Since s3 = 0,
only the cases £3 = 0 will contribute to the ordered system signature. All the possible
arrangements of £ and the corresponding pl.(lklfm) values are presented in Table 2. The
elements in the ordered system signatures could be calculated as

‘ | 2 4 7
s{1~2>=1x—x1+2><-><—=_’
9 9 5 15
4 2 1 4 8
(1:2)
sy =2x§x§+1X§X1=E’
S?Eliz):O,
. 1 1 1
s1(2‘2)=1x§><1+2><_><§=§’
‘ 2 4 4 4
S§2'2)22X§X§+1X§X1:§’
S§2:2)=0

Hence, the ordered system signatures are

gD _ (SEI:Z), S§1:2), s(1:2)) = (7/15,8/15,0),
sV = (5@ s Dy — (1/5,4/5,0).

Since the system signature is a distribution-free representation of the system struc-
ture, as mentioned earlier, Eq. (4) shows that the ordered system signatures also do
not depend on the underlying component lifetime distribution. In general, the ordered
system signatures are not available in simple form, but their distribution-free nature
enables a simple approximation by Monte Carlo methods. In the following section,
we will utilize the ordered system signature to develop different approaches for imple-
menting the SEM algorithm.

3 Stochastic expectation-maximization algorithm for system-level data

For the estimation of parameters of the component lifetime distribution, since the
system-level lifetime data can be viewed as a missing data problem, the well-known
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expectation-maximization (EM) algorithm (Dempster et al. 1977) (see, also McLach-
lan and Krishnan 2008) can be utilized for determining the MLE of the vector of
parameters. The EM algorithm is an iterative procedure that repeatedly fills the miss-
ing data in the complete-data log-likelihood with their conditional expected values
(E-step) and then maximizes the expected complete data log-likelihood to update the
parameter estimates (M-step). Specifically, suppose T denotes the observed data and
Z denotes the missing data, the complete datais X = (T, Z), and the likelihood func-
tion based on complete data is L(#; X). The E-step of the EM algorithm in the /-th
iteration requires the computation of the conditional expectation of the log-likelihood
function, with respect to the conditional distribution of Z, given T = t, at the current
estimate of the parameter vector 0

0016") = E[InL6;T,Z)|T=t, 6", 5)

and the M-step involves maximizing 0010y with respect to @, and the revised
estimate becomes

o th = arg;nax{wa(h))}. ©)

Therefore, in order to facilitate the EM algorithm, we need to determine the conditional
distribution of Z, given T = t and the current value of the parameter. In some cases,
the EM algorithm might be hard to implement, if not impossible, due to the complex
forms of the conditional expectations involved in the E-step. SEM algorithm, as long
as the missing data is easy to impute, simply replaces the E-step with a stochastic step
(S-step):

S-step: Given the values of 0™ and T = t, simulate values of Z from the conditional
distribution of Z, given T = t.

The S-step simulates a pseudo-complete data set, and then the M-step involves max-
imizing the likelihood function based on a complete sample. S-step might be much
easier to implement in many cases as compared to the E-step since only a single draw
from the conditional distribution is needed.

Let H be the total number of iterations of the SEM algorithm. The sequence of
estimates 0(h), h=1,2,..., H, do not converge to a single point, but this sequence
of estimates is a Markov chain that rapidly converges to a stationary distribution
under some regularity conditions (Diebolt and Celeux 1993; Diebolt and Ip 1996).
This stationary distribution could be obtained after a burn-in period, and thus a point
estimate, 6, could be obtained by averaging the sequence of estimates after this burn-in
period. One of the advantages of the SEM algorithm is that the random perturbations
of the Markov chains prevent the sequence of the estimates being trapped in a local
maximum or saddle point. Other commonly used methods for computing the MLE,
such as the EM algorithm and the Newton—Rapshon method, do not guarantee the
convergence to a global maximum or even a local maximum. These methods might
converge to a stationary point close to the starting value and that point could be a saddle
point (Wu 1983; Redner and Walker 1984). An example in Ip (1994) has displayed
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that the SEM algorithm might lead to an improvement over the EM algorithm in terms
of convergence to a “good” stationary point.

To further observe the advantage of the SEM algorithm over other commonly used
numerical methods for maximizing the log-likelihood function in Eq. (3), we substitute
the p.d.f. and c.d.f. of the system lifetimes in Egs. (1) and (2) into the log-likelihood
function in Eq. (3) to obtain

1O; tims toms - -5 trm)

=>'In [Zsi (’7)ifx<rk;m; O)[Fx (tkm; )1~ [Fx (tkem: 0)]"—"]
k=1 i=1 !
n i—1
+m—ri> 5> (’J’.)[anr;m; OV [Fx (trm:; )"
J=0

i=1

This log-likelihood can become computational involved when n is large. More-
over, the c.d.f. and s.f. of the component lifetime, Fy and Fy, involved in the
log-likelihood function might not be in closed-form for some commonly used com-
ponent lifetime distributions, such as gamma distribution and log-normal distribution
and so numerical approximations are required in the evaluation of these functions.
Therefore, the evaluation of the log-likelihood function and any numerical meth-
ods that maximize the log-likelihood function directly can become computationally
quite intensive. In addition, since the c.d.f. and s.f. of the component lifetime are
powers of Fy up to n in the log-likelihood function, any numerical error in approx-
imating these functions will get amplified. The SEM algorithm proposed in this
paper can effectively avoid these issues. It is noteworthy that instead of taking the
average of the sequence of SEM estimates after burn-in as the parameter estimate,
one can use the SEM estimate encountered during the SEM iterations that max-
imizes the observed data log-likelihood as the parameter estimate. However, this
will involve the evaluation of the log-likelihood function in Eq. (3) and hence the
issue of error accumulation described above will remain and consequently the advan-
tage of the SEM may get reduced. Therefore, we only consider the use of taking
the average of the sequence of SEM estimates after burn-in as the final parameter
estimate.

The asymptotic properties of the SEM estimate 6 has been studied by Ip (1994),
Diebolt and Ip (1996) and Nielsen (2000). These authors have pointed out that SEM
estimate is asymptotically equivalent to the MLE 9. For exponential family of distri-
butions, Ip (1994) has shown that the mean of the stationary distribution differs from
the MLE by O(1/m) under some appropriate assumptions, where m is the sample
size. In addition, Nielsen (2000) has shown that the distribution of SEM estimates
converges to a normal distribution with mean equal to the MLE and variance of order
o(l/m).

For these reasons, we consider here the SEM algorithm for the analysis of
system-level data. We also make use of the ordered system signature (Balakrish-
nan and Volterman 2014) to develop different ways of implementing the SEM
algorithm.
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3.1 SEM algorithm for complete system lifetime data

Under the setting described in Sect. 2, suppose m i.i.d. n-component systems are placed
on a life-testing experiment and the observed datais t = (¢, < 20 < ... < tym)-
Since our interest is on the component lifetime distribution, the complete data is taken
to be Xy = (X1, Xk2, -++5 Xin), K = 1,2, ..., m, containing m X n component
lifetimes. The log-likelihood function based on the complete data Xy, k = 1,2, ..., m,
can then be expressed as

m n
InLO:; X1, Xa, ..., Xp) = D > In fix (a3 0).

k=1i=1

For most commonly used statistical distributions in lifetime data analysis, the max-
imum likelihood estimation based on complete data is well developed and can be
readily computed by the use of standard statistical software. So, the maximization
involved in the M-step can be done easily.

3.1.1 SEM algorithm based on ordinary system signature

To develop the SEM algorithm based on system signature, we consider the observed
system lifetime of the k-th system (not necessarily in order) among the m systems
in the experiment, #;. Assume that the A-th component failure in the k-th system
caused the failure of the system, i.e., #x = Xk x.,. Then, the conditional distributions
of the other (n — 1) components are random variables with either left-truncated or
right-truncated distributions. Specifically, the conditional density of the first (A — 1)
ordered component lifetimes, Xy 1.1, X, 2., - - - » Xk,(A=1)m> GIVEN tg = Xf jp, 1S A
right-truncated density

Jx(x;0)
GRX(X; Otk X)) = ———=, X <, (7N
Fx(t; 0)
and similarly the conditional density of the last (n — A) ordered component lifetimes,
Xi, 04D Xk, 0425 -« - » Xkonin> EIVEN B = Xg ., 18 @ left-truncated density
fx(x;0)

grx(x; 0|t X)) = X > If. (8)

1 — Fx(tx; 0)’

In the (h + 1)-th SEM iteration, given the current value of the parameter vector 0"
and the observed system lifetime #, the S-step and M-step then proceed as follows:

S-step 1. For the k-th system, generate a discrete random variable A based on the
system signature of the n-component system with probability mass function
Pr(A=1)=s),A=1,2,...,n,and we denote the realization as A;

2. Generate A — | random variates from the conditional distribution in Eq. (7) with

0 =0", say F1. K2, .. KkGi—1)s
3. Generate n — A random variates from the conditional distribution in Eq. (8) with
0 = B(h), say )Zk(H]), )Zk(k+2)» P )Zk,,;
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4. The pseudo-complete sample for system k is then

X = (Xk1s X2, -+« o s Xk(ui—1)s Xkns Xkt 1)s Xk(u42)s - - + 5 Xkn),s
where x;, = tx. Repeat Steps 1-3 fork = 1, ..., m to obtain the pseudo-complete
sample X;, k =1,2,...,m.

M-step Maximize the log-likelihood function,

m n
InL@O: 1. %, ... %) = D D In fx (i1 0),

k=1i=1

with respect to 8 to obtain 8"V for the next cycle.

To obtain an estimate of #, we run the SEM algorithm to obtain a sequence of 6 () L h =
1,2, ..., B, discard the first few iterations for burn-in, and average over the estimates
from the remaining iterations to get an estimate of 6 (say, 0).

3.1.2 SEM algorithm based on the ordered system signature
Instead of considering the unordered observed system lifetimes (¢, 12, . .., t,;;) and

developing the SEM algorithm as described in Sect. 3.1.1, we now incorporate the
ordered system signature (Balakrishnan and Volterman 2014) together with the ordered

system lifetimes t = (¢1., < t2gn < ... < by:m). The ordered system signature for
the k-th ordered system lifetime 7., glkim) — (sl(k:m), e, s,i’””)), can be computed

explicitly by using the formulas provided in Balakrishnan and Volterman (2014) for
some special cases. However, to keep the main advantages of SEM, namely, being sim-
ple and easy to implement, we use Monte Carlo method to approximate the ordered sys-
tem signatures skm) | — 1.2, ... m,based on the fact that the ordered system signa-
ture is free of the underlying component lifetime distribution. In particular, for a given
system signature, we first generate m system lifetimes and keep track of which compo-
nent failure led to the system failure (from any distribution Fx) and repeat this process
N times. The elements in the ordered system signatures can then be approximated by

~k:m)y _ No. of times that event A occured
S =
i N ’

where A = {the k-th ordered system failed due to its i-th ordered component failure},

fori =1,2,...,n,k=1,2,..., m.In our simulation study, we used N = 100,000.

Under these considerations, the Step 1 in the S-Step described in Sect. 3.1.1 can then

be modified as follows:

S-Step 1.* For the k-th system (ordered based on the system lifetimes), generate a
discrete random variable A based on the ordered system signature with prob-
ability mass function Pr(A = 1) = §§k:m), A =1,2,...,n,and we denote the
realization
as A.

The remaining steps involved in the S-Step and the M-Step are exactly the same as
described earlier in Sect. 3.1.1.
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3.2 SEM algorithm for Type-II censored system lifetimes

Suppose a Type-II censored system lifetime data, t = (t1, < fon < ... < trm),
r < m, is observed. For a Type-II censored sample, the early system failures will
tend to fail due to the first few ordered component failures. Hence, the r observed
system lifetimes are not exchangeable and the ordinary system signature cannot be
used in this case. So, ordered system signature will be quite useful to develop the SEM
algorithm for Type-II censored system lifetime data. Under Type-II censoring, we can
either impute the censored system lifetimes first and then the unobserved component
lifetimes in those censored systems, or directly impute the component lifetimes in
the censored systems. Based on these two approaches, we propose here two ways of
implementing the SEM algorithm for Type-II censored system lifetime data.

3.2.1 Impute component lifetimes directly (SEM-1)

For those failed systems, the unobserved component lifetimes could be imputed by
using the methods described in Sect. 3.1.2. For those censored (un-failed) systems,
we first consider the conditional probability mass function of the number of failed
components in a system, given that the system is still working at time 7. Suppose an

n-component system with system signature s = (s, 52, ..., §,) is working at time
T and the system lifetime is ranked j among the m systems (j = r + 1, ..., m) for
those censored systems. We then consider the conditional probability vector pl/™) =
(ps™, p™ .. pU"™), where

pl(j m Pr(lout of n components failed| .., > 1)

(1= >4 5™ () Fx (z: OV [ Fx (x: )1

= = JI0=0,1,...,n—1.

Fr(z;0)

Note that it is not possible to have all n components failed for a working coherent

system. For the considered Type-II censored system lifetime data, the censoring time is

T =ty S0, the h-th iteration of the S-step in the SEM algorithm can be implemented
as follows:

S-step 1. For the r failed systems with s, the component lifetimes can be imputed
based on ordered system signatures described in Sect. 3.1.2. Hence, we have

r x n imputed component lifetime Xz, k = 1,2, ...,r;
2. For the censored system with rank j among the m systems, j = r + 1,r +
2,...,m, the component lifetimes can be imputed based on the conditional

probability vector p/™ as follows:
i. Generate a discrete random variate A based on the conditional probability
vector p/* given t = t,.,, with probability mass function

Pr(A=8)=p/™, §=0,1,....n—1;

ii. Generate § random variates from the conditional distribution in Eq. (7) with
the point of truncation ty = t,.,, and 6 = oM, say Xj1,Xj2,...,Xjs;
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iii. Generate n — § random variates from the conditional distribution in Eq. (8)
with the point of truncation ty = t., and § = o, say X410
Xjs42)s -5 Xjns

iv. The pseudo-complete sample for j-th ranked censored system is then

Xj = (Xj1, X2, ..., Xjn);
v. Repeat Steps i — iv until we have the imputed samples X;, j = r + 1,r +
2,...,m.

Then, the M-Step proceeds exactly the same way as detailed earlier in Sect. 3.1.1.
3.2.2 Impute the censored system lifetimes (SEM-II)

Another way of implementing the SEM algorithm is by implementing the unobserved
component lifetimes based on a two-stage procedure. In the first stage, we generate
the (m — r) censored system lifetimes from a left-truncated distribution with c.d.f.

Fr(y;0)— Fr(t;0
Hr (y; 8) = T(ly_)FT(T.T;; ) 3> ©)

Here, © = t,., is the censoring time of the experiment. Then, we order these (m — r)
samples to obtain Y41, < Yr42m < ... < Ym:m. In the second stage, we treat
the sample (f1n < fom < - < brm < Yrdlm < Yr42m < -o- < Ymm) @S 2
pseudo-complete system lifetime data. Since these pseudo-complete system lifetimes
are naturally ordered, we consider the implementation of the SEM algorithm based
on the ordered system signature.

4 Monte Carlo simulation study

In this section, Monte Carlo simulation is used to evaluate the performance of the SEM
algorithm in approximating the MLEs of the parameters in the component lifetime dis-
tribution based on complete and censored system-level lifetime data. The performance
of different implementations of the SEM algorithm are also compared. Two popular
statistical models in lifetime analysis—the Weibull and BS distributions—are consid-
ered here for the Monte Carlo evaluation process.

Assume that the component lifetime X follows a Weibull distribution, with its c.d.f.
as

Fx(x;a,ﬂ)zl—exp[—(%) ],x>0,a,ﬁ>0,

where « is the shape parameter and g is the scale parameter. Since it is convenient
to work with location-scale model, we consider the log-lifetimes of the components
W = In X in the analysis and W then follows the smallest extreme-value (SEV)
distribution with c.d.f.
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w—

FW(w;,u,a)zl—exp[—exp[ i|],—oo<w<oo,

with location parameter £ = Inf and scale parameter o = 1/«. Without loss of
generality, we set the location parameter 4 = 0 and the scale parameter 0 = 1 in
the simulation study. For details on the estimation of parameters in Weibull and SEV
distributions, one may refer to Meeker and Escobar (1998) and Nelson (2005).

The BS distribution was originally proposed to model failures due to cracks, and
is known as the fatigue life distribution. The BS distribution can be used to model
failure times of components in general as well. If the component lifetime X follows a
BS distribution, the c.d.f. of X is

Fx(x;y,k) =@ {i [(f)l/z _ (5)1/2“ ,x>0,y,k >0,

K X

where @ (-) is the standard normal c.d.f., y is the shape parameter and « is the scale
parameter. We set the shape parameter y = 0.2, 0.5, 1 and scale parameter k = 1 inthe
simulation study. The MLE of the parameters in BS distribution have been discussed
extensively in the literature, see, for example, Balakrishnan and Zhu (2014), Ng et al.
(2003) and the references therein.

Three different systems with different system signatures are considered in the sim-
ulation study:

sysl: 4-component series-parallel III system with system signature (1/4, 1/4, 1/2, 0);
sys2: 4-component mixed parallel I system with system signature (0, 1/2, 1/4, 1/4);
sys3: 3-component parallel-series system with system signature (0, 2/3, 1/3).

These systems were studied in detail and named as such by Navarro et al. (2007).
For each setting, if a complete sample is generated, the estimates were obtained by
SEM algorithm based on the ordinary system signature (SEM-SS), SEM algorithm
based on ordered system signature (SEM-OSS) and the direct numerical MLEs. For
censored sample, the estimates were obtained by SEM algorithm with unobserved
component lifetimes imputed directly (SEM-I) and SEM algorithm with unobserved
component lifetimes generated indirectly (SEM-II), as well as the direct numerical
MLEs. Initial values were set as @ =2 and ¢ = 2 for SEV distribution and
y©@ =3 and «© =3 for BS distribution, which were intentionally chosen to be far
away from the true values in order to examine the sensitivity of SEM algorithm to
the initial values. According to some reports (see, for example, Ye and Ng 2014),
a burn-in period of 100 cycles is long enough, while an additional 900 iterations is
sufficient to estimate # well. Ye and Ng (2014) also suggested to use a trace plot
of the {§7} sequence versus the iterations for checking the sufficiency of the burn-
in, and determining a more appropriate burn-in duration, if necessary. Therefore, in
each SEM cycle, the length of the parameter chain was set to be 1000. Bias and mean
squared error (MSE) for each estimation method were estimated basedon ¥ = 10, 000
realizations. Let 6 y) be the SEM estimate in the y-th realization. Then the estimated

bias is calculated as Bias = Z)V/:l (é(y) —60)/Y, and the estimated MSE is calculated

as MSE = 2521(6@) —#)?/Y. In addition, for evaluating the performance of SEM
algorithm in approximating the MLEs, the differences between the estimators based
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on SEM algorithm and MLEs were calculated in each simulation. Let 0 (y) be the MLE
in the y-th realization. Then, the estimated difference between SEM estimate and the

MLE was calculated as Diff, = ZL] (é(y) —0 (»)/ Y, and the estimated mean squared

differences (MSD) is calculated as MSD = Zﬁ:l(é(y) —9@))2/ Y. Note that the
numerical MLEs here were computed by using direct optimization via Nelder—Mead
algorithm (Lange 2001) with the estimate obtained from SEM as the initial value.

4.1 Complete system lifetime data

For the case when complete system lifetime data are observed, we consider the sam-
ple sizes m = 10, 20, 30, 50, 100. The estimated bias and MSEs of the estimates
obtained from two different SEM algorithms and the direct numerical MLEs of the
location and scale parameters in SEV distribution are all summarized in Table 3. Also
the differences between the estimates obtained from SEM algorithms and the direct
numerical MLEs are presented in Table 5. The results for the estimation of the shape
parameter y = 1 and ¥ = 1 in the BS distribution are summarized in Tables 4 and 6.
Similar results were also obtained when the shape parameter y = 0.2,0.5 and x = 1
in BS distribution. For the sake of brevity, we only present the simulation results for
the case y = 1 and k = 1 here.

From Tables 3 and 4, the performance of SEM-OSS and MLE are seen to be quite
close, while the bias and MSEs of SEM-SS tend to be larger than those of the numerical
MLEs. For SEM-OSS, the bias and MSE decrease as the sample size increases. From
Tables 5 and 6, we can further observe that the SEM algorithm based on the ordered
system signature provides a close approximation to the direct numerical MLEs. As
the sample size increases, the SEM-OSS estimates become quite close to the MLEs.
Although the ordered system signature is calculated based on the ordinary system
signature only, it provides more information. A possible reason for the SEM-OSS per-
forming better than SEM-SS is that the imputations of unobserved component lifetimes
from the ordered system signature give values distributed more evenly over the whole
distribution compared to the imputations based on the ordinary system signature.

4.2 Type-II censored system lifetime data

For Type-II censored system lifetime data, we consider the sample sizes m = 10, 30
and 50, with censoring proportion g = 10 %, 20 %, 30 %, 40 %, 50 % for m = 10;
q = 20 %, 30 %, 40 %, 50 % for m = 30; and ¢ = 20 %, 30 % for m = 50. Other
simulation settings are exactly the same as in the case of complete system lifetime
data. The estimated bias and MSEs of the estimates obtained from the two different
approaches of implementing the SEM algorithm (SEM-I and SEM-II) and the direct
numerical MLEs are presented in Tables 9 and 10 for the SEV and BS distributions,
respectively. To study the effectiveness of the SEM algorithm in approximating the
MLE, the differences between the SEM estimates and the numerical MLEs in each
iteration were computed, and summarized in Tables 7 and 8 for the SEV and BS
distributions, respectively.
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Based on these results, it can be seen that the estimates based on SEM-I and SEM-
II perform well compared to the numerical MLEs. In general, the SEM-I estimates
and SEM-II estimates approximate MLEs very well when the censoring proportion
is moderate (say, 30 < g < 50 %). The bias and MSEs of the estimates increase
when the censoring proportion increases. When the censoring proportion is small (say,
qg < 20%), the estimates obtained based on SEM-II are seen to be as good as the
direct MLEs. SEM-II performs slightly better than SEM-I when the censoring pro-
portion is small in terms of bias, MSE and the distance to numerical MLEs. However,
further study shows that when the censoring proportion is large (say, ¢ > 70 %), the
bias of SEM-II indeed becomes larger than that of SEM-I.

5 Illustrative examples
5.1 4-component series-parallel III system with Weibull distributed components

A system lifetime sample generated by Balakrishnan et al. (2011b) is used here to illus-
trate the proposed SEM algorithm. The sample system lifetime data were generated
from a 4-component series-parallel III system (Navarro et al. 2007) with system sig-
nature s = (1/4, 1/4, 1/2, 0) and sample size m = 10, and with component lifetimes
following a Weibull distribution with scale parameter § = 3 and shape parameter
a = 2 (equivalent to the SEV distribution with location parameter ;. = 1.0986 and
scale parameter o = 0.5). These data are presented in Table 11.

We first present the performance of estimates based on SEM-SS and SEM-OSS,
MLEs and BLUE when there is no censoring. We implemented the SEM algorithm
with starting values ©£® = 0 and ©® = 1. The first 100 iterations were used as burn-
in, and additional 900 iterations were then used to obtain the final parameter estimates.
The unobserved component lifetimes were imputed based on the system signature s =
(1/4,1/4,1/2,0) inthe S-step of SEM-SS, while the unobserved component lifetimes
were imputed based on the ordered system signatures for SEM-OSS. Monte Carlo
method was employed to approximate the ordered system signatures. For instance,
in this example, the approximated second ordered system signature is s =
(0.5577, 0.2865, 0.1558, 0) and the approximated 9-th ordered system signature is
g1 (0.0268, 0.1579, 0.8153, 0). The Fisher information matrix and the asymp-

Table 11 Simulated system lifetimes with signature (1/4, 1/4, 1/2, 0), and component distribution
Weibull(3,2), taken from Balakrishnan et al. (2011b)

j 1 2 3 4 5
Tj10 0.72717 1.02050 1.38633 1.61244 1.70590
Xju10 = InTj0 —0.13836 0.00881 0.14187 0.20748 0.23195
j 6 7 8 9 10

Tj10 176789 2.67863 3.02676 3.25943 3.78497
Xji10 =InTj10 0.24746 0.42791 0.48098 0.51314 0.57806
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Table 12 Estimation results from the data in Table 11

q (%) Method n o
Estimate  Variance 95 % CI Estimate  Variance 95 % CI
0 SEM-SS 1.0327 0.0312 (0.6862, 1.3792)  0.6360 0.0591 (0.3006, 1.3457)
SEM-OSS 0.9774 0.0189 (0.7083, 1.2465)  0.5072 0.0192 (0.2970, 0.8660)
MLE 0.9912 0.0184 (0.7254, 1.2572)  0.4990 0.0181 (0.2940, 0.8468)
BLUE 1.0141 0.0216 (0.7262, 1.3020)  0.5366 0.0254 (0.2999, 0.9601)

30 SEM-I 0.9462 0.0224 (0.6531, 1.2393)  0.4943 0.0246 (0.2652,0.9211)
SEM-11 0.9774 0.0259 (0.6622, 1.2927)  0.5072 0.0276 (0.2668, 0.9642)
MLE 0.9949 0.0297 (0.6569, 1.3328)  0.5292 0.0331 (0.2699, 1.0377)
BLUE 1.0623 0.0499 (0.6243, 1.4798)  0.5985 0.0584 (0.2713, 1.3202)

totic variance-covariance matrix of the estimates were obtained by substituting the
SEM estimates into the corresponding formulas presented in Zhang et al. (2015).
95 % confidence intervals of the parameters were calculated according to Equations
(5) and (8) in Zhang et al. (2015). The point and interval estimates obtained by differ-
ent methods are presented in Table 12. Again, this example shows that the estimates
obtained from SEM-OSS are very close to the direct numerical MLEs. The variances of
the estimates based on SEM-OSS are seen to be the smallest among the four methods.

Second, we consider the case of Type-II censoring with censoring proportion g =
30 %. Balakrishnan et al. (2011b) and Zhang et al. (2015) considered this setting and
obtained the BLUEs and MLEs of the model parameters. The evolution paths of SEM
estimates based on the direct imputation of component lifetimes (SEM-I) and based on
the two-stage procedure by first imputing the censored system lifetimes (SEM-II) are
shown in Figs. 2 and 3, respectively. The SEM cycles oscillate around the horizontal
lines which indicate the MLEs but do not show any upward or downward trend. This
reveals that chains 8/ have converged to a stationary distribution, similar to the results
obtained in Nielsen (2000). It is sufficient to use the average of the chains to estimate
the parameter, and the estimate will be close to the MLE.

The estimates obtained from the proposed SEM algorithms are presented in
Table 12. In this case, it is clear that estimates based on SEM-I and SEM-II approxi-
mate the MLEs very well and the variance of the estimates based on SEM algorithms
are also smaller.

5.2 Consecutive 2-out-of-8: F system with Birnbaum-Saunders distributed
components

The phosphor acid filter system (Frenkel and Khvatskin 2006) as described in Sect. 2
is a real life prototype for n-component system. It is a consecutive 2-out-of-n: F
system, in which, the failure of any 2 adjacent components failure will lead to the
system failure. For illustrative purpose, we provide here a numerical example based
on the consecutive 2-out-of-8: F system. If the components in the system have equal
chance of failure, then the system signature is s = (0, 1/4, 11/28,2/7,1/14,0, 0, 0).

@ Springer
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We simulated the lifetimes of m = 20 consecutive 2-out-of-8: F systems in which the
component lifetimes follow the BS distribution with shape parameter y = 1 and scale
parameter k = 1. The data are presented in Table 13. As in the previous example, SEM-
SS algorithm and SEM-OSS algorithm were employed to compare with the MLEs.
The first 100 iterations were used as burn-in, and additional 900 iterations were used to
obtain the final parameter estimates. Then, the case of Type-II censoring with censoring
proportion ¢ = 20 % was considered. The estimates based on SEM-I algorithm and
SEM-II algorithm were obtained. The required ordered system signature was obtained
by Monte Carlo simulation. The variance of the parameter estimates for both cases
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Table 13 Consecutive 2-out-of-8 system lifetimes with signature (0, 1/4, 11/28, 2/7, 1/14, 0, 0, 0), and
component distribution BS(1,1)

j 1 2 3 4 5 6 7 8 9 10

Tjno 02598 02803 03329 04172 04532 0459 05541 05769 0.5842 0.7784

j 11 12 13 14 15 16 17 18 19 20

Tjno 07917 0.8565 0.8895 0.9186 0.9348 1.1130 1.2049 1.3938 1.4406 1.6351

Table 14 Estimation results from the data in Table 13

q Method y K

Estimate  Variance 95 % C.I Estimate  Variance 95 % C.I

0%  SEM-SS 1.2263 0.0795 (0.7814, 1.9246)  1.1277 0.0396 (0.7981, 1.5934)
SEM-OSS  1.0137 0.0284 (0.7319, 1.4039)  1.0586 0.0201 (0.8142, 1.3763)

MLE 1.0190 0.0290 (0.7342, 1.4141)  1.0559 0.0200 (0.8124, 1.3725)
20% SEM-I 1.0575 0.0414 (0.7253, 1.5420)  1.0741 0.0270 (0.7958, 1.4496)
SEM-II 1.0137 0.0338 (0.7103, 1.4467)  1.0586 0.0235 (0.7970, 1.4061)
MLE 1.0949 0.0500 (0.7337,1.6340)  1.1090 0.0346 (0.7982, 1.5407)

were obtained by inverting the observed Fisher information matrix, according to the
formulas given in Zhang et al. (2015). 95 % confidence intervals of the parameters
were then calculated according to Equation (8) in Zhang et al. (2015).

The estimates obtained from the SEM algorithms are presented in Table 14.
For complete sample case, the estimates obtained from SEM algorithm based on
ordered system signature are very close to the direct numerical MLEs, both in the
case of point and interval estimation. For the Type-II censoring case with censor-
ing proportion 20 %, the two approaches of the SEM algorithm do provide good
approximation to the direct MLEs. This numerical example demonstrates that the pro-
posed SEM algorithm works very well for different values of n and different lifetime
distributions.

5.3 Software

All the computations were conducted in R version 3.1.1 (R Core Team 2014). Code in
R for different approaches to implement the SEM algorithm and the computation of
the MLEs are available in the supplementary material. Detailed descriptions of these
R programs and examples based on the numerical examples in Sects. 5.1 and 5.2 are
also provided in the supplementary material. The results in Tables 12 and 14 were
generated using a specific random seed value (see supplementary material). It should
be noted that a change in the random seed value will result in a change in the estimates
and confidence intervals. However, since the results are based on 1000 SEM iterations
(with the first 100 as burn-in), we can expect the results obtained with different seed
values to yield results that are reasonably close.
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6 Concluding remarks

In this paper, the estimation of parameters of the component lifetime distribution based
on complete and censored system lifetime data have been studied. Different ways have
been suggested for implementing the SEM algorithm and their performances have been
evaluated by Monte Carlo simulations. It has been shown that the SEM algorithm based
on ordered system signature approximates the directly numerical MLE very closely.

Since the use of the ordered system signature does not add complexity to the compu-
tation and that the exact ordered system signatures are not required, the SEM algorithm
with the ordered system signature is the one we would recommended to use. The SEM
algorithm is easy to program and implement as long as the truncated distributions
of the underlying component lifetime distributions are easy to simulate from. In the
case when several statistical models are under consideration for model fitting, instead
of going through all the cumbersome derivations of the MLEs and writing computer
programs to obtain the MLEs for every single distribution under consideration, the
SEM algorithm provides an attractive alternative since we only need the algorithms to
generate from the component lifetime distribution ggy in Eq. (7) and g1 x in Eq. (8).

SEM algorithm might not be as efficient computationally as the MLEs obtained
by direct maximization when the censoring proportion is large. SEM-II algorithm
runs slower than SEM-I algorithm as it needs to impute two layers of the missing
information, both the missing system lifetime and component lifetime. Moreover,
the SEM-II algorithm requires to simulate the missing system lifetime which might
introduce large bias when the censoring proportion is large.

SEM algorithm based on ordered signature is a highly competitive algorithm for
the analysis of system-level lifetime data. For the complete data case, the SEM-OSS
algorithm results in estimates very close the direct numerical MLEs, and better than
those resulting from the SEM-SS algorithm. For Type-II censored data case, SEM-I
algorithm and SEM-II algorithm perform similarly in the sense that both approximate
the MLESs very well. When censoring proportion is small to moderate (say,g < 40 %),
SEM-II algorithm is the one to be recommended for use. When censoring proportion
is large (say, ¢ > 40 %), SEM-I algorithm is recommended for use.

The SEM algorithms presented in this work could be extended to Type-I censored
data with some straightforward modifications. Specifically, suppose a Type-I censored
life testing experiment with m systems gets terminated at a pre-fixed time 7o and
r system failures are observed before time tp while (m — r) system lifetimes are
censored. Here, r is a random variable. Conditional on the observed value of r, the
SEM algorithm (SEM-I) presented in Sect. 3.2.1 can be used by setting T = 1 and the
point of truncation #; = 7¢ in Egs. (7) and (8). Similarly, the SEM algorithm (SEM-II)
presented in Sect. 3.2.2 can be used by setting T = 1. Besides Type-I censoring,
the SEM algorithm proposed in the preceding sections could be applied to other
generalized censoring schemes such as hybrid censoring (Epstein 1954; Balakrishnan
and Kundu 2013) and progressive censoring (Balakrishnan and Cramer 2014). Since
the results developed in this work are for coherent and mixed systems with i.i.d.
components, it will be of interest to generalize these results to reliability systems with
non-i.i.d. components and/or dynamic systems. Research in this direction is currently
under progress, and we hope to report these findings in a future paper.
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