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Abstract We examine what are the common factors that determine systematic credit
risk, and estimate and interpret these factors. We also compare the contributions of
common factors in explaining the changes of credit default swap spreads during the
pre-crisis, the crisis and the post-crisis period; there is evidence to suggest that the
eigenstructures across these three sub-periods are distinct. Furthermore, we examine
whether the observable economic variables are in fact the underlying latent factors
and analyze the predictability in the factors that capture the time-variation of credit
default swap spreads.

Keywords Credit default swaps · Common factors · Credit risk · Factor model

1 Introduction

The fact that investors holding fixed income portfolios to diversify risk or enhance
investment returns have suffered from systematic credit risk of different entities has
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been observed more recently. This raises the question whether there are common fac-
tors determining systematic credit risk across different entities, different credit ratings,
different countries and different maturities. In fact, an increase in systematic credit
risk will harm the benefit from a well-diversified bond portfolio. An examination into
common credit risk factors explores the nature of correlated defaults. Several illustra-
tions for correlated defaults were proposed by Das et al. (2007). Firstly, firms may be
exposed to common or correlated risk factors. Secondly, the event of default by one
firm may be contagious. Thirdly, learning from default may generate default corre-
lation. This study examines what are the common factors that determine systematic
credit risk, and estimates and interprets the common risk factors. In further steps, we
estimate the market prices of risk factors and test their significance. Based on factor
models, we propose various time series properties for common factors and idiosyn-
cratic components, and examine which one can produce the best forecasting to the
dynamics of credit default swap (CDS) spreads.

Understanding how corporate defaults are correlated is particularly important for
the risk management of corporate debt portfolio, since banks have to retain greater
capital to survive default losses if defaults are heavily clustered in time. An investiga-
tion of the sources and degree of default clustering is also crucial for the rating and risk
analysis of structured credit products, such as collateralized debt obligations (CDOs)
and options on portfolios of default swaps that are exposed to correlated default.
Several attempts have been made in the literature to address this issue. The first one
incorporates correlated default into the reduce-form credit risk modeling (Das et al.
2006, 2007). The second research stream assumes that default probabilities depend on
firm-specific and market-wide factors. Typically, portfolio loss distributions are based
on the correlating influence from such observable market-wide factors. A number of
potentially observable factors frommacroeconomic fundamentals have been proposed
to analyze correlated defaults (Collin-Dufresne et al. 2001; Benkert 2004; Ericsson
et al. 2009). The third research stream, however, extracts some latent/unobservable
factors mainly from the principal components analysis (PCA)method to avoid a possi-
ble downward bias from estimating tail loss (Duffie et al. 2009; Cesare andGuazzarotti
2010; Anderson 2008). Aswe know, not all relevant risk factors are potentially observ-
able by econometricians (Duffie et al. 2009).

Recent research claims that common latent factors increasingly and apparently
explain the time-variation of credit risk, especially during the financial crisis. Ander-
son (2008) finds that a very high fraction of weekly variations in the implied default
intensity is explained by a single common factor. Cesare and Guazzarotti (2010) found
that CDS spread changes were increasingly driven by a common factor during the US
subprime crisis. This paper goes beyond these two studies by additionally interpreting
the common latent factors and modelling their time-variation patterns. We demon-
strate this by using a very extensive CDS data set, encompassing different maturities,
different credit ratings, different entities and different countries, and produce robust
common factors with a convincing interpretation.

We compare the contributions of common factors in explaining the CDS spreads
changes during the pre-crisis, the crisis and the post-crisis period. We find that the
fraction of CDS variation explained by the first principal component increases from
58.7 to 72.3% during the crisis period, and then declines to 47% after the crisis. The
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results suggest that during the crisis, the changes of CDS spreads are increasingly
driven by common factors and less by idiosyncratic components. Furthermore, the
eigenstructures across three sub-periods are distinct based on the result of a likeli-
hood ratio test that compares the common principal components model against the
unrestricted model indicates. To interpret the estimated factors, we investigate the
association between the latent factors and the observed economic variables.

Having applied the factor model to CDS spreads, we model the time-variation of
common factors to examine the predictability of CDS spreads. This prediction will
certainly benefit investors to hedge, speculate and arbitrage in the credit markets. We
propose various factor models and compare their out-of-sample forecasting perfor-
mance. Testing their equal predictive ability is also required to showwhether relatively
outperformance is statistically significant.

The remainder of this research is organized as follows. The next section describes
the data we have used. Section 3 presents the factor models used in this study, and
provides an economic interpretation for the estimated factors. In Sect. 4, we propose
several factor specifications to predict the times-variation of CDS spreads; evaluating
their out-of-sample forecasting performances and testing their equal predicting ability
are both conducted in this section.

2 Data description

Credit default swap data are collectable from Markit, an aggregator of CDS pricing
data from the leading broker-dealers. In terms of our focus on the commonality of CDS
spreads, we are interested in the CDS indices rather than single name reference entity
CDS contracts tomitigate the idiosyncratic components and liquidity risk.Our concern
coincides with Driessen et al. (2003) in studying the common factors in international
bond returns. They suggest that bond portfolio data is the preferred method to clear
idiosyncratic risk embedded in individual bonds.Markit provides a detailedCDS index
series, for example, theMarkit CDX indices comprise themost liquid baskets of names
covering North American Investment Grade and High Yield single name credit default
swaps with various maturities, while the Markit iTraxx indices comprise of the most
liquid names in the rest of regions such as Europe, Asia, Australia and Japan. Each
index rolls biannually inMarch andSeptember. Credit events that trigger settlement for
individual components are bankruptcy and failure to pay, and are subsequently settled
via credit event auctions. For traders, trading CDS indices is more attractive since they
are allowed to trade large sizes and confirm all trades electronically. Stronger support
fromdealers and industry participants has prominently enhanced liquidity in allmarket
conditions. The transparency of CDSmarkets has gradually improved since the default
of Lehman (Avellaneda and Cont 2010). Central clearing and increased reporting of
CDS trades to data repositories are important steps towards increased transparency,
which regulators intend to use for monitoring and enhancing market stability. As such,
they are quite acceptable as a representative benchmark of the overall market credit
risk.

The indices quoted on a spread basis are selected by its regions: North Amer-
ican (CDX), Europe (iTraxx EU), by maturities: 5 and 10-year, by credit ratings:
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Table 1 Summary statistics for entire sample period, pre-, during and post-crisis period

Entire Pre-crisis Crisis Post-crisis

Mean SD Mean SD Mean SD Mean SD

CDX.IG.5Y 0.47 18.68 −0.21 2.51 1.71 16.65 −0.01 32.43

CDX.IG.10Y 0.17 7.02 −0.16 2.64 0.83 11.58 −0.15 2.98

CDX.HY.5Y 0.46 53.34 −1.06 10.62 3.54 83.20 −1.05 46.44

CDX.HY.10Y 0.56 60.96 −0.49 11.90 1.25 98.24 −0.60 44.91

EU.IG.5Y 0.17 10.21 −0.19 1.63 0.42 15.14 0.48 10.74

EU.IG.10Y 0.35 8.62 −0.11 2.06 1.02 13.22 0.24 7.86

EU.HY.5Y 0.86 38.60 −1.65 11.86 4.43 58.11 0.43 36.13

EU.HY.10Y 1.06 29.35 −1.08 13.15 4.93 43.30 −0.44 26.18

The entire sample period covers from Oct 2004 to June 2011. The indices are selected by its regions: North
American (CDX), Europe (iTraxx EU), by maturities: 5- and 10-year, by credit rating: investment-grade
(IG) and high-yield grade (HY). We have 134 weekly observations in the pre-crisis period (from Oct 2004
to May 2007), 104 observations in the crisis period (from June 2007 to July 2009) and 76 observations in
the post-crisis period (from Aug 2009 to June 2011). The changes of CDS indices are quoted as basis points
and their mean and standard deviation are reported

investment-grade (IG) and high-yield grade (HY). From October 2004 to June 2011,
these eight indices with different regions, maturities and credit ratings will be ana-
lyzed in the subsequent sections. The US subprime crisis period is emphasized since
the function of money markets in the U.S. was severely impaired in the summer of
2007, and then even further following the collapse of Bear Sterns in mid-March 2008
and the bankruptcy of Lehman Brother in September 2008. The turmoil from June
2007 to July 2009 is referred to a crisis period. After mapping the trading date among
eight CDS indices, each index has 315 weekly observations: 134 in the pre-crisis
period (from October 2004 to May 2007), 104 in the crisis period (from June 2007 to
July 2009) and 76 in the post-crisis period (from August 2009 to June 2011). Table 1
summarizes the descriptive statistics for the entire sample period, the pre-crisis, the
crisis and the post-crisis period. During the crisis period, the average changes of CDS
spreads are all apparently positive, and are extremely volatile.

The time-variations of CDS indices as displayed in Fig. 1 exhibit a changing
dynamic. One noticeable feature is a high level of comovement across various matu-
rities and credit ratings, which motivates the study of common factors. Specially, in
Fig. 1 the apparent spike during the outbreak of the U.S. subprime crisis shows an
inversion of the risk structure. For a given maturity, a high-yield (HY) index should
be higher than an investment-grade (IG) one to compensate for a higher default risk
taken by investors. The default risk premium between a HY and an IG may expand
during the financial crisis to reflect a shift in investor risk appetite. Due to this chang-
ing risk attitude in a distressed time, risk-averse investors require a higher default risk
premium. Pan and Singleton (2008) claimed that a comovement effect in the CDS
markets is partly caused by a shift in investor risk appetite, especially for the turbulent
period.
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Fig. 1 Time series plots of CDX index and iTraxx EU index

Figure 1 also shows the term structure of CDSmarkets. Normally, the slope of CDS
term structure is upward in which the longer-term CDS spreads are higher than the
respective shorter-term ones due to a greater risk-taking in longer maturity contracts.
In this regard, the term structure should never be inverted. But, the term structure did
occasionally invert, especially during the financial crisis (Pan and Singleton 2008). For
an upcoming crisis, the demand for short-term CDS contracts is appealing. To cover
a higher hedging cost faced by protection sellers, the bid-ask spreads of short-term
contracts should be comparable to those of longer-dated contracts. As shown in Fig. 1,
we have consistent evidence in the CDS term structure of an inverted slope in the crisis
period and an upward slope in the rest of periods.

3 Factor representation of CDS spreads change

3.1 Model specifications

Let Sit be the observed change of CDS spreads for the i th cross-section unit at time t ,
for i = 1, . . . , N , and t = 1, . . . , T . The factor model for given i th unit is:
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Sit = Ftλi + eit (1)

where Ft is a vector of common factors and is not observable, λi is a vector of factor
loadings associatedwith Ft , and eit is the idiosyncratic component of Sit . It is assumed
that factors and idiosyncratic disturbances are mutually uncorrelated, E (Ft , eit ) = 0.
Obviously, Eq. (1) is the static factor representation of the change of the CDS spreads.
For the forecasting exercise in subsequent sections, we will invoke the assumptions
about the cross-sectional and temporal dependence in the idiosyncratic components.

The asymptotic principal components technique established by Stock and Watson
(2002) andBai andNg (2002) can be used to consistently estimate the common factors.
One starts with an arbitrary number of factors k (k < min {N , T }) and estimates λk

and Fk by solving:

(
λk, Fk

)
= arg min

Λk ,Fk
(NT )−1

N∑
i=1

T∑
t=1

(
Sit − Fk

t λ
k
i

)2
(2)

subject to the normalization of either ΛkTΛk/N = Ik with Λk = [
λk1 . . . λkN

]T
or

FkTFk/T = Ik . One solution of this optimization is given by
(
Λ̂k, F̂k

)
, where Λ̂

k
is√

N times the eigenvectors corresponding to the k largest eigenvalues of the N × N
matrix STS where S is a T by N dimension matrix comprising N units until time T ,

and F̂
k = SΛ̂

k
/N .

3.2 Common principal components in the different sub-periods

In Table 2 we present the results for the factor model using the CDS index data, and
find that a four-factor model in general explains up to 90.5% of the variance in the
changes of CDS spreads. The first factor explains 63% of the variance of the change
of CDS spreads, the explained variance of the second, third and fourth factors are 12.1,
8, and 7.4%. When turning to three sub-periods, the first factor explains 58.7% of the
variance in the pre-crisis period, 72.3% of the variance in the crisis period and 47% of
the variance in the post-crisis period. The fraction of CDS variation explained by the

Table 2 Explained variance by principal component analysis

% variance explained Total variance
explained (%)

Factor 1 (%) Factor 2 (%) Factor 3 (%) Factor 4 (%)

Entire 63.0 12.0 8.0 7.5 90.5

Pre-crisis 58.7 13.3 9.0 7.6 88.6

Crisis 72.3 12.4 5.4 4.0 94.1

Post-crisis 47.0 16.5 12.6 10.2 86.5

For entire sample period and three sub-periods, this table presents the proportion of the total variance of
the changes of CDS spreads explained by the variation of a given factor
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first principal component increases from 58.7% before the crisis to 72.3% during the
crisis period, but declines to 47% after the crisis. The CDS spreads during the crisis are
increasingly driven by common factors and less by idiosyncratic components, which
is evident by an increased explanatory power up to 94.1%.

To formally test whether the eigenstructures across three sub-periods are distinct,
we perform a likelihood ratio test comparing a restricted (the Common Principal Com-
ponents (CPC)model) against the unrestrictedmodel (themodel where all covariances
are treated separately). The likelihood ratio statistic is given by

T
(n1,n2,...,nh) =−2log L(Σ̂1,...,Σ̂h)

L(S1,...,Sh)

(3)

where Σi = ��i�
T, i = 1, . . . , h, is a positive definite N × N covariance matrix

for every i , � = (γ1, . . . , γN ) is an orthogonal N × N transformation matrix and
Λi = diag (ϑi1, . . . , ϑi N ) is the matrix of eigenvalues where all ϑi are assumed to
be distinct. The CPC is motivated by the similarity of the covariance matrices in the
h-sample problem. The basic assumption of CPC is that the space spanned by the
eigenvectors is identical across several groups, whereas variances associated with the
components are allowed to vary (Flury 1988).

Let S be the sample covariance matrix of an underlying N -variate normal distribu-
tion with sample size n. Then the distribution of nS has n − 1 degree of freedom and
is known as the Wishart distribution.

nS ∼ WN (	, n − 1)

Hence, for Wishart covariance matrices Si , i = 1, . . . , h with sample size ni , the
likelihood function can be expressed as

L (Σ1, . . . , Σh) = C
h∏

i=1

exp

[
tr

{
−1

2
(ni − 1)Σ−1

i Si

}]
|Σi |− 1

2 (ni−1) (4)

where C is a constant independent of the parametersΣi . See Härdle and Simar (2011),
inserting (4) to (3), the likelihood ratio statistic is obtained and has a χ2 distribution
as min(ni ) tends to infinity with

h

{
1

2
N (N − 1) + 1

}
−

{
1

2
N (N − 1) + hN

}
= 1

2
(h − 1) N (N − 1)

degree of freedom. Using h = 3 sub-periods sample covariance matrix data, the
calculation yields 897.54 for the likelihood ratio statistic, which corresponds to a zero
p-value for the χ2 (56) distribution. Hence, the CPC model is rejected against the
unrestricted model, where the PCA model is applied to each sub-period separately.
The finding indicates that the eigenstructures across three sub-periods, pre-, during
and post-crisis, are dramatically distinct. There is no common eigenstructures (e.g. of
CPC type) for these periods. Indeed, the outbreak of subprime credit crisis has led to
a structure change in the commonality of CDS markets.
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3.3 Interpreting the factor loadings

To get a better feel from the estimated factor loadings in Table 3, we plot the estimated
factor loadings against credit rating andmaturity in Fig. 2. The characteristics of factors
seem intuitive and interpretable. For factor 1, the factor loadings all have the same sign
and same magnitude across maturities and ratings. It can therefore be interpreted as
a level effect. The CDS spreads, resembled in bond spreads, are sensitive to the level
and movement of the interest rate. As pointed out by Longstaff and Schwartz (1995),
the static effect of a higher spot rate increases the risk-neutral drift of the firm value
process, which reduces the probability of default and in turn, reduces the CDS spreads.
Further empirical evidence is supported by Duffie (1998) and the above references.

Factor 2 can be interpreted as a region effect. The factor loadings of CDX series
are higher than those of iTraxx Europe family. Since the PCA technology joins the
U.S. and European CDS indices, at least one factor should capture the fundamental

Table 3 Estimated factor loadings

Entire Crisis

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

CDX.IG5Y 0.337 0.921 0.353 −0.079 0.267 0.666 0.481 0.148

CDX.IG10Y 0.308 0.278 −0.697 0.431 0.305 0.518 −0.391 −0.581

CDX.HY5Y 0.379 −0.039 −0.178 −0.522 0.384 −0.127 −0.389 0.153

CDX.HY10Y 0.389 −0.066 0.002 0.221 0.376 −0.136 −0.454 0.118

EU.IG5Y 0.372 −0.025 −0.208 −0.585 0.377 0.032 −0.004 0.590

EU.IG10Y 0.401 −0.063 0.017 0.251 0.382 0.014 0.207 0.086

EU.HY5Y 0.385 −0.175 0.406 −0.003 0.362 −0.360 0.339 −0.148

EU.HY10Y 0.380 −0.184 0.387 0.285 0.351 −0.347 0.315 −0.475

This table reports the estimated factor loadings for the entire sample and for the crisis period
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Fig. 2 The association between factor loadings, credit ratings and maturities
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or economic differences between the regions. It is not so straightforward to interpret
factor 3 in the CDX case, but factor 3 in the iTraxx Europe case may be related to a
volatility effect. In Table 3 andFig. 2,wefind that for iTraxxEurope, the factor loadings
of HY are higher than those of IG. The evidence that the HY spreads aremore sensitive
to volatility than IG ones is well documented in the literature. The contingent–claims
approach implies that the debt claim has features similar to a short position in a put
option. Since option values increase with volatility, increased volatility increases the
probability of default. Finally, we interpret factor 4 as a term structure effect. This is
certainly clear because in Table 3 and Fig. 2, the sign of loading of 5-year CDS spreads
is always negative while that of 10-year CDS spreads is positive. This is in accordance
with Pan and Singleton (2008) who found that the term structure of CDS spreads is
associated with a default risk premium. An increase in the default risk premium pushes
up the long-term CDS spreads more than the short-term CDS spreads, leading to a
steeper term structure of CDS spreads.

We admit that the information from Fig. 2 is insufficient to label the latent factors,
therefore we have regressed the latent factors on the economic variables and find that
it’s not easy to label the factors by the chosen economic variables.1 The difficulty is
attributable to that the chosen economic variables such as the change of interest rate, the
change of yield curve, the credit spread change and the change of VIX level generally
exhibit the indistinguishable contributions or explanatory powers for the latent factors.
In our findings, the latent factors are linear combination of the economic variables.
These economic variables are highly correlated since they are governed by the same
latent factors. Applying them together into the regression may result in a collinearity
problem and bias our interpretation. For instance, in our case the change of VIX level
almost dominates across the four factors. Eichengreen et al. (2012) claim that the exact
association of a economic variable with any one of the latent factors is hard to define
due to non-uniqueness of the factor estimates. Although our interpretation for Fig. 2.
is not testable, the information from Fig. 2 helps to propose the observed economic
variables in the subsequent analysis.

3.4 Connecting latent factors with observed variables

To realize the degree of association between the unobservable factors and observable
economic variables, and to answer the question of interest; whether some of the observ-
ables are in fact underlying latent factors, we apply the method developed by Bai and
Ng (2006) to determine if the observed and the latent are identical. The observed indi-
cator with a stronger coherence with the latent factors is a good proxy. Two statistical
criteria, the R2 and the noise-to-signal ratio, are used to examine whether any of the
economic series yields the same information that is contained in the factors.

Let Gt be an J -dimensional vector of observed economic variables. The basic idea
behind the test developed by Bai and Ng (2006) is to investigate whether any of the
economic series can be represented as a linear combination of the latent factors by

1 We appreciate the suggestion from the reviewer and the editor.
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permitting a limited degree of noise in this association, thus

G j,t = βT
j Ft + ς j,t (5)

where β j is estimated by the OLS regression, and ς j,t is denoted as the error term.
The above equation yields the predicted value Ĝ j,t = β̂T

j F̂t . R
2 ( j) is designed to

measure the association between G j,t and Ĝ j,t , and defined as:

R2 ( j) =
v̂ar

(
Ĝ j

)

v̂ar
(
G j

) (6)

where v̂ar (·)denotes the sample variance and v̂ar
(
Ĝ

)
is computed byusing the sample

analog of the factors’ asymptotic covariance matrix. R2 ( j) is bounded between zero
and one. It is equal to one if they have a high association, and is close to zero in the
absence of correlation. A second measure NS(j), called the noise-to-signal ratio, is
constructed as:

NS ( j) = v̂ar
(
ς̂ j

)

v̂ar
(
G j

) (7)

A larger NS(j) thus indicates an important departure of G j from the latent factors.
Normally, the magnitude of R2 ( j) is reverse to that of NS ( j) since the sum of R2 ( j)
and NS ( j) should be equal to one.

As further observed economic variables in Eq. (5), one may include the change
of the interest rate level, change of the credit spread, change of the interest rate term
structure and the change of the stock index volatility. These variables are suggested by
Collin-Dufresne et al. (2001), Benkert (2004) and Ericsson et al. (2009) since they are
important determinants of credit assets. We limit our attention to the U.S. variables
because the corresponding European variables are highly correlated with the U.S.
series. The 1-year Treasury bond rate represents the level of the risk-free interest rate
in the U.S. The difference between the 10-year Treasury bond rate and the 1-year
Treasury bond rate is used to evaluate the slope of the yield curve in the U.S. The
credit spread in the U.S. is the difference between the average Moody’s Baa yield and
the average Moody’s Aaa yield of U.S. corporate bonds. We also employ the CBOE
VIX index to measure generalized risk aversion.

Table 4 shows the association of the first four factors with the chosen economic
variables. For the entire sample period, the R2 criterion gives a value of 0.3 and 0.375
on the credit spread and VIX index, respectively. The four factors are more correlated
with the credit spread andVIX, and less correlated with the level and the term structure
of the interest rate. This finding is accordance with Cao et al. (2010), Cremers et al.
(2008) and Collin-Dufresne et al. (2001). The implication is that perceptions of credit
risk were shaped by the common factors that are best summarized by credit spread
and a generalized risk aversion. In other words, the result suggests that a higher credit
spread or a higher generalized risk aversion does actually translate into systematic
credit risk. Analogically, the sub-period analysis reports that credit spread and VIX
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Table 4 The association between the latent factors and the economic variables

Entire Pre-crisis During crisis Post-crisis

Level 0.156 0.082 0.252 0.122

Credit spread 0.300 0.294 0.418 0.286

Yield curve 0.132 0.009 0.160 0.245

VIX 0.375 0.267 0.350 0.590

The R2 criterion defined in Eq. (5) is calculated and reported. The observed economic variables include
the 1-year Treasury bond rate that represents level of the risk-free interest rate in U.S., the credit spread
measured as the difference between the average Moody’s Baa yield and the average Moody’s Aaa yield of
U.S. corporate bonds, the slope of the yield curve as the difference between the 10-year treasury bond rate
and the 1-year treasury bond rate, CBOE VIX index to measure the generalized risk aversion

are relatively correlated with the latent factors prior to the crisis. During the crisis,
the R2 criterion even gives a value of 0.418 on credit spread, implying that the latent
factors are best summarized by credit spread. The post-crisis analysis reveals that
a generalized risk aversion with 0.59 R2 criterion is highly associated to common
factors.

3.5 Factor risk prices

How the market prices the factor risk inherent in the CDS spreads is of interest,
since one can deduce how the market compensates investors, often referred to as the
protection sellers, for bearing credit risk. If we fit the factor model into the framework
of the arbitrage pricing theory (Ross 1976), the factor model for an N -dimensional
returns on CDS indices of different credit ratings, maturities and regions, Rt , at time
t can be presented as

Rt = λΥ + λFt + et (8)

The arbitrage pricing theory states that the cross-section returns, Rt , are determined by
K common factors Ft through the N×K factor loadingmatrixλ. Given the assumption
that the unobservable common factor Ft and error term et are i.i.d. distributed, the
elements of the K -dimensional vector Υ can be interpreted as the market prices of
factor risk. Eq. (8) implies that the expected CDS returns satisfy

E (Rt ) = λΥ (9)

Given the estimated factor loadings λ, we can estimate the prices of factor riskΥ by the
generalized methods of moments (GMM) (Hansen 1982) on the moment restrictions
in Eq. (9). This is equivalent to a GLS regression of the average changes of CDS
indices on the factor loading matrix λ. Since we adopted a four-factor model in the
previous sections, the GMM method enables us to estimate the prices of factor risk
in this model and test their significance. As shown in Table 5, the market prices of a
four-factor model are all significant, and the first two factors exhibit a promising size
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Table 5 Estimation of factor risk prices

Four-factor model Five-factor model

Factor 1 −0.0521 (−3.873) −0.0498 (−4.957)

Factor 2 0.0121 (4.023) 0.0156 (4.940)

Factor 3 0.0055 (2.902) 0.0052 (4.393)

Factor 4 0.0009 (2.575) 0.0009 (4.240)

Factor 5 0.0005 (0.895)

J -statistic 1.206 (0.876) 1.445 (0.842)

R2 of GLS 95.42% 95.89%

The market price of factor risk is estimated using the GMM, and the value in parentheses is t-statistic. The
GMM J -statistics and the associated p values in parentheses are also presented to test the over identifying
restrictions. The R2 of GLS regression evaluates the goodness-of-fit of the factor models

in their risk prices. If we consider a five-factor model, the risk prices are significant
in the first four factors but insignificant in the fifth factor.

Table 5 also contains the GMM J -statistic, a test statistic for testing the over iden-
tifying restrictions in Eq. (9), and the corresponding p value. The J -statistic acts as
an omnibus test statistic for model miss-specification. In a well specified over identi-
fying model with valid moment conditions, the J -statistic behaves like a Chi-square
random variable with degrees of freedom equal to the number of over identifying
restrictions. Typically, a large J -statistic indicates a miss-specified model. In Table 5,
the J -statistics in the both four- and five-factor models cannot reject the null hypothe-
sis, implying that bothmodels arewell-specified. Furthermore, the four- andfive-factor
models provide a good fit, asmeasured by the R2 of the GLS regression, which is equal
to 95.42 and 95.89%, respectively. The results from J -statistic, R2 of the GLS and
the significance of factor prices suggest that the four-factor model is efficient enough
to measure the CDS returns.

4 Method of asymptotic principal components and forecast performance

4.1 Competing factor models

According to this study and previous literature, the common latent factors extracted
from factor models have proven their representative ability for systematic credit risk.
Thismotivates us to examinewhethermodelling the time series properties of the factors
can improve our ability to forecast the time-variation of CDS index changes. Acting
as the benchmark model, the static model in Eq. (1) is too restricted to accommodate
the realistic time-variation. The latent factors it produces can only follow one of
the few plausible, realistic patterns that do actually appear in the credit markets. The
generalizedmodels inwhich the factors could bedefined in a generalway are developed
to minimize the gap, and should entail less restrictions.

The dynamic factor model, a simple vector autoregressive (VAR) specification, is
the first shown to achieve a remarkable fit of the factors’ dynamics. By permitting a
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VAR specification in the factors with autoregressive parameters B, this model captures
the common dynamics in the cross-sectional analysis. Additionally, the error term,
ut , from a VAR equation in Eq. (10) is conditionally heteroscedastic and follows a
GARCH(p, q) process.

Sit = Ftλi t + eit(
I − B1L − · · · − Bh L

h
)
Ft = ut (10)

ut = H1/2
t ηt (11)

vech (Ht) = c+
q∑
j=1

A jvech
(
ut− juTt− j

)
+

p∑
j=1

D jvech
(
H t− j

)
(12)

where i = 1, . . . , N , t = 1, . . . , T, Ft is T × k and λi t is k × 1. ηt is white noise.
To take into account the possibility that the idiosyncratic errors in Eq. (1) may entail

serial and cross-section correlation, the dynamic factor with dependent error model is
built with additional assumptions on the idiosyncratic components shown in Eqs. (13),
(14) and (15).

Sit = Ftλi t + eit(
I − B1L − · · · − Bh L

h
)
Ft = ut

ut = H1/2
t ηt

vech (Ht) = c+
q∑
j=1

A jvech
(
ut− juTt− j

)
+

p∑
j=1

D jvech
(
H t− j

)

(1 − αL) eit = υi t + θ1υi+1,t + θ2υi−1,t (13)

υi t = σi tηi t (14)

σ 2
i t = δ0 + δ1σ

2
i,t−1 + δ2υ

2
i,t−1 (15)

The idiosyncratic components, eit , in Eq. (13) are serially correlated, with an AR(1)
coefficient α, and weakly cross-section correlated with the coefficients θ1 and θ2. The
innovations υi t are conditionally heteroscedastic and follow a GARCH(1,1) process
with parameters δ0, δ1, and δ2 in Eq. (15).

In practice,when factors are constructedover a longperiod, somedegree of temporal
instability is inevitable. Following Stock andWatson (2002), we model this instability
as stochastic drift in the factor loadings, and the factor loading evolves through time
with a serial correlation ρi shown in Eq. (16).

λi t = ρiλi,t−1 + (c/T ) ζi t (16)

where ζi t is white noise. Equation (16) implies that factor loadings for the i th variable
shift by an amount, (c/T ) ζi t , in time period t . In addition, it keeps a relationship
with its previous level which is measured by ρi . The time-varying factor loading
model ideally incorporates all of the features covering from Eqs. (10) to (16). Whether
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this model is more superior due to its abundant generalization will be examined with
respect to its predictive ability, and will be analyzed in the subsequent section.

4.2 Out-of-sample forecasting performance

Having proposed the competing models developed by more general ways, we take an
explicit out-of-sample forecasting approach to evaluate their predicting performance
regarding the CDS dynamics. Using the previous 1-year weekly data, we estimate
the parameters and produce a 1-week ahead forecast. After estimation, we find that
the dynamic of the CDS index captured by these factor models exhibits significant
time-variation and persistence, and we summarize their forecasting performance in
Table 6. The most outperformed one can be potentially applied to price credit risk
accurately and achieve a better credit risk management.

To assess an out-of-sample forecasting performance, for each proposed model we
compute each day t , the following four measures (a) mean squared error (MSE)
between the observed change of CDS spreads and the predicted change of CDS spreads
from the competing factor models; (b) mean absolute error (MAE); (c) mean correct
prediction (MCP) of the direction of change in CDS spreads. The MCP exhibits the
average numbers from N CDS indices are correctly forecast based on their signs of
changes; (d) the trace of R2 of the multivariate regression of Ŝ onto S,

R2
Ŝ,S

= Ê ‖ PS Ŝ ‖2/
Ê ‖ Ŝ ‖2= Ê tr

(
Ŝ
T
PS Ŝ

)/
Ê tr

(
Ŝ
T
Ŝ
)
, (17)

where S is a T ×N matrix comprising N units until time T, Ê denotes the expectation

estimated by averaging the relevant statistic and PS = S
(
STS

)−1
ST. As shown in

Table 6, the time-varying factor loading model exhibits the best 1-week ahead point-
forecast performance with the lowest MSE, MAE and the highest MCP, trace of R2.
For each model, we measure the forecasting performances under different numbers
of factors that range from one to seven. Table 6 indicates that the dynamic factor
model and the time-varying factor loading model constitute a promising improvement
over the static factor model. A poorest forecast performance in the static factor model
implies that the factors exhibit persistency, predictability and temporal instability, and
these characteristics contribute to the prediction on the changes of CDS spreads. We
further conduct a test for their equal predictive ability against the static factor model
in Sect. 4.3.

Determining the number of factors can be regarded as a model selection problem,
which is a trade-off between goodness-of-fit and parsimony. Following Bai and Ng
(2002), the number of factors is estimated by an information criteria function (IC):

k = argmin0≤k≤kmax IC (k) (18)

where IC (k) = log
(
V

(
k, F̂

k
))

+ kg (N , T ). V
(
k, F̂

k
)

= 1
NT

∑N
i=1

∑T
t=1 (Sit

−F̂
k
t λ

k
i

)2
is simply the average residual variance, and g (N , T ) is a penalty func-
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Table 6 Forecasting performance

MSE MAE MCP TraceR2 ICp1 ICp2 ICp3

A. Static factor model

k = 1 837.196 14.479 4.184 0.079 7.014 7.041 6.989

k = 2 935.015 15.225 4.113 0.090 7.409 7.464 7.360

k = 3 980.284 15.649 4.113 0.095 7.741 7.823 7.667

k = 4 994.165 15.797 4.067 0.096 8.040 8.149 7.941

k = 5 1011.411 15.915 4.166 0.098 8.341 8.478 8.218

k = 6 1011.353 16.002 4.083 0.098 8.626 8.790 8.478

k = 7 1014.162 16.074 4.067 0.098 8.913 9.105 8.741

B. Dynamic factor model

k = 1 512.226 11.061 4.127 0.123 6.523 6.550 6.498

k = 2 515.263 11.387 4.109 0.108 6.813 6.876 6.812

k = 3 521.053 11.530 4.072 0.106 7.109 7.191 7.035

k = 4 527.623 11.547 3.949 0.105 7.406 7.516 7.308

k = 5 518.325 11.604 4.040 0.109 7.673 7.810 7.550

k = 6 521.404 11.634 4.149 0.112 7.963 8.128 7.816

k = 7 521.863 11.618 4.189 0.110 8.249 8.440 8.076

C. Dynamic factor with dependent errors model

k = 1 725.655 13.458 4.069 0.082 6.871 6.898 6.847

k = 2 540.526 12.439 4.125 0.098 6.861 6.876 6.812

k = 3 534.201 11.844 4.127 0.110 7.134 7.721 7.060

k = 4 526.395 11.672 4.109 0.115 7.404 7.513 7.305

k = 5 524.747 11.628 4.021 0.113 7.685 7.822 7.562

k = 6 527.945 11.575 4.076 0.105 7.976 8.140 7.828

k = 7 521.499 11.568 4.123 0.110 8.248 8.440 8.076

D. Time-varying factor loading model

k = 1 784.773 13.293 3.985 0.036 6.949 6.977 6.925

k = 2 509.891 12.079 4.101 0.129 6.803 6.858 6.754

k = 3 493.244 11.744 4.090 0.114 7.054 7.136 6.980

k = 4 479.815 11.443 4.105 0.151 7.311 7.421 7.213

k = 5 479.944 11.415 4.061 0.155 7.596 7.733 7.473

k = 6 481.839 11.384 4.130 0.148 7.885 8.049 7.737

k = 7 479.683 11.383 4.185 0.156 8.165 8.356 7.992

The information criteria function IC p1, IC p2 and IC p3 can be referred to (20), (21) and (22) in the text

tion for overfitting. Bai and Ng (2002) have proposed three specific formulations of
g (N , T ) that depend on both N and T .

ICp1 (k) = log
(
V

(
k, F̂

k
))

+ k

(
N + T

NT

)
log

(
NT

N + T

)
(19)
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ICp2 (k) = log
(
V

(
k, F̂

k
))

+ k

(
N + T

NT

)
log (min {N , T }) (20)

ICp3 (k) = log
(
V

(
k, F̂

k
))

+ k

(
log (min {N , T })

min {N , T }
)

(21)

Table 6 summarizes the results of the IC function and shows that for both the static
factor model and the dynamic factor model, the one-factor model with the minimized
information criteria is the best one to model the common factors in the changes of
CDS spreads. However, for both the dynamic factor with dependent errors model and
for the time-varying factor loading model, the two-factor model is relatively adequate.

4.3 Testing equal predictive ability

To formally assess the statistical significance of the superior out-of-sample perfor-
mance of the dynamic factor models over the static factor model, we employ the equal
predictive ability test of Diebold and Mariano (1995) and report the testing results in
Table 7.Diebold andMariano (1995) propose amethod formeasuring and assessing the
significance of divergences between two competing forecasts, and allow for forecast
errors that are potentially non-Gaussian, serially correlated and contemporaneously
correlated.

To be specific, let dt be the loss differential between two forecast errors. The null
hypothesis is no difference in the accuracy of two forecasts, that is Edt = 0. The
asymptotic distribution of the sample mean loss differential is:

√
T

(
d̄ − μ

) ∼ N (0, 2π fd (0)) (22)

where fd (0) is the spectral density of the loss differential at frequency 0.
The statistical significance of the difference in forecast errors between the models

is summarized in Table 7. The tabulated p values indicate that we can reject the null
hypothesis of equal forecasting ability between the static factor model and the time-
varying factor model. We also reject the equal predicting ability between the static
factor model and the dynamic factor with dependent errors model. With the exception
in CDX 5-year IG and 10-year HY indices, the equal predictive ability between the
static factor model and the dynamic factor model is rejected. Furthermore, to claim
that the time-varying factor model is the best one, we compare its forecast ability with
the dynamic factor model, and the dynamic factor with dependent errors model. We
find that significant differences exist in their predicting ability in both cases.

In summary, the results in Table 6 together with Table 7 indicate that the time-
varying factor model reveals a statistically significant outperformance for most of the
cases, suggesting that common factors drive the time-variation of CDS spreads and
that the dynamics in the factors exhibit moderate predictability in the short-run. As
evident, the temporal instability in the common factors is inevitable and contributes to
forecasting. However, the serial or cross correlation in the idiosyncratic components
only have little effect on the forecasts, implying that the common factors dominate the
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predicting performance. The predictability of CDS spreads changes, certainly benefits
the hedging, speculating and arbitraging activities in the credit markets.

5 Conclusion

The commonalities in CDS spreads and their factor loadings are analyzed in this study.
We collect CDS indices in North American and Europe with 5- and 10-year maturities,
and with different credit ratings (IG and HY) from October 2004 to June 2011. The
estimated risk factors can be interpreted as the level, the region, the volatility and the
term structure effect. By conducting a test if there are common principal components,
we find that the eigenstructures are distinct for the pre-, during and post-crisis periods.
The first factor explains 58.7% of the variance in the pre-crisis period, 72.3% of
the variance in the crisis period and 47% of the variance in the post-crisis period,
indicating that during the crisis, CDS spreads are increasingly driven by common
factors and less by idiosyncratic components. We also find that during the crisis the
latent factors are more correlated with the credit spread and VIX, and less correlated
with the level and the term structure of the interest rate.

The time-variation of CDS spreads changes is modelled via various dynamic fac-
tor models. We apply the asymptotic principal component technique to extract the
common factors, and then determine the number of factors by information criteria
functions. The out-of-sample forecasting performance and the results of equal predic-
tive ability indicate that the common factors drive the time-variation of CDS spreads
and the dynamics in the factors exhibit moderate predictability in the short-run. In
addition, the temporal instability in the common factors is inevitable and contributes
to forecasting, but the serial or cross correlation in the idiosyncratic components have
little effect on the forecasts.
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