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Abstract This paper focuses on the estimation of the coefficient functions, which is
of primary interest, in generalized varying-coefficient models with non-exponential
family error. The local weighted quasi-likelihood method which results from local
polynomial regression techniques is presented. The nonparametric estimator based on
iterative weighted quasi-likelihood method is obtained to estimate coefficient func-
tions. The asymptotic efficiency of the proposed estimator is given. Furthermore,
some simulations are carried out to evaluate the finite sample performance of the pro-
posed method, which show that it possesses some advantages to the previous methods.
Finally, a real data example is used to illustrate the proposed methodology.
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1 Introduction

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn
(1972) as a unifying concept of the linear model. They are based on two fundamen-
tal assumptions: the conditional distributions belong to an exponential family and a
known transform of the underlying regression function is linear. An important exten-
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sion proposed by Wedderburn (1974) is the quasi-likelihood function, which relaxes
the above model assumptions. It only requires assumptions on the first two moments,
rather than the entire distribution of the data. The quasi-likelihood approach is useful
because in many situations the exact distribution of the observations is unknown. In
addition, a quasi-likelihood function has statistical properties similar to those of a
log-likelihood function.

The generalized varying-coefficient models are such GLMs that the coefficients
of the explanatory variables are assumed to vary with another factor. Let Y be the
response variable, which is to be predicted by the associated covariates (X,U), where
X = (X1, X2, . . . , X p)

T and U = (U1,U2, . . . ,Ud)
T are possibly vector-valued

predictors of lengths p and d, respectively. The conditional density of Y given X = x
and U = u belongs to an unknown distribution family, but the first two moments are
given by

μ(x,u) = E(Y |X = x,U = u)

and
Var(Y |X = x,U = u) = σ 2V {μ(x,u)} ,

for a given function V (·) and an unknown parameter σ 2. A generalized varying-
coefficient model is of the form

η(x,u) = g(μ(x,u)) =
p∑

j=1

b j (u)x j , (1)

or

μ(x,u) = g−1

⎡

⎣
p∑

j=1

b j (u)x j

⎤

⎦ , (2)

for some given reversible link function g(·), where x = (x1, x2, . . . , xp)T , b(·) =[
b1(·), b2(·), . . . , bp(·)

]T is a p-dimensional vector, consisting of unspecified smooth
coefficient functions and μ(x,u) is the mean regression function of the response
variable Y . Obviously, if all the coefficient functions

{
b j (·)

}p
j=1 are constants, the

generalized varying-coefficientmodel inmodel (1)will slip into a classical generalized
linear regression model. On the other hand, if part of them are viewed as constants, the
model (1) can be regarded as a generalized partially linear varying-coefficient model.

The generalized varying-coefficient model is a simple but useful extension of the
classical linear models. It has been extensively studied by many researchers. For
example, Cai et al. (2000a) proposed a one-step procedure to estimate the coefficient
functions and studied the asymptotic normality of the estimators. Additionally, the
standard error formulas of the estimated coefficientswere derived andwere empirically
tested. Furthermore, a goodness of fit test was proposed to detect coefficient functions.
Kuruwita et al. (2011) proposed a new two-step estimation method for generalized
varying coefficient models, with normal distribution of error term, where the link func-
tionwas specifiedup to some smoothness conditions. Furthermore, they established the
consistency and asymptotic normality of the estimated varying coefficient functions.
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Lian (2012) considered the problem of variable selection for high-dimensional gen-
eralized varying-coefficient models and proposed a polynomial-spline procedure that
simultaneously eliminated irrelevant predictors and estimated the nonzero coefficients.
Generalized varying-coefficientmodels are particularly appealing in longitudinal stud-
ies where they allow one to explore the extent to which covariates affect responses
changing over time; see, for instance, the work of Hoover et al. (1998), Huang et al.
(2004), Fan et al. (2007), Chiou et al. (2012) and the references therein. Besides, the
ability tomodel dynamical systems led to applications in the areas including functional
data modelling, see Ramsay (2006). Cai et al. (2000b) and Huang and Shen (2004)
extended the generalized varying-coefficient models to time series analysis. Cai et al.
(2008) developed them in survival analysis.

For the generalized varying-coefficient models mentioned above, the errors are
assumed to be independently and identically distributed and follow an exponential
family of distribution (Cai et al. 2000a; Lian 2012), or an finite distribution with mean
zero and small variance (Kuruwita et al. 2011; Hoover et al. 1998; Huang et al. 2004).
However, in practice, the distribution of the error term is always unknown, i.e., the
exponential family distributionmay be not appropriate. For example, for the simulated
model in Sect. 4.1, we fitted it by one-step estimate introduced in Cai et al. (2000a, b),
in Fig. 1. The performance of the one-step estimator is not satisfying. Thus, a suitable
estimationmethod needs to be developed for solving this problem.There has been little
work on generalized varying-coefficient model with non-exponential family error in
the literature. In this paper, by applying local weighted quasi-likelihood method and
the estimation method of generalized linear model, we propose a new nonparametric
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Fig. 1 Simulated results for model (18) with sample size 200. a, b and c are the estimates of b0(U ), b1(U )

and b2(U ), respectively, using one-step estimation method with bandwidth h = 0.1326. Solid curves and
dashed curves are the true functions and the one-step estimates
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estimationmethod for the generalized varying-coefficient model with non-exponential
family error. Since the proposed estimationmethod needs some iterative computations,
henceforth, we call it nonparametric estimation based on iterative weighted quasi-
likelihood (NIWQL). The resulting estimator, NIWQL estimator, will be shown to be
asymptotic efficiency.

The article is organized as follows. In Sect. 2, details for the estimation process
of generalized varying-coefficient models are introduced. Results on asymptotic effi-
ciency of the estimators are presented in Sect. 3. The simulation results are reported
in Sect. 4, followed by the real data application in Sect. 5 and concluding remarks in
Sect. 6. Finally, technical proofs are collected in the Appendix.

2 The estimation process

We consider the generalized varying-coefficient model in which the variance function
is given by a mean response function and an unknown parameter σ 2 as well. In this
section, we propose a nonparametric estimation based on the iterative weighted quasi-
likelihood to estimate the coefficient functions of generalized varying-coefficient
model with the structure of variance function is specificated. For simplicity, we only
consider the case in which u is one-dimensional, i.e., d = 1. Extension to multivariate
u involves no fundamentally new ideas.However, implementationswithu havingmore
than two dimensions may have some difficulties due to the “curse of dimensionality”.

2.1 Local weighted quasi-likelihood

In this part, we shall discuss how to implement the local weighted quasi-likelihood
methods for the generalized varying-coefficient model.

Let {(Ui ,Xi ,Yi )}ni=1 be a random sample, then we haveU = (U1, . . . ,Un)
T , X =

(X1,X2, . . . ,Xn)
T , Y = (Y1, . . . ,Yn)T . Denote L(μ,Y ) as a log conditional density

function of Y given X = x and U = u, then we have

L(μ, Y ) =
∫ μ

Y

Y − t

V (t)
dt .

Furthermore, the quasi-likelihood functionof (Y1,Y2, . . . ,Yn)givenX = x andU = u
can be briefly described as follows,

Q(μ, Y ) =
n∑

i=1

∫ μi

Yi

Yi − t

V (t)
dt . (3)

Under the model (1), the primary interest is to estimate the coefficient functions{
b j (·)

}p
j=1. We use a local polynomial modelling scheme, which has several nice

properties, such as high statistical efficiency, design adaptation (Fan 1993) and good
boundary behavior (Fan and Gijbels 1996; Ruppert and Wand 1994). Assume that
each b j (·) has a continuousm+1 derivative. For each given point u0, we approximate
b j (·) locally by a polynomial function
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b j (u) ≈ ς j (u0)+ς ′
j (u0)(u−u0)+· · ·+ς

(m)
j (u0)(u−u0)

m, j = 1, 2, . . . , p, (4)

for u in a neighborhood of u0. Furthermore, based on a random sample
{(Ui ,Xi ,Yi )}ni=1, we have

g(μi ) =
p∑

j=1

[
ς j (u0) + ς ′

j (u0)(Ui − u0) + · · · + ς
(m)
j (u0)(Ui − u0)

m
]
Xi j . (5)

Therefore, the following weighted quasi-likelihood estimation of the generalized
varying-coefficient model is to obtain the solution vector

ξ(u0) =
[
ς1(u0), . . . , ςp(u0), ς

′
1(u0), . . . , ς

′
p(u0), . . . , ς

(m)
1 (u0), . . . , ς

(m)
p (u0)

]T

(6)
via maximizing the weighted quasi-likelihood function

Q(ξ(u0)) = Q
(
ς1(u0), . . . , ςp(u0), ς

′
1(u0), . . . , ς

′
p(u0), . . . , ς

(m)
1 (u0) . . . , ς(m)

p (u0)
)

=
n∑

i=1

[∫ μi

Yi

Yi − t

V (t)
dt

]
Kh (Ui − u0) , (7)

where Kh(·) = K (·/h)/h, K (·) is a kernel function and h > 0 is a bandwidth. Let
the solution vector of the above optimization problem be

ξ̂ (u0) =
[
ς̂1(u0), . . . , ς̂p(u0), ς̂

′
1(u0), . . . , ς̂

′
p(u0), . . . , ς̂

(m)
1 (u0), . . . , ς̂

(m)
p (u0)

]T
,

then the estimations of the coefficient functions
{
b j (·)

}n
j=1 at the point u = u0 can be

expressed as
β̂(u0) = [ς̂1(u0), . . . , ς̂p(u0)

]T
. (8)

The algorithm above uses local polynomial weighted fits based on kernel weights
with afixedglobal bandwidth.Onemay replace these bymore sophisticated smoothers,
such as locally varying bandwidths, nearest neighbor weights, and so on. Other non-
kernel smoothers, such as splines, also may be used.

2.2 The NIWQL estimator

For simplicity of notation, denote ς
(0)
1 (u0) = ς1(u0), ς

(1)
1 (u0) = ς ′

1(u0), and so on.
Then, we can rewrite the expression (6) as

ξ(u0) =
[
ς

(0)
1 (u0), . . . , ς

(0)
p (u0), ς

(1)
1 (u0), . . . , ς

(1)
p (u0), . . . , ς

(m)
1 (u0), . . . , ς

(m)
p (u0)

]T
.

(9)
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The quasi-score function �k
r for the weighted quasi-likelihood is

�k
r = ∂Q(ξ(μ0))

∂ς
(k)
r

=
n∑

i=1

Yi − μi

V (μi )g′(μi )
(Ui − u0)

k Xir Kh(Ui − u0),

where k = 0, 1, . . . ,m. Hence, the expression (9) is the solution of the following
equation

n∑

i=1

Yi − μi

V (μi )g
′
(μi )

(Ui − u0)
k Xir Kh(Ui − u0) = 0, (10)

where g(μi ) = ∑p
j=1

[
ς

(0)
j (u0) + ς

(1)
j (u0)(Ui − u0) + · · · + ς

(m)
j (u0)(Ui − u0)m

]

Xi j , r = 1, 2, . . . , p and k = 0, 1, . . . ,m. In order to obtain the solution of (10),
we extend the estimation algorithm of the generalized linear model to the generalized
varying-coefficient model.

Let zi = g(μi ) + (Yi − μi )g′(μi ), then we have E(zi ) = g(μi ) and Var(zi ) =
Var(Yi )

[
g′(μi )

]2 = φV (μi )
[
g′(μi )

]2 = aiφ, where ai = V (μi )
[
g′(μi )

]2. Then
we have the following equation

n∑

i=1

zi − g(μi )

ai
(Ui − u0)

k Xir Kh(Ui − u0) = 0.

Furthermore,

n∑

i=1

zi
ai

(Ui − u0)
k Xir Kh(Ui − u0)

=
p∑

j=1

{
n∑

i=1

Xi j Xir

ai

[
ς

(0)
j (u0)(Ui − u0)

k + · · · + ς
(m)
j (u0)(Ui − u0)

k+m
]}

Kh(Ui − u0). (11)

Denote the design matrix in the expression (11) by:


(u0) = (X,U × X, . . . ,Um × X),

where X = (Xi j )1≤i≤n,1≤ j≤p and Uk = diag
[
(U1 − u0)k, (U2 − u0)k, . . . ,

(Un − u0)k
]
(k = 1, 2, · · · ,m). Let Z = (z1, z2, . . . , zn)T . Furthermore, let W be

the n × n diagonal matrix of weights:

W = diag

(
Kh(U1 − u0)

a1
,
Kh(U2 − u0)

a2
, . . . ,

Kh(Un − u0)

an

)
.

Therefore, the Eq. (11) can be easily written as


T (u0)WZ = 
T (u0)W
(u0)ξ(u0). (12)
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If the matrix
T (u0)W
(u0) is nonsingular, the solution vector of the expression (12),
i.e., the NIWQL estimator, can be given by

ξ̂NIWQL(u0) =
(

T (u0)W
(u0)

)−1

T (u0)WZ . (13)

Therefore, the estimator β̂NIWQL(u0) of the coefficient functions
{
b j (u0)

}p
j=1 at the

point u = u0 can be obtained, denoted by,

β̂NIWQL(u0) = E1ξ̂NIWQL(u0) = E1

(

T (u0)W
(u0)

)−1

T (u0)WZ , (14)

where E1 = (Ip, 0p, . . . , 0p) is a p × mp matrix, Ip and 0p are the identity and null
matrices of order p, respectively.

2.3 The implementation of NIWQL method

Note that the vector Z in the NIWQL estimator (13) is unknown, so some iterative
computations are needed if we want to obtain the estimation of (13). Combining the
local weighted quasi-likelihood with the iterative least square estimation of general-
ized linear models, we proposed a nonparametric estimation method based on local
weighted quasi-likelihood, whose procedure can be constructed as follows:

• Step 1. Give a set of starting values of (μ1, μ2, . . . , μn),
(
μ0
1, μ

0
2, . . . , μ

0
n

)
.

• Step 2. Calculate the initial values of g(μi ) according to the given starting values
in Step 1, and denote η

(0)
i = g(μ(0)

i ), i = 1, 2, . . . , n.
• Step 3. Compute the starting values of zi (i = 1, 2, . . . , n) in term of the relation-
ship zi = g(μ1) + (yi − μi )g

′
(μi ), namely,

z(0)i = η
(0)
i + (yi − μ

(0)
i )g′(μ(0)

i ), i = 1, 2, . . . , n.

Furthermore, we can obtain
{
a(0)
i

}n
i=1

. Therefore, Z (0) = (z(0)1 , z(0)2 , . . . , z(0)n )T

and

W (0) = diag

(
Kh(U1−u0)

a(0)
1

, . . . ,
Kh(Un−u0)

a(0)
n

)
can be calculated, respectively.

• Step 4. Compute the first estimation of ξ(u0), that is,

ξ̂ (1)(u0) =
(

T (u0)W

(0)
(u0)
)−1


T (u0)W
(0)Z (0).

Furthermore, η(1) = (η
(1)
1 , η

(1)
2 , . . . , η

(1)
n )T can be obtained, where

η
(1)
i = ∑p

j=1 [ς(1,0)
j (u0) + ς

(1,1)
j (u0)(Ui − u0) + · · · + ς

(1,m)
j (u0)(Ui − u0)m]

Xi j , (i = 1, 2, . . . , n) and ς
(1,k)
j (1 ≤ k ≤ m) is the kth component of the vector

ξ̂ (1)(u0).
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• Step 5. Note that η = g(μ), then we can obtainμ
(1)
i = g−1(η

(1)
i ), i = 1, 2, . . . , n.

Furthermore, ξ̂ (2)(u0) can be calculated via repeating Steps 2, 3 and 4.
• Step 6. Repeat the above steps, the iterative estimation of ξ(u0) can be obtained

ξ̂ (t+1)(u0) =
(

T (u0)W

(t)
(u0)
)−1


T (u0)W
(t)Z (t)

until the convergence holds. Furthermore, the NIWQL estimator ξ̂NIWQL(u0) can
be obtained, that is,

ξ̂NIWQL(u0) =
(

T (u0)W

(t)
(u0)
)−1


T (u0)W
(t)Z (t).

We now briefly discuss the choice of the initial estimates. An intuitive and explicit
method is based on the substitution of the response observations (y1, y2, . . . , yn),
namely, in Step 1 of the estimation procedure, let μ

(0)
i = yi (i = 1, 2, . . . , n). In the

simulation implementation, we will verify this set of initial values is effective.
Another problem associated with the NIWQL estimator is the singularities of the

the matrix 
T (u0)W
(u0). In the theoretical part discussed, we will assume that it is
nonsingular. However, it may be singular in practical applications. In local modelling,
the matrix 
T (u0)W
(u0) can easily be ill conditioned in certain local neighborhood
since there can only be a few data points in this neighborhood. This cannot simply be
rescued by increasing the size of the bandwidth or using the nearest neighborhood type
of bandwidths. We handle this problem of singularity via a ridge regression, namely,
replace 
T (u0)W
(u0) by 
T (u0)W
(u0) + λI , where I is an identity matrix with
the same order as matrix 
T (u0)W
(u0), and λ is a ridge parameter which needs to
be chosen.

3 Asymptotic theory

In this section, we give some assumption conditions, and then derive the asymptotic
distribution of the NIWQL estimator. We demonstrate that the performance of the
nonparametric estimation based on iterativeweighted quasi-likelihoodmethod is good.

Some regularity conditions should be first imposed for the theorem. Let q�(s, y) =
(∂�/∂s�)Q

{
g−1(s, t)

}
. Note that qk(·, ·) is linear in y for fixed s and such that

q1 {g(μ), μ} = 0 and q2 {g(μ), μ} = −ρ(u, x), (15)

where ρ(u, x) = [g′(μ)]2V (μ).
Define θ j = ∫

u j K (u)du and ν j = ∫
u j K 2(u)du, j = 0, 1, . . . ,m + 1. Let

� = (θi+ j−2)1≤i, j≤m+1,�∗ = (νi+ j−2)1≤i, j≤m+1 and H = diag(1, h, . . . , hm)⊗Ip,
where⊗ denotes the Kronecker product. Also, other notations need to be defined, that
is, �(u0) = E

[
ρ(U,X)XXT |U = u

]
and �(u0) = Var(Y |U=u,X=x)

ρ(u,x) . To state the
main results of this paper, we make the following conditions, namely, for a given point
u:
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C1. K (·) has a bounded support.
C2. Suppose that Var(Y |X = x,U = u) �= 0, g′(μ) �= 0, and ρ(x, u) �= 0.
C3. E(Y 4|X = x,U = u) < ∞ in the neighborhood of u = u0.
C4. The functions fU (u0), �(u), b(m+1)

j (·), Var(Y |X = ·,U = ·), V ′(·), and
g′′′(·) are continuous.
C5. The function q2(s, y) < 0 for s ∈ 
 and y in the range of the response
variable.
C6. h → 0 and nh → ∞.

Then, we can obtain the following theorem.

Theorem 1 Under the conditions C1 − C6, then we have

√
nh

{
H
[
ξ̂NIWQL(u0) − ξ(u0)

]
− b(m+1)(u0)

(m + 1)! �−1θhm+1 + op(h
m+1)

}

→ N
(
0,�−1B�−1

)
, (16)

where b(m+1)(u0) =
[
b(m+1)
1 (u0), . . . , b

(m+1)
p (u0)

]T
, θ = (θm+1, . . . , θ2m+1) is a

m + 1-vector, � = fU (u0)� ⊗ �(u0) and B = fU (u0)�∗ ⊗ �(u0). Furthermore,
when m = 1 and the kernel function K (·) is symmetric, we obtain that

√
nh

{[
β̂NIWQL(u0) − β(u0)

]
− 1

2
θ2h

2b′′(u0) + op(h
2)

}
D−→ N (0, ϒ(u0)) , (17)

where ϒ(u0) = f −1
U (u0)

(
ν1 0
0 ν2/θ

2
2

)
⊗ �(u0)

�2(u0)
.

The bias and variance expressions in Theorem 1 can be deduced from the general
theorem in Carroll et al. (1998). The main difference is that here we establish the
results in terms of asymptotic normality, whereas those authors established them for
the general case by using conditional expectations.

The proof of the Theorem 1 is given in the Appendix.

4 Simulations

Section 3 has shown that the NIWQL estimator for the generalized varying-coefficient
model possesses the asymptotic normality under some mild assumptions. In this sec-
tion, some simulation studies basedon the nonparametric iterative estimationdiscussed
in Sect. 2 will be carried out. We illustrate the performance of the proposed NIWQL
estimator and compare it with the local quasi-likelihood(LQL) estimator proposed in
Fan and Chen (1999) and the one-step LQL estimator proposed in Cai et al. (2000a).
Furthermore, the proposed method seems to be more robust, even though the error
term is contaminated by a Gaussian distribution or a t distribution with a suitable
degree of freedom.
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4.1 Comparisons with LQL estimator and one-step LQL estimator

Consider the relationship between Y and X = (1, X1, X2)
T given by

Y = α0

1 + α1 [b0 (U ) + b1 (U ) X1 + b2 (U ) X2]
+ ε, (18)

where U came from the uniform random distribution U (0, 1) and the covariates X1
and X2 were the standard normal random variables with correlation coefficient 3−1,
independent of U . The variance of error term ε was defined as Var(ε|X = x,U =
u) = σ 2V (μ) for a given function V (·) with the form of V (μ) = α1

α0
μ2. Then

ε2 = α1σ
2

α0
μ2 + e,

where e was a random variable with zero mean and finite variance δ2, independent of
both X and U .

In the model (18), the coefficients were set as α0 = 3, α1 = 2, b0 (U ) =
exp (2U − 1), b1 (U ) = 8U (1 −U ), and b2 (U ) = sin2 (2πU ), respectively.

For the above example, we conducted N=500 replications with the sample size
n=200. Furthermore, the local linear fits for the coefficient functions were carried
out, that is, m = 1 in formula (4), and the Epanechnikov kernel function K (s) =
3
4

(
1 − s2

)
+ with the cross-validation procedure was adopted.

In practical implementation, the matrix 
T (u0)W
(u0) in (14) can be ill condi-
tioned. A commonly used technique to deal with this problem is the ridge regression
technique (see for example Seifert and Gasser 1996). Then an issue arises about how
large a ridge parameter should be used. Following the same heuristic as in Fan and
Chen (1999), we suggest using the ridge parameters

λi = hi−1
∫

ui K (u)du, for i = 1, . . . , n.

Replacing 
T (u0)W
(u0) by 
T (u0)W
(u0) + λI in (14) will not alter asymptotic
behaviour and will avoid near singularity of the matrix. Furthermore, for each coeffi-
cient function, the 500 estimated values at each grid point Gi = i/n were obtained by
the proposed method described in Sect. 2, and the averaged value of them was taken
as the final estimated value of the coefficient function at the point Gi .

Figure 2a–c display the true functions and the estimated functions. The correspond-
ing residual plots were presented in Fig. 3a–c. As expected, the performance of the
NIWQL estimator is better than that of the LQL estimator, and significantly better
than that of the one-step LQL estimator, because the additional estimation steps are
involved in the other two methods (referred to Fan and Chen 1999; Cai et al. 2000a),
which maybe Reduce the estimation accuracy. This reveals that the NIWQL method
outperforms the other two competitors.
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Fig. 2 Simulation results under the sample size 200. a, b and c are the estimates of b0 (U ) , b1 (U ) and
b2 (U ), respectively, with bandwidth h=0.1326 chosen by the cross-validation. Solid curve is the true
function; dashed curve, dotted curve and dash-dotted curve are the estimated curves calculated by the
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For three estimators b̂NIWQL, b̂LQL and b̂one, we assess their performances via the
average square errors(ASE), which is similar to the expression (15) in Fan and Chen
(1999),

ASE j = 1

n

n∑

k=1

[
b̂ j (Uk) − b j (Uk)

]2
, j = 0, 1, 2, (19)

where {Uk, k = 1, 2, · · · , n} are the grid points. Similarly, the performance of joint
estimator b̂(·) is evaluated by

ASE =
2∑

j=0

ASE j . (20)

Tables 1 and 2 display the simulation results of the ASE in 500 replications, where
the values in Table 1 were calculated by (19), and the ones in Table 2 by (20). As
expected, the results of NIWQL method are smaller than those of LQL and one-step
LQL methods, which demonstrates that NIWQL method is better than the other two
methods.

Another issue of interest is how sensitive the NIWQL estimator is to the choice of
bandwidth. A mean integrated squared error (MISE) index is defined as

MISE = 1

N

N∑

i=1

ISEi , ISEi =
n−1∑

j=1

SEi (Uj ) + SEi (Uj+1)

2(n − 1)
,

where SEi (Uj ) is the squared error of the i th-simulated sample. Figure 4 depicts
the MISE of the estimator ξ̂NIWQL of the coefficient function as a function of band-
width h. We can observe that the MISE curve first decreases and gradually increases,
and reaches its minimizer around the optimal bandwidth. This means that NIWQL
estimator is sensitive to choice of h.

Table 1 The mean and standard deviation of ASE for three estimators

Estimator NIWQL LQL One-step LQL

Mean SD Mean SD Mean SD

j = 0 3.4068e-5 0.0050 1.1095e-4 0.0106 4.1679e-4 0.0204

j = 1 4.3990e-4 0.0209 9.8457e-4 0.0318 0.0019 0.0443

j = 2 0.0094 0.0957 0.0102 0.0970 0.0326 0.2279

Table 2 The mean and standard
deviation of ASE for three
estimators

NIWQL LQL One-step LQL

Mean SD Mean SD Mean SD

0.0099 0.1216 0.0113 0.1394 0.0349 0.2926
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fidence bands; a: b0(U ), b: b1(U ), and c: b2(U ). Dotted curves are the confidence bands based on the
estimated standard errors, and dashed curves are 95 % bootstrap confidence interval based on 1000 boot-
strap replications

In order to assess the variability of the estimated coefficient functions, we devel-
oped the bootstrap pointwise confidence band, compared with the method derived by
the estimated standard errors proposed in Cai et al. (2000a). The curves of the esti-
mated coefficient functions of the model (18) are displayed in Fig. 5, together with
the pointwise confidence bands derived by the two methods mentioned above. The
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dotted curves are the estimated function plus or minus 1.96 of the estimated stan-
dard errors and the dashed curves are 95% bootstrap confidence band based on 1000
replications. It can easily be seen that, around the origin, the pointwise confidence
band resulted from the estimated standard errors exist a larger range than that from
the bootstrap method. Specially, the proposed bootstrap pointwise confidence band
method possesses the obvious superiority when coefficient function admits different
degrees of smoothness, for instance, the sinusoidal function has a higher degree of
smoothness than that of exponential function and quadratic function. Therefore, the
confidence band implemented by the bootstrap approach is superior to that derived by
the estimated standard errors.

4.2 Simulations of robustness

In this part, we implemented the simulations to illustrate that the proposed NIWQL
estimator is robust even if the variance function of the error term is misspecification.
For convenience, themodel (18) was continued to be used here.Wewrote an algorithm
program using the nonparametric iterative weighted quasi-likelihood method under
the following circumstances:

(a) We firstly generated 100(200,500) pseudo-random numbers of (X1, X2) and
U from their distributions discussed above, respectively. Secondly, εi ’s [i =
1, 2, . . . , 100(200, 500)] were taken to be independent and identically distrib-
uted, normal random variables with mean zero and variance δ2 = 0.5. Thirdly,
we obtain the variance of dependent variable Y according to a given variance func-
tion and the random errors generated from the second step. Fourthly, according
to the third step, generate the simulation values of the dependent variable Y . The
simulation results are listed in Table 3.

(b) Generate 100(200,500) random errors with some contaminated random errors by
adding another random error term in the second step described in (a), and the
remaining steps were the same as those of case (a). We took Gaussian random
errors ε ∼ N (0, 0.5) with contaminated random errors ε ∼ N (0, 16) with prob-
ability 0.1, 0.2, 0.3, respectively. The simulation results are presented in Table 4.

(c) In the second step in (a), generate 200(500) randomerrorswith some contaminated
random errors by adding another random error term, and the other steps were the
same as those of case (a). We took Gaussian random errors ε ∼ N (0, 0.5) and
contaminated t distribution random errors ε ∼ t (ω, δ, ν), where ω = 0, δ = 4
and ν = 5. The probability density function of a t distributed variable Y with
location and dispersion parameters is

p(y, ω, δ; ν) = νν/2
 ((ν + 1)/2)

δ
√

π
(ν/2)

{
ν +

(
y − ω

δ

)}−(ν+1)/2

,

where t, ω ∈ R, δ > 0 and 
(·) is the gamma function. The mean and variance
of Y are ω (ν > 1) and νδ2/(ν − 2)(ν > 2), respectively. The t distribution
reduces to the normal and Cauchy distributions when ν = ∞ and 1, respectively,
referred to Lin et al. (2009). In another case, we took Gaussian random errors
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Table 3 The mean and standard deviation of ASE under case (a)

Estimator NIWQL LQL One-step LQL

Mean SD Mean SD Mean SD

n = 100 0.0480 0.1042 0.0502 0.1056 0.1487 1.4204

n = 200 0.0102 0.0179 0.0113 0.0180 0.0349 0.3104

n = 500 0.0085 0.0026 0.0089 0.0025 0.0126 0.0827

Table 4 The mean and standard deviation of ASE under case (b)

Estimator NIWQL LQL One-step LQL

Mean SD Mean SD Mean SD

10% contamination

n = 100 0.0492 0.1070 0.0495 0.1075 0.1705 1.6928

n = 200 0.0107 0.0181 0.0115 0.0218 0.0471 0.5607

n = 500 0.0089 0.0029 0.0092 0.0029 0.0165 0.1912

20% contamination

n = 100 0.0543 0.1207 0.0541 0.1570 0.2407 1.8263

n = 200 0.0138 0.0577 0.0141 0.0590 0.0615 0.7908

n = 500 0.0108 0.0097 0.0107 0.0090 0.0219 0.2691

30% contamination

n = 100 0.0705 0.3301 0.0710 0.1570 0.3212 2.2572

n = 200 0.0169 0.1027 0.0169 0.1029 0.0785 0.9310

n = 500 0.0128 0.0143 0.0128 0.0174 0.0287 0.3481

ε ∼ N (0, 0.5) and contaminated t distribution random errors ε ∼ t (0, 4, 20).
Gaussian random errors ε ∼ N (0, 0.5) and contaminated t distribution random
errors ε ∼ t (0, 4, 40) were considered in the final case. The simulation results
are shown in Table 5.

In the Monte Carlo simulations, the same kernel function and replications were
used. Table 3 summarizes the results of case (a). It shows that the values of mean
and SD of ASE decrease as the sample size increases, which indicates that the large
sample properties is valid. The simulated results with different degrees of Gaussian
contamination are reported in Table 4. From Table 4, we can observe that NIWQL
estimator has a better performance than the competitors. Furthermore, for the case of
(c), we used the normal error ε ∼ N (0, 0.5) with contaminated t (0, 4, 5), t (0, 4, 20)
and t (0, 4, 50) distributions with probability 0.1 and 0.2, respectively. From Table 5,
it can easily be seen that the performance of the NIWQL estimator outperforms its
competitors. More specially, by the NIWQL method, all contaminations are of small
influence on the simulated results, but has an evident effect on that for the one-step
LQL method. All facts show that the proposed NIWQL estimator is more robust than
theLQLand one-stepLQLestimators. However, the same conclusion can not be drawn
if one uses Cauchy distribution as contaminated random errors instead of normal and
other t distributions even at a large sample size.

123



262 Y.-Y. Zhao et al.

Ta
bl
e
5

T
he

m
ea
n
an
d
st
an
da
rd

de
vi
at
io
n
of

A
SE

un
de
r
ca
se

(c
)

D
is
tr
ib
ut
io
n

C
on
ta
m
in
at
io
n
(%

)
n

N
IW

Q
L

L
Q
L

O
ne
-s
te
p
L
Q
L

M
ea
n

SD
M
ea
n

SD
M
ea
n

SD

t(
5)

10
20

0
0.
01

32
0.
05

14
0.
01

35
0.
05

49
0.
08

16
1.
37

22

50
0

0.
01

27
0.
01

45
0.
01

27
0.
01

41
0.
02

90
0.
50

17

20
20

0
0.
01

95
0.
25

17
0.
02

01
0.
28

04
0.
30

11
3.
71

14

50
0

0.
01

60
0.
19

77
0.
01

62
0.
19

80
0.
07

55
1.
45

75

t(
20

)
10

20
0

0.
01

14
0.
02

36
0.
01

20
0.
02

51
0.
04

85
0.
60

55

50
0

0.
00

93
0.
00

57
0.
00

94
0.
00

60
0.
01

72
0.
25

01

20
20

0
0.
01

45
0.
06

19
0.
01

48
0.
07

07
0.
06

23
0.
80

44

50
0

0.
01

11
0.
01

24
0.
01

12
0.
01

22
0.
02

27
0.
29

65

t(
50

)
10

20
0

0.
01

10
0.
01

94
0.
01

17
0.
02

31
0.
04

76
0.
57

21

50
0

0.
00

90
0.
00

31
0.
00

92
0.
00

34
0.
01

66
0.
19

24

20
20

0
0.
01

40
0.
05

91
0.
01

42
0.
06

06
0.
06

19
0.
79

70

50
0

0.
01

09
0.
01

08
0.
01

09
0.
01

06
0.
02

21
0.
27

14

123



Nonparametric estimation in generalized varying... 263

5 Real data analysis

In this section, we used an environmental data set to illustrate the proposed method.
The data set, collected in Hong Kong from January 1, 1994 to November 30, 1995,
was to examine the association between the levels of pollutants and the number of
daily hospital admissions for circulation problems, and studied the extent to which
the association varies over time. The data set consists of 700 observations, which
had been analyzed by Fan and Chen (1999). The covariates were taken as the levels
pollutants sulphur dioxide (SDO), X2 (in µg/m3) and nitrogen dioxide (NDO) X3 (in
µg/m3). It was reasonable to model the number of hospital admissions (NHA) as a
Poisson process. Based on the observations {SDOi ,NDOi ,NHAi , i = 1, . . . , 700},
we suggested the following Poisson regression model with the mean μ(u, x) given by

ln {μ(u, x)} = a0(u) + a1(u)x2 + a2(u)x3. (21)

The NIWQL procedure with the Epanechnikov kernel K (s) = 3
4

(
1 − s2

)
+ was

used to fit the model (21) and the smoothing parameter h was chosen by the cross-
validation method, which suggested that h = 0.0843. The scatter and the fitted curve
of the response NHA are shown in Fig. 6a. Figure 6b–d display the estimated curves
of the coefficient functions together with 95% bootstrap confidence bands based on
1000 replications. The three confidence bands of the coefficient functions exclude
zero in most of the support, which indicates that the three covariates have a significant
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Fig. 6 Analysis of pollutants and the number of daily hospital admissions data. a The scatter of log
transformation of environmental data and the fitted curve. b, c and d the estimated coefficient functions,
respectively
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impact on the response. The corresponding residual standard deviation is 0.0140. For
comparison, we fitted the LQL and one-step LQL estimators using the three inde-
pendent covariates. The resulting residual standard deviations are 0.0143 and 0.0178,
respectively, which implies that the proposed method can produce a satisfactory fit of
the response.

6 Concluding remarks

In this paper,we focus on the estimation problemof the generalized varying-coefficient
model. By applying both the weighted quasi-likelihood and nonparametric smoothing
techniques, we extend the nonparametric estimation based on iterative weighted quasi-
likelihood method to estimate the coefficient functions of the generalized varying-
coefficient model with non-exponential family distribution. The asymptotic efficiency
of the generalized varying-coefficient estimates, obtained by the NIWQL method is
established under some assumptions. Furthermore, two simulation experiments are
implemented to assess the performance of the proposed estimator, the results of which
demonstrate that it possesses good estimation accuracy and robust estimation effect.
Finally, a practical data analysis is performed to evaluate the finite sample behaviors
of the proposed estimator.
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Appendix

Proof of the Theorem 1

The expression (17) can be obtained easily according to the expression (16) under
some assumptions. For brevity, we outline only the proof of the expression (16).
For each given point u, the conditions C1–C6 proposed in the Sect. 3 are needed.
For simplicity, we recall that the vector ξ̂ (u0) maximizes (9). Here, we consider the
normalized estimator

ξ̂∗(u0) = ψ−1[ς̂1(u0) − b1(u0), . . . , ς̂p(u0) − bp(u0),

. . . , hm
{
ς̂1(u0) − b1(u0)

}
, . . . , hm

{
ς̂p(u0) − bp(u0)

}]T

whereψ = (nh)−1/2. Let η̄(u0, u, x) =∑p
j=1

[
b j (u0) + · · · + b(m)

j (u0)(u − u0)
]
x j

and zi =
{
XT
i ,

Ui−u0
h XT

i , . . . ,
(Ui−u0)m

hm XT
i

}
. It can easily be seen that ξ̂∗(u0) maxi-

mizes
n∑

i=1

(∫ μi

Yi

Yi − t

V (t)
dt

)
Kh(Ui − u0),
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where μi = g−1
(
η̄(u0, u, x) + ψξ∗T (u0)Zi

)
. Equivalently, ξ̂∗(u0) maximizes

ln
(
ξ̂∗(u0)

)
=

n∑

i=1

[∫ μi

Yi

Yi − t

V (t)
dt −

∫ μ̄i

Yi

Yi − t

V (t)
dt

]
Kh(Ui − u0),

where μ̄i = η̄(u0, u, x)). Condition C5 implies that the function ln(·) is concave in
ξ̂∗(u0). We have the following expression via a Taylor’s expansion:

ln(ξ̂∗(u0)) = ψ

n∑

i=1

{
q1{η̄i (u0),Yi }ξ∗T (u0)
i (u0)K ((Ui − u0)/h)

}

+ψ2

2

n∑

i=1

{
q2{η̄i (u0),Yi }

[
ξ∗T (u0)
i (u0)

]2
K ((Ui − u0)/h)

}

+ψ3

6
ψ

n∑

i=1

{
q3{ηi (u0),Yi }

[
ξ∗T (u0)
i (u0)

]3
K ((Ui − u0)/h)

}

= �T
n ξ∗(u0) + 1

2
ξ∗T (u0)�nξ

∗(u0) + �n,

where η̄(u0) = η̄(u0, u, x), ηi is between η̄(u0) and η̄(u0) + ψξ∗T (u0)
i (u0), and

�n = ψ

n∑

i=1

{q1{η̄i (u0),Yi }
i (u0)K ((Ui − u0)/h)} ,

�n = ψ2

2

n∑

i=1

{
q2{η̄i (u0),Yi }
i (u0)


T
i (u0)K ((Ui − u0)/h)

}
,

and

�n = ψ3

6

n∑

i=1

{
q3{ηi (u0),Yi }(ξ∗T (u0)
i (u0))

3K ((Ui − u0)/h)
}

.

Note the fact that (�n)i j = (E�n)i j + Op

{[
Var(�n)i j

] 1
2

}
, and take a Taylor’s

expansion of η(u, x) with respect to u around |u − u0| < h,

η(u, x) = η̄(u0, u, x) + (u − u0)m+1

(m + 1)! η(m+1)(u0, x) + o
(
h p+1

)
,

and
η(u, x) = −ρ(u, x) + o(1).
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Therefore, the expect of �n

E(�n) = h−1E

[
q2{η(u0), Y }
(u0)


T (u0)K

(
U − u0

h

)]

= h−1E

[
{−ρ(u, x) + o(1)}
(u0)


T (u0)K

(
U − u0

h

)]

= h−1E

⎡

⎢⎢⎣−ρ(u, x)XXT ⊗

⎛

⎜⎜⎝

1 · · · (U−u0)m

hm
...

...
(U−u0)m

hm · · · (U−u0)2m

h2m

⎞

⎟⎟⎠ K

(
U − u0

h

)
⎤

⎥⎥⎦+ o(1)

= − fU (u0)� ⊗ �(u0) + o(1)

→ −�

where �(u0) = E(ρ(u, x)XXT |U = u). Besides, the element of the variance term
can be calculated that Var(�n)i j = E[(�ni j − E�ni j )(�ni j − E�ni j )

T ] = O(ψ2).
Therefore,

�n = −� + o(1). (22)

Next, we will compute the expected value of the absolute of �n ,

E(�n) = E

[
|ψ3

n∑

i=1

q3{ηi (u0),Yi }(ξ∗T (u0)
i (u0))
3K

(
Ui − u0

h

)
|
]

= h−1ψE

[
|q3{η1(u0),Y1}X3

1K

(
Ui − u0

h

)
|
]

= ψθ1E
[
|q3{η1(u0),Y1}X3

1|
]
.

since q3 is linear in Y with E(Y1|(X1,U1)) < ∞, we have E
[|q3{η1(u0),Y1}X3

1|
]

<

∞, therefore, E(�n) = O(ψ). Combining the above equations leads to

�T
n ξ∗(u0) + 1

2
ξ∗T (u0)�ξ∗(u0) + o(1).

By the quadratic approximation lemma (Fan and Gijbels 1996), we have

ξ∗(u0) = �−1�n + o(1). (23)

If �n is a stochastically bounded sequence of random vectors. The asymptotic nor-
mality of ξ∗(u0) follows from that of �n . So, we need to establish the asymptotic
normality of �n . To establish its asymptotic normality, the mean and covariance need
to be computed. The mean
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E(�n) = nψE

[
q1{η̄(u0),Y }
(u0)K (

Ui − u0
h

)

]

= nψE

[
ρ(u, x)XXT b

(m+1)(u0)(U − u0)m+1

(m + 1)! Kh

(
Ui − u0

h

)
+ o(hm+1)

]

= ψ fU (u0)h
m+1�−1θ ⊗ �(u0)

b(m+1)(u0)

(m + 1)! {1 + o(1)} , (24)

where Uh =
(
1, U−u0

h , . . . ,
(
U−u0

h

)m)T
, θ = (θm+1, θm+2, . . . , θ2m+1)

T , and

b(m+1)(u0) =
[
b(m+1)
1 (u0), . . . , b

(m+1)
p (u0)

]T
. An application of E(�n) calculated

above and the definition of q1, one obtains that

Var(�n) = nψ2Var

[
q1 {η̄(u0),Y } 
(u0)K

(
Ui − u0

h

)]

= h−1
[
Eq21 {η̄(u0),Y } 
(u0)


T (u0)K
2
(
Ui − u0

h

)
+ o(hm+1)

]

= fU (u0)�
∗ ⊗ �(u0)

≡ B + o(1) (25)

where �(u0) = Var(Y |U=u,X=x)
ρ(u,x) . In order to prove that

{Var(�n)}−1/2 (�n − E�n)
D−→ N (0, Ip+1), (26)

we now employ Cramér-Wold device to derive the asymptotic normality of Var(�n):
for any unit vector e,

{
eTVar(�n)e

}−1/2
(eT�n − EeT�n)

D−→ N (0, 1), (27)

Combining (23), (24), (25) and (26), one has

ξ̂∗(u0) − ψ−1hm+1 fU (u0)
bm+1(u0)

(m + 1)! �−1θ ⊗ �(u0) {1 + o(1)} D−→ N
(
0,�−1B�−1) .

(28)
Therefore, the Theorem (16) holds true. Besides, it is easy to verify the Lyapounov’s
condition for that sequence, that is formula (27) can easily be proved. If m = 1 and
K (·) is symmetric, then θ1 = 0, so that (17) holds true. The proof is completed.
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