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Abstract Multi-stage selection is practised in numerous fields of the life sciences and
particularly in breeding. A special characteristic of multi-stage selection is that candi-
dates are evaluated in successive stages with increasing intensity and efforts, and only
a fraction of the superior candidates is selected and promoted to the next stage. For the
optimum design of such selection programs, the selection gain ΔG(y) plays a central
role. It can be calculated by integration of a truncated multivariate normal distribution.
While mathematical formulas for calculating ΔG(y) and ψ(y), the variance among
the selected candidates, were developed a long time ago, solutions and software for
numerical calculations were not available. We developed the R package selectiongain
for efficient and precise calculation of ΔG(y) and ψ(y) for (i) a given matrix Σ∗ of
correlations among the unobservable target character and the selection criteria and (ii)
given coordinates Q of the truncation point or the selected fractions α in each stage.
In addition, our software can be used for optimizing multi-stage selection programs
under a given total budget and different costs of evaluating the candidates in each
stage. Besides a detailed description of the functions of the software, the package is
illustrated with two examples.
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1 Introduction

Selection is often amulti-stage procedure in many fields of the life sciences. In the first
stage, a large number of candidates (e.g., animals, plant varieties or potential drugs)
is tested with low costs per candidate, resulting in a low precision of the estimates of
an unobservable target character to be selected for. A fraction of superior candidates
is selected based on their estimated performance, and tested in a second stage with
higher efforts and costs per candidate, which increases the precision of the estimates.
This process is usually continued over multiple stages.

Based on the observations of each candidate up to a certain stage, either linear
combinations or best linear unbiased predictors (BLUPs) for the target character of
the candidate are calculated. They serve as selection criteria and are assumed to fol-
low a multivariate normal (MVN) distribution. With fixed proportions of the selected
fraction set by the experimenter in each stage, the truncation point of the correspond-
ing MVN distribution can be calculated, provided that the covariance or correlation
matrix of the selection criteria in all stages is known. Moreover, the progress due to
selection, denoted asΔG(y), and commonly referred to as selection gain, is defined as
the difference between the expectation of y, the true unobservable target character of
the candidates, after and before the selection. It can be obtained as amulti-dimensional
integral over a restricted area defined by the truncation point (Lynch andWalsh 1997).
An algorithm for calculating the selection gain without multidimensional numerical
integral was developed by Xu et al. (1995), however this method requires decompo-
sition and inverse of the correlation matrix, which cannot be solved in linear time if
the dimension is high and the structure of the matrix is not sparse.

Besides calculation of ΔG(y), the experimenter has also an interest in the vari-
ance among the selected candidates, ψ(y), after multiple stages of selection. Among
others, this influences the decision whether there is still a reasonable chance to make
further progress by additional selection stages (Cochran 1951). While multi-stage
selection plays a central role in animal and plant breeding, the principles of multi-
stage selection also apply to many problems in the social, industrial, pharmaceutical,
and medical sciences (West-Eberhard 1983; Villet et al. 2006; Shi and Zhou 2009).
Efficient algorithms for calculation of ΔG(y) are also crucial for strategies to deter-
mine the optimum allocation of resources in the different selection stages for achieving
amaximum selection gain under a restricted budget. In practical examples, such as dis-
ease identification and vaccine selection or stock-picking strategies, computing time
is a very important factor (Yan and Clack 2011). Hence, there is an urgent need to
develop fast and efficient algorithms for calculation of ΔG(y) and ψ(y).

Cochran (1951) first described the theory of multi-stage selection and derived an
analytical solution of ΔG(y) and ψ(y) for two-stage selection. For one-sided multi-
variate truncation selection, Tallis (1961) gave a general solution by using the moment
generating function (MGF) of the MVN distribution.

In order to calculate the integral of MVN distribution, Genz et al. (2011) developed
the R package mvtnorm. It employs a quasi-Monte Carlo algorithm, for which the
computation time increases linearly with the dimension n and the computing time of
ΔG(y) is proportional to n2 (n ∈ N and n < 1000) (Genz and Bretz 1999). With a
recursive linear integration procedure,mvtnorm calculates theMVN integralwith even
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higher accuracy without compromising the computation time when n < 20 (Miwa
et al. 2003; Mi et al. 2009).

In this paper, we present the R package selectiongain, designed for evaluating
ΔG(y) and ψ(y) under one-sided truncation selection in multiple stages. In addition,
we provide functions for optimizing multi-stage selection under given restrictions on
the budget for many scenarios, with special emphasis on applications in breeding. One
numerical example for checking the computation time and accuracy, and one practical
example from breeding are provided.

2 Calculation of selection gain, variance among selected
candidates, and truncation point

In this section, ΔG(y) is introduced as the first moment of a MVN distribution over a
restricted area, defined by the coordinates of the truncation point. Furthermore, ψ(y),
will be introduced as the second central moment of a MVN distribution over the same
restricted area. The coordinates of the truncation point, corresponding to the selection
criteria, will be computed for a given vector of selected fractions.

The underlying statistical model for our calculations is as follows. Suppose we
start with Ni candidates from a population in stage i and the j th candidate has mi, j

observations. The final goal is to have Nn+1 candidates selected after n stages of
selection.

LetO j = {Oi, j } be the mean of the mi, j observations on the j th candidate in each
stage i = 1, . . . , n, where Oi, j = 1

mi, j

∑mi, j
l=1 oi, j,l and oi, j,l is the lth observation

of the j th candidate in the i th stage with oi, j,l = y j + Ei, j,l . Here, Ei, j,l is a noise
variable that depends on the selection stage but is stochastically independent among
the candidates. The scalar Oi, j is a value of a single character, e.g., a test score in
an exam for college admission or grain yield in the context of breeding or a function
of several traits weighted with economic parameters (Falconer and Mackay 1996). In
this paper, we focus on the problem of selection for a univariate target character.

The selection criterion xi, j for candidate j in stage i is a linear regression on
O j , i.e., xi, j = ∑i

k=1 βkOk, j , whose regression coefficients are calculated via
regression or BLUP, xi, j = BLUP(O1, j , O2, j , . . . , Oi, j ), obtained by solving the
mixed model equations. Here, we denote x∗

j = {y j , xi, j } and x j = {xi, j }, where
x j is the vector of selection criteria for candidate j in stage i = 1, . . . , n. Note
X∗ = {Y, X1, X2, . . . , Xn} andX = {X1, X2, . . . , Xn}, where Xi and Y represent the
corresponding random variables of xi, j and y j , respectively. For a convenient order-
ing of indices, we will denote Y as X0, and y as x0 in summations and the MGF.
Furthermore, we assume that X0, X1, . . . , Xn are MVN distributed.

The theory of multi-stage selection is based on the mean of y in the selected area
(Cochran 1951). For simplicity, the mean and the variance of y are set to 0 and 1, i.e.,
E(y) = 0 and σ 2

y = 1. If σ 2
y �= 1, ΔG(y) and ψ(y) have to be multiplied with σy

or σ 2
y , respectively. In order to calculate ΔG(y), we have to determine the one-sided

integral of y over the right-sided area SQ = {x1 > q1, . . . , xn > qn} defined by the
truncation pointQ = {q1, q2, . . . , qn}. If xi, j ≥ qi , where qi is the threshold for stage
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i , then the j th candidate in stage i is promoted to the next stage. The value of ΔG(y)
is denoted as E(Y ;SQ). Thus, ΔG(y) is defined as

ΔGn(y,SQ,U∗,Σ∗) = E(Y ;SQ)=α−1
∫ ∞

−∞

∫ ∞

q1
. . .

∫ ∞

qn
y φn+1(x∗;U∗,Σ∗) dx∗,

(1)
where

α = Φn(Q,Σ) =
∫ ∞

q1
. . .

∫ ∞

qn
φn(x;U,Σ) dx, (2)

and

φn(x;U,Σ) = 1√
(2π)n|Σ | exp

(

−1

2
(x − U)TΣ−1(x − U)

)

, (3)

where, φn is the density function of MVN, and Σ is the correlation matrix ofX. Σ∗ is
the correlation matrix of X∗. It comprises Σ , but has one dimension more pertaining
to the correlations between Y = X0 and the selection criteria X. The mean vector
U∗ = {u0, u1, . . . , un} of φn+1 is omitted, assuming U∗ = {0, 0, . . . , 0} without
loss of generality, and consequently, we write briefly φn+1(x∗;Σ∗), φn(x;Σ) and
ΔGn(y,SQ,Σ∗). The selection gain is the first moment, while the selected fraction
α over all n stages of selection corresponds to the zero-th moment of the one-sided
truncated MVN distribution of X.

The functionψ(y) is defined as the second central moment,ψn(y) = E(Y 2;SQ)−
[
E(Y ;SQ)

]2, where

E(Y 2;SQ) = α−1
∫ ∞

−∞

∫ ∞

q1
. . .

∫ ∞

qn
y2 φn+1(x∗;Σ∗) dx∗. (4)

If n is large, it is not efficient to calculate the Riemann integral of ΔG(y) by using
the simple summation principle of Riemann sums, which subdivides the integrated
area into several small hypercubes and sums up their volumes. The computing time
of the Riemann sums is proportional to gn+1, where g is the number of grid points for
integration (Press et al. 1993).

For a given truncation point Q, the MGF of the truncated MVN variable X∗ ∈
S∗
Q = {y > −∞, x1 > q1, . . . , xn > qn} is calculated by the procedure given by

Tallis (1961) as:

m(T ) = α−1
∫ ∞

−∞

∫ ∞

0
...

∫ ∞

0
eTx

∗
φn+1(x∗;U′,Σ∗) dx1...dxndy, (5)

here, T = {t0, t1, . . . , tn} and the lower limit of x is standardized from SQ =
{q1, . . . , qn} to 0 = {0, 0, . . . , 0}, so themean of x∗ is shifted fromU∗ = {0, 0, . . . , 0}
to U′ = {0,−q1, . . . ,−qn}.

By differentiating and evaluating theMGF at t0 = 0, the (n+1)-dimensional integral
of E(Y ;SQ) is turned into a sum of n+1 (n)-dimensional MVN distribution functions
with new quantiles and partial correlation matrices, which are calculated according to
the routines given by Tallis (1961). Due to the definition of y, its lower limit is minus
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infinity. This fulfills the special case mentioned in Tallis (1961), which reduces the
(n)-dimensionalMVN integral into (n−1)-dimensional integral. Similarly, E(Y 2;SQ)

is calculated by taking the second order of derivatives.
In practice, a predefined fraction αi of the superior candidates is selected in stage i .

Hence, the coordinates of Q must be calculated from the vector of selected fractions
α = {α1, α2, ..., αn}. The coordinates qi are obtained by inverting the following
equations sequentially:

α1 = f (q1) =
∫ ∞

q1
φ1(x1) dx1, (6)

which yields q1;

α1α2 = f (q1, q2) =
∫ ∞

q2

∫ ∞

q1
φ2(x1, x2; ρ1,2) dx1 dx2, (7)

which yields q2 for given values of q1, α1 and α2, and so on for i = 3, 4, . . . , n. The
value of qn is finally obtained by using q1, q2, . . . , qn−1 and α1, α2, . . . , αn :

n∏

1

αi =
∫ ∞

qn

∫ ∞

qn−1

...

∫ ∞

q1
φn(X;Σ) dx. (8)

These equations can be solved numerically via a fast root search algorithm as
described for example by Brent (1973) and implemented in the R function uniroot.

3 Optimizing selection scenarios under restricted budget with
a fixed or dependent correlation matrix

In practice, a selection program has a limited budget B to cover all costs such as (i)
producing or providing the Ni candidates and (ii) evaluating the Ni candidates in stage
i . For a given testing scheme with N = (N1, . . . , Nn) candidates in the i th stage of
selection (i = 1, . . . , n), the costs are determined by the cost function C(ω),

C(ω) =
n∑

i=1

(Ni ∗ Cost Prodi + Ni ∗ CostT esti ) ≤ B, (9)

where Cost Prodi refers to the costs of producing or providing a candidate, and
CostT esti refers to the costs of testing a candidate. Both of them are measured in
terms of test units. Here ω is a vector of Ni . Let Ω(B) be a subset of all possible ω

that C(ω) ≤ B. Thus, the set of admissible allocations Ω(B) of the candidates to the
various stages of selection is given by

Ω(B) := {ω = N|C(ω) ≤ B}. (10)
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Hence, our goal is to find ω̃ ∈ Ω(B) with

ΔG(y,Sω̃, Σ∗) = MAXω∈Ω(B)ΔG(y,Sω,Σ∗), (11)

where Sω refers to the truncation point ω corresponding to α = {α1, . . . , αn}, with
αi = Ni+1/Ni for i = 1, . . . , n. The matrix Σ∗ is determined by the correlations
among the selection criteria in the n stages of selection as well as their correlations to
y. Hence, for given but possibly different testing procedures in each stage, Σ∗ is fixed
and independent of the choice of N.

The simplest way to find the maximum is to do a full scan of the entire set Ω(B),
which calculatesΔG(y,Sω,Σ∗) for all possible allocations ofω(B) in order to deter-
mine ω̃ yielding the maximum of ΔG(y). However, this is very time consuming. An
alternative solution is to use grid search, which divides the whole set Ω(B) into
several grids (Kim 1997). Another way for finding the maximum is using optimiza-
tion algorithms for non-linear minimization (NLM) provided by R function nlm and
constrOptim, which are functions of R core package stats (R Core Team 2013). The
function nlm uses a Newton-type algorithm for searching the maximum of a multi-
modal function (Ron and Bruce 2009). This Newton-type algorithm depends heavily
on the starting point, the maximum number of iterations as well as the numerical
derivatives of ΔG(y) and results in an accuracy less than four digits. Xu et al. (1995)
reported that the NLM algorithm converges to a local maximum, if the initial value is
inappropriate. So the grid algorithm is recommended to run before NLM for getting an
appropriate starting point. Here, wemainly employed the function constrOptim, which
uses an Adaptive Barrier algorithm as core optimization function for our non-linear
optimization problem.

The computational time of the NLM algorithm is proportional to N1 ∗ log(N1)∗n2,
while the computational time of the algorithm for full space scan or grid search is
proportional to N 2

1 ∗ n2 or N 2
grid ∗ n2, respectively, where N1 is the number of the

initial candidates, Ngrid is the number of grids and n is the number of selection stages.
Hence, the calculation speed is much faster for the NLM and grid search algorithm
than the full space scan, especially when the initial sample size N1 is large.

A special and more complicated scenario relates to tests of candidates with depen-
dent correlation matrix. For example, in plant breeding the candidates are usually
tested and selected in replicated multi-location trials over several years, correspond-
ing to the stages of selection. Thus, besides N, referring to the numbers of candidates
to be tested in each stage, the breeder must also decide on the intensity of testing, as
reflected by vector for the number of test locations L = {L1, . . . , Ln} and replica-
tions R = {R1, . . . , Rn}, where Li and Ri refer to the number of test locations and
replications per location, in stage i , respectively.

If there is no upper limit on Li , then Ri = 1 is optimal for maximizing ΔG(y)
(Longin et al. 2007). Normally, a large number of candidates (corresponding to geno-
types in plant breeding) will be tested in few locations at the first stage, i.e., L1 = 1 or
2. Under this scenario, the elements inΣ∗ are a rational function ofL,R and the vector
of variance components Vc = {Vg, Vgl, Vgy, Vgly, Ve}, where the latter refer to
the components of variance among genotypes (Vg), genotype × location interactions
(Vgl), genotype × year interactions (Vgy), genotype × location × year interactions
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(Vgly) and plot error (Ve). Here, Vg corresponds to σ 2
y and is set equal to 1. Like-

wise, the costs are not only a function of N, but also of L and R, because each test
plot in field trials is associated with costs. Hence, the set of admissible allocations of
resources Ω(B) can be described as

Ω(B) := {ω = (N,L,R)|C(ω) ≤ B}. (12)

In the simplest case,

C(ω) =
n∑

i=1

Ni ∗ Cost Prodi + Ni ∗ Li ∗ Ri ∗ CostT esti ≤ B. (13)

4 Example one: accuracy and time for calculating selection gain

In this section,we compare the error and time required for calculating the selection gain
with two different algorithms: the Miwa algorithm and the Genz and Bretz algorithm.
Our computer was a PC with an Intel� i5-540M processor (2.53 GHz). The operating
system is Linux (Ubuntu LTS 12.04). The package mvtnorm (version 0.90-9995) and
selectiongain (version 0.2-27) were installed in a 64-bit version of R (3.0.2).

TheMiwa algorithm is a numerical algorithm that has at least 7 decimal places with
128 grid points (g = 128) (Mi et al. 2009). We checked our results calculated by the
Miwa algorithmwith the results fromCochran (1951) and found that they are identical.
We also compared the accuracy of the Miwa algorithm (g = 64 and g = 128) and
the Genz and Bretz algorithm (with absolute error tolerance ε = 10−3, 10−4, 10−5

and n = 10) for probabilities with centered orthant probabilities (COP) (worst case
scenario for Miwa algorithm) with correlation coefficients of Σ∗ defined as

ρi, j =
{
1, i = j
ρ, i �= j

1 ≤ i ≤ n.

In calculating ΔG(y) with ρi, j = 0.5, the error was smaller, the smaller ε was
(Fig. 1). The Genz and Bretz algorithm, however, could not reduce the error below
10−3, because the ε used in this Monte-Carlo algorithm determines the accuracy
for calculating the probability of the MVN distribution. During the procedure for
calculating of ΔG(y), the error will accumulate. In contrast, the Miwa algorithm with
g = 64 or g = 128 grid points still keeps the accuracy at six or seven digits. Figure 2
illustrates that the computation with the Miwa algorithm is very slow compared with
the Genz and Bretz algorithm.

5 Example two: optimization of two-stage selection in plant breeding

In this subsection, we determine the optimum allocation of resources for a two-stage
selection problem in plant breeding taken from Longin et al. (2007). The goal is to
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Fig. 1 Boxplot of the selection gain calculated with centered orthant probabilities, n = 10, ρi, j = 0.5, i �=
j , 1 ≤ i ≤ n. M1, M2, M3: Genz and Bretz algorithm (ε = 10−3, 10−4, 10−5). M4, M5: Miwa algorithm
(g = 64 and g = 128 grid points)

find the best allocation of resources, which maximizes ΔG(y) for a single target trait,
e.g., grain yield.

In this experiment, Longin et al. (2007) assumed that:

1. The selection candidates are lines in plant breeding with variance components
Vg : Vgl : Vgy : Vgly : Ve = 1 : 0.5 : 0.5 : 1 : 2, specified by Longin et al.
(2007) on the basis of breeding experiments reported in the literature.

2. Cost Prod = {0.5, 0}, CostT est = {1, 1}, Ri = 1, N f = N3 = 1 or 4, Ni+1 ≤
Ni and Li+1 ≥ Li . Here, N f is the final selected number of candidates, which is
equal to the number of candidates in the last stage.

3. Three different budgets B were chosen corresponding to 200, 1000, or 5000 test
plot units.

The correlation matrix Σ∗, the vector of selected fractions α and the optimization
depend on these constraints. For n = 2, the routines for determining the correlation
matrix from the given variance components and a fixed number of locations is illus-
trated with the numerical example of Longin et al. (2007) and integrated in function
multistagecor of our package.

Table 1 shows the calculated ΔG(y) and ψ(y) for the allocations examined by
Longin et al. (2007) with the Miwa algorithm. We also compared the result with
the reported maximum and found agreement up to three digits. The ψ(y) is usually
calculated after the optimization of ΔG(y) for controlling the variations. In breeding,
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Fig. 2 Boxplot of the time used (in seconds) for computing the selection gain calculated with centered
orthant probabilities, n = 10, ρi, j = 1/2, i �= j , 1 ≤ i ≤ n. M1, M2, M3: Genz and Bretz algorithm

( ε = 10−3, 10−4, 10−5). M4, M5: Miwa algorithm (g = 64 and g = 128 grid points)

Table 1 Selection gain calculated for allocations identical to those given by Longin et al. (2007)

N f B N1 N2 L1 L2 ΔG(y) ΔG(y)(Longin) ψ(y)

1 200 53 6 2 10 1.8479682 1.848 0.4707116

1 1000 286 14 2 18 2.3483680 2.348 0.4160850

1 5000 1463 38 2 31 2.7800706 2.780 0.3806510

4 200 79 15 1 5 1.3750382 1.375 0.5828703

4 1000 272 26 2 11 1.9236208 1.924 0.4612778

4 5000 1422 64 2 20 2.4118284 2.412 0.4081624

N f is the number of final selected candidates in stage three. B is the Budget of test units. Ni are the
number of candidates in stage i . Li are the number of Locations in stage i . ΔG(y) is the selection gain,
ΔG(y)(Longin) is the selection gain calculated by Longin and ψ(y) is the variance among the selected
candidates

if two different allocations achieve the maximum simultaneously, the one with larger
ψ(y) will be chosen.

The maximum in the grid search and the NLM search is found in Table 2 (for
direct comparison, the number of locations are identical to those identified by the grid
search). TheΔG(y) calculated with the NLM search was similar as the one calculated
from the grid search. However, NLM is a continuous search algorithm so that the
calculated values of N1 and N2 are not discrete and do not fit exactly the applications
in breeding.
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Table 2 Maximum selection gain determined by grid search and NLM search

N f B Grid search NLM search

N1 N2 L1 L2 ΔG(y) N1 N2 ΔG(y)

1 200 86 10 1 7 1.850 87.06 9.92 1.851

1 1000 299 18 2 14 2.355 305.61 16.85 2.353

1 5000 1532 45 2 26 2.787 1544.17 43.83 2.787

4 200 88 17 1 4 1.386 87.56 17.17 1.386

4 1000 395 37 1 11 1.925 399.14 36.48 1.925

4 5000 1463 61 2 22 2.421 1447.47 62.79 2.421

N f is the number of final selected candidates in stage three. B is the Budget of test units. Ni are the number
of candidates in stage i . Li are the number of locations in stage i . ΔG(y) is the selection gain

The Genz and Bretz algorithm is the default algorithm. We recommend advanced
users to apply the grid search on a large scale by using the Miwa algorithm, before
performing aNLM search. First, the grid search is used to find a point, which is close to
the global maximum point. Second, a NLM algorithm or a grid search with small scale
can be carried out around this point. For further comparison, Monte Carlo simulations
and analytical solutions for higher dimension selection are available (Longin et al.
2007; Wegenast et al. 2010; Mi et al. 2011). With our package, the user can easily
build the mathematical model for these new situations and perform the necessary
calculations for determining the optimum allocation of resources.

6 Conclusions

We have developed the R package selectiongain, which allows precise (at least for five
digits) and fast calculation of ΔG(y) with the help of the MGF. Our software can be
used to find solutions formulti-stage selection programs in awide field of applications.

Compared to the scenarios, where ΔG(y) must be optimized with regard to N, for
fixed Σ∗ and ω ∈ Ω(B), the situation is more complex for multi-stage selection in
plant breeding. Here, the breeder does not only varyN but also the number of locations
L and replications R, which influences the value of Σ∗.

As new technologies and methods are invented and developed, the importance of
multi-stage selection will increase in the future in many areas of the medical, natural
and social sciences. Hence, algorithms and software for dealing with high dimensional
data in selection problems are urgently required. The goal of our software is to assist
practitioners in optimizing the experimental design and portfolio analysis for multi-
stage selection programs.
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