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Abstract This paper concerns depth functions suitable for smooth functional data.
We suggest a modification of the integrated data depth that takes into account the
shape properties of the functions. This is achieved by including a derivative(s) into
the definition of the suggested depth measures. We then further investigate the use
of integrated data depths in supervised classification problems. The performances of
classification rules based on different data depths are investigated, both in simulated
and real data sets. As the proposed depth function provides a natural alternative to
the depth function based on random projections, the difference in the performances of
these two methods are discussed in more detail.

Keywords Data depths · Functional data · Integrated data depths · Supervised
classification

1 Introduction

Data depth or depth functions becameaverypopular tool of nonparametricmultivariate
methods in the last two decades. A depth function is a map D : S × P(S) → R

+ or
→ [0, 1], where S is a sample space andP(S) the space of all probability distributions
on S. Hence, a depth function defines a linear ordering (semi-ordering) on the sample
space with respect to a given probability distribution. A depth function is usually
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1012 D. Hlubinka et al.

defined such that it satisfies some properties; these were summarized by Zuo and
Serfling (2000). A depth should define ordering in an central-outward sense reflecting
a “position” of a point with respect to a probability distribution. In particular if a
distribution has a point of symmetry this should be the deepest point of the distribution
and a depth should decrease when the distance from the point of symmetry increases.
The most popular depths include the halfspace depth (Tukey 1975), the simplicial
depth (Liu 1990) or the zonoid depth (Mosler 2002). Each depth function has its
advantages and disadvantages concerning their performance on data sets, statistical
properties and computational issues.

There are many applications of the multivariate ordering induced by the data depth.
One of the most popular applications of data depth is its use to the classification
problem. Since the data are ordered in the central-outward sense the classification
rule may be based on this univariate variable. In this sense a data depth serves as a
dimension reduction of the multivariate data setting to a univariate setting. Different
depth functions may then be compared with respect to their classification perfor-
mance.

Recently, data depth functions for functional (infinite dimensional) data have
attracted considerable attention. While our paper is motivated by the integrated data
depth introduced in Fraiman andMuniz (2001), the other approaches include ‘random
projection depths’ (Cuevas et al. 2007), and ‘band depths’ (López-Pintado and Romo
2007), among others. It has been proved that the basic desirable properties of depth
functions as listed in Zuo and Serfling (2000) hold also for the integrated depth and for
the band depth for functional data (López-Pintado and Romo 2009; Claeskens et al.
2014).

Often one can assume that the observed curves, in this infinite dimensional setting,
are smooth. Then it can be of interest to make use of the information contained in
the derivatives of the curves. Within the framework of ‘random projection depths’
(Cuevas et al. 2007 suggested a depth function suitable for smooth functions that
involves the information in derivatives. Inspired by this work we propose an alterna-
tive depth function that is based on the integrated depth and that utilizes the informa-
tion about the derivatives of the observed curves. Thus our approach generalizes the
definition of the integrated data depth (Fraiman and Muniz 2001) and complements
the results in Cuevas et al. (2007). Further, analogously as in Cuevas et al. (2007)
we illustrate the performance of the suggested data depth on supervised classifica-
tion.

The aim of this paper is threefold: (i) to introduce a new integrated data depth
function for functional data; (ii) to investigate the performances of integrated data depth
functions (including the proposed one) in supervised classification; (iii) to compare
this performance with other supervised classification methods.

The paper is organized as follows. The newly-proposed integrated data depth for
smooth functional data is presented in Sect. 2, where it is also related to other recent
data depth functions involving derivatives. In Sect. 3 the problem of supervised classi-
fication is discussed, together with some available classificationmethods. In Sect. 4 the
introduced integrated data depth functions are used for classification of both simulated
and real functional data.
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2 Integrated data depth for smooth functions

Suppose the observations are independent and identically distributed smooth stochastic
processes X1(t), . . . , Xn(t). More precisely, Xi is a random variable with values in
the space of continuously K -times differentiable functions on the interval [a, b]. We
denote this space by C (K )([a, b]). Without loss of generality in the following we
assume that [a, b] = [0, 1].

As mentioned in the introduction there are several concepts of depth measures for
functional data. In this paper we concentrate on the integrated data depth function
suggested by Fraiman and Muniz (2001). In the next section we briefly discuss how
to build integrated data depths that incorporate information on the original observed
curves as well as information on derivative curves.

2.1 Integrated data depth functions

Denote by Pn the empirical distribution of the observed random functions X1, . . . , Xn

and let Pt,n be the marginal distribution of Pn at the point t , i.e. Pt,n is the empirical
distribution of the sample X1(t), . . . , Xn(t). Further, let Dk be a depth function on
R
k , for instance Tukey’s halfspace depth (Tukey 1975) or the simplicial depth (Liu

1990). The integrated depth function is now defined as

I D(x; Pn, D1) =
∫ 1

0
D1

(
x(t); Pt,n

)
dt, (1)

where D1(x(t); Pt,n) is a univariate depth of the point x(t) with respect to the distri-
bution Pt,n .

In this paper the interest goes to integrated data depths for smooth functions. There-
fore, next to the observed random functions X1, . . . , Xn , we can also consider the kth

derivatives of the observed functions, i.e. X (k)
1 , . . . , X (k)

n , up to order K . Let P(k)
n be

the empirical distribution of X (k)
1 , . . . , X (k)

n and note that P(0)
n coincides with the stan-

dard empirical measure Pn . Let w0, . . . , wK be non-negative weights that sum up to
one. Then a straightforward modification of the integral depth function defined by (1)
is given by

FD(x; Pn, D1) =
K∑

k=0

wk I D
(k)(x; Pn, D1

)
, (2)

where

I D(k)(x; Pn, D1) =
∫ 1

0
D1

(
x (k)(t); P(k)

t,n
)
dt

stands for the integrated depth calculated for the kth derivative of the function x with
respect to the distribution P(k)

n . Note that for wk = 1 (implying that all the other
weights are zero), the definition of FD(x; Pn, D1) given by (2) coincides with the
integrated data depth of Fraiman and Muniz (2001) calculated from the kth order
derivatives of the observed functions.
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Note that in (2) each of the derivatives is considered separately and then the final
depth is calculated as a weighted average of depths of derivatives. Sometimes how-
ever it is advantageous to consider the function and its derivatives jointly. See for
example Sect. 4.3. This brings us to the following definition of a depth function for
smooth functions. For 0 ≤ j1 < j2 < . . . < jk ≤ K let X ( j1,..., jk )

i stand for the

vector (X ( j1)
i , . . . , X ( jk )

i ) of the j1th, …, jk th derivative of the function Xi . Further,

let P( j1,..., jk )
n be the empirical distribution based on X ( j1,..., jk )

1 , . . . , X ( j1,..., jk )
n . Now,

we suggest that the depth of x ∈ C (K )([a, b]) is measured as

FD(x; Pn) =
∑

{ j1,..., jk }⊂{0,1,...,K }
j1< j2<...< jk
k=1,...,K+1

w j1,..., jk I D
( j1,..., jk )

(
x; Pn, Dk

)
, (3)

where the summation runs over all non-empty subsets of {0, 1, . . . , K }; further
{w j1,..., jk } are some non-negative weights that sum up to one and

I D( j1,..., jk )
(
x; Pn, Dk

) =
∫ 1

0
Dk

(
x ( j1,..., jk ); P( j1,..., jk )

t,n
)
dt (4)

stands for the integrated depth calculated for the vector function x ( j1,..., jk ) with respect
to the empirical distribution of vector functions P( j1,..., jk )

n .
Since in (3) several multivariate depth functions (univariate, bivariate, …, (K +1)-

variate) may be used, we dropped the notation “D”, and simply use the notation
FD(x; Pn).

It is instructive to look into some examples.

Example 1 We first discuss the situation K = 1 in detail. In this case (3) becomes

FD(x; Pn) = w0 I D
(0)(x; Pn, D1

) + w1 I D
(1)(x; Pn, D1

)
+w0,1 I D

(0,1)(x; Pn, D2
)
. (5)

Thus, when using data depth for instance for classification one can tune the weights
w0, w1, w0,1 in order to focus on differences in the curves and/or their derivatives.
While I D(0) (respectively I D(1)) concentrate on classification based on the differences
in the original (respectively first derivative) values of the curves, I D(0,1) pays attention
to both their original values as well as the values of the first derivative. Moreover,
I D(0,1) has the potential to detect differences between curves that can be discovered
from the joint distribution of original curves and their derivatives, but that cannot
be discovered by considering original curves and their derivatives separately (see for
example Sect. 4.3.1). Some interesting special cases of (5) are:

1. The three cases: (i) w0 = 1, w1 = 0, w0,1 = 0; (ii) w0 = 0, w1 = 1, w0,1 = 0;
(iii) w0 = 0, w1 = 0, w0,1 = 1; in which one focuses entirely on either: (i) the
observed curves themselves; (ii) the derivative curves; (iii) the joint distribution
of the observed curves and their derivatives.
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2. The casew0 = w1 = w/2 andw0,1 = 1−w, withw ∈ [0, 1]. In this case, looking
separately at the observed curves or their derivatives gets an equal weight.

3. The cases w0 = w1 = w0,1 = 1/3.
4. The cases: w0 = w, w1 = 0 and w0,1 = 1 − w, and w0 = 0, w1 = w and

w0,1 = 1−w, where the curves themselves and the joint distribution, respectively
the first derivatives of the curves, and the joint distribution come into play, in a
balanced way.

In Sect. 4.3 we investigate some of these scenarios in a simulation study regarding
supervised classification.

Example 2 We now look at the case K = 2. In this case (3) becomes

FD(x; Pn) = w0 I D
(0)(x; Pn, D1

) + w1 I D
(1)(x; Pn, D1

) + w2 I D
(2)(x; Pn, D1

)
+w0,1 I D

(0,1)(x; Pn, D2
) + w0,2 I D

(0,2)(x; Pn, D2
)

+w1,2 I D
(1,2)(x; Pn, D2

) + w0,1,2 I D
(0,1,2)(x; Pn, D3

)
.

The suggested depth in (3) is thus very versatile, and allows a lot of flexibility in the
actual choice of the depth measure considered. In Sect. 4.3 the advantages of such a
versatile rule will be seen.

Note that the computational cost for calculating the depth FD(x; Pn) is similar to
that for calculating integrated depths, for a given (maximal) order of derivatives K
to be included. In real data applications, the random functions are not observed on
the whole domain, but only at a discrete (dense) grid of points in the domain. From
the observed function values at the discrete points, one computes via for example
(linear) interpolation, approximate values for all points in the domain. See for example
(Claeskens et al. 2014), as well as Sect. 4.

Remark 1 So far we have discussed the empirical depth calculated using the empirical
measure Pn based on the observed curves. The population analogue of the suggested
data depth is defined simply by replacing Pn with the population distribution P in the
definition of FD.

2.2 Other data depth functions involving derivatives

As discussed in the introduction several depth functions for function-valued random
variables have been suggested recently in the literature and the integrated data depth is
only one of the possible approaches. While it is quite straightforward to use the depth
measures with the derivatives instead of the original curve (as in I D(k)), the idea of
considering the joint distribution of the original curves and their derivatives has not
attracted, to the best of our knowledge, much attention yet.

A first approach we are aware of is the double random projection methods sug-
gested in Cuevas et al. (2007). This method runs as follows. Let a be a random
process on [0, 1] (called random direction in Cuevas et al. 2007). The data are
first reduced to a bi-dimensional sample by taking inner products between the ran-
dom direction and the observed process on the one hand and between the ran-
dom direction and the derivatives of the observed curves on the other hand, i.e.
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(〈a, X1〉, 〈a, X (1)
1 〉), . . . , (〈a, Xn〉, 〈a, X (1)

n 〉). Now, one can use one of themany avail-
ablemethods to calculate the depth frombivariate observations. As the resulting depths
depend on a, in the last step these depths are averaged with respect to the distribution
of the process a.

Another approach that was proposed in the recent literature is in Claeskens et al.
(2014). They start from a multivariate set of observed curves, all observed in the same
time points t�, with � = 1, . . . , T , and then consider a k-variate depth function Dk to
define

T∑
�=1

Dk

(
x ( j1,..., jk ); P( j1,..., jk )

t�,n

)
W (t�).

So, in contrast to (4), the role of the weights W (t�) is to give possibly different
importance to different regions of the domains of the curves involved. The proposed
depth measure, defined in (3), does not differentiate in importance of regions, but
combines different depth measures instead.

In Sect. 4 we compare, among others, the performances of the (double) random
projection methods with the proposed depth function in (3), when used in a supervised
classification problem.

3 Supervised classification and data depth

In Sect. 4 we illustrate the properties of the suggested data depth function (3) by
applying it to the problem of supervised classification. This problem can be described
as follows. Suppose we have G populations P1, . . . , PG . For each population Pg we

have a ‘training sample’ of independent ng observations X (g)
1 , . . . , X (g)

ng that comes
from Pg . The aim is to classify a new observation X into one of the G populations.

The classification of functional data is a challenging problem that attracts con-
siderable attention since the last years. For a recent survey of existing methods see
Ferraty and Romain (2011) and the references therein. Among the available classi-
fication methods there are various generalizations of linear discrimination rules (see
e.g. James and Hastie 2001), distance-based and kernel rules (see e.g. Ferraty and
Vieu 2006), partial least squares method (see e.g. Liu and Rayens 2007), reproducing
kernel methods (see e.g. Berlinet and Thomas-Agnan 2004) and methods based on
depth measures. Another classification and clustering method based on projection of
the functional data to a relatively small number of chosen coordinates has appeared
recently in Delaigle et al. (2012). Analogously as Cuevas et al. (2007) we concen-
trate in the following on comparison of several standard distance-based methods with
several methods based on integrated and random projection data depth.

3.1 Methods based on the distances of the functions

Probably the most widely used method for classification is themth-nearest neighbours
method (with m a given positive integer). Note that in the context of functional data,
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the method can be based either on the original curves or their j th order derivatives.
Further one has to choose a distance function thatmeasures the proximity of the curves.

Among other availablemethodswemention the h-modemethod described in Sect. 2
of Cuevas et al. (2007). This method assigns the curve x to the distribution with the
largest value of the function

f̂ (g)
h (x) = 1

ng

ng∑
i=1

L
( ‖x−X (g)

i ‖
h

)
,

where L is a kernel function, ‖·‖ is a suitable norm and h > 0 is a bandwidth. Note that
in case of equal sizes of the groups in the training sample this method coincides with
the method described in Chapter 8.2 of Ferraty and Vieu (2006) with the bandwidth h
fixed (and equal for all groups). Note that in principle different bandwidths h1, . . . , hg
for the different groups could be allowed.

3.2 Data depth based methods

When speaking about data depth based classification methods, it should be noted that
there are many ways how a given depth function can be converted into a classification
rule (see e.g. López-Pintado and Romo 2006; Li et al. 2012; Lange et al. 2014).

The most straightforward method is to use the maximum depth rule (Ghosh and
Chaudhuri 2005) which can be described as follows. Let Pg,ng stand for the empirical
distribution of the training sample from Pg and D(X; Pg,ng ) measures the considered
depth of the observation X with respect to Pg,ng , based on the given depth function.
Then X is assigned to the distribution Pg if D(X; Pg,ng ) > D(X; Pj,n j ) for all j 	= g,
j ∈ {1, . . . ,G}. Among themore sophisticatedmethods are these that use the DD-plot
(depth-versus-depth plot) suggested in Li et al. (2012). In fact the maximum depth
rule is a special case of the DD-classifier that uses the axis of the first quadrant as the
separation line in the DD-plot.

In our comparative simulation study in Sect. 4 we restrict to the maximum depth
rule.

4 Simulation study: applying data depth in supervised classification

To investigate the properties of classification methods described in Sect. 3 we con-
ducted a simulation study incorporating two distance-basedmethods and several (inte-
grated) data depth basedmethods. The simulation study involves five different models,
which allows us to compare the performances of the different classification rules in
quite different settings. A first setting illustrates a situation where we find the sug-
gested data depth (3) in particular useful. The second and the third model are inspired
by Model 1 from the simulation study of Cuevas et al. (2007). The fourth model
is inspired by the Berkeley growth data (see e.g. Chapter 6.8.2 Ramsay and Silver-
man 2002). Finally the last model complements the simulation study of Chapter 8.4.2
of Ferraty and Vieu (2006) based on the well-known spectrometric data (‘Tecator
dataset’).
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Table 1 Main methods in the
simulation study, and the
abbreviations used

Method Abbreviation

Distance-based

mth nearest neighbour method

Based on original curve mNN(0)

Based on derivative curve mNN(1)

h-mode method

Based on original curve mode(0)

Based on derivative curve mode(1)

Depth based

Random projection

Based on the original curve RP(0)

Based on the derivative curve RP(1)

Double random projection method RP2

Double random projection method
using h-mode step

RPD

Depth based

Using integrated data depth (4)

Based on original curve ID(0)

Based on derivative curve ID(1)

Based on both jointly ID(0,1)

4.1 Methods involved in the simulation study

From the distance-based methods we used the mth-nearest neighbours method and
the h-mode method both based on the L2 distance to measure the proximity of the
curves. Similarly as in Cuevas et al. (2007) we took m = 5 for the mth-nearest
neighbours method and h as the 20th percentile of the L2 distances between the
functions in the training sample. Both methods can be based either on the original
curves (mNN(0), mode(0)) or their j th order derivatives (mNN(j), mode(j)).

The depth based classification methods in the simulation study were based on
the maximum depth rule described in Sect. 3.2. From the depth functions we apply
the integrated depth (I D) and the random projection depth (RD). Following the
convention used in Sect. 2, put ID(j) (RP(j)) for the classification rule based on the
integral (random projection) depth of the j th order derivative of the curve. Further,
put ID(j,k) for the classification rule based on I D( j,k) defined in (4). Finally, let RP2
and RPD stand for the rules based on the corresponding double random projection
methods as described in Cuevas et al. (2007). Roughly speaking, these methods differ
in a way how they treat a bi-dimensional sample obtained by projecting the original
curves and their derivatives (see Sect. 2.2). While RP2 is based on (another) random
projecting of this bivariate sample, the method RPD uses an h-mode method.

Table 1 summarizes the methods used in the main part of the simulation study, and
lists the abbreviations used for them in the plots and tables later on.
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For the sake of simplicity, if the highest value of the depth (with respect to the
training samples) is reached for more than one group, then we randomly assign X to
one of the groups exposing this highest depth value.

4.2 Simulation settings

The quality of the classification rule is measured by the misclassification rate that is
estimated as the ratio of incorrectly classified functions to the number of all functions
that were to be classified.

Unless stated otherwise, we used two probability distributions, i.e. G = 2. In
each of the 1 000 independent runs, a training sample of size 100 observations was
generated, obtained by a sample of size 50 from each of the distributions P1 and P2.
Further, a test sample of size 50 observations from each distribution was generated
independently of the training samples, resulting into a test sample of 100 observations.
The functions were observed on a grid of 51 equispaced points in the [0, 1] interval.
The derivatives of the functions were calculated as follows. First, the function was
approximated by fitting a cubic spline function with knots located at each grid point of
the generated functions. The least squares method was used for the fitting here. Then
the fitted function is differentiated and the derivative is discretized back to the grid
points. We used the implementation of this method in the functions D1ss and D2ss
of the package sfsmisc (Maechler 2013).

The R-computing environment (R Core Team 2013) was used to perform the sim-
ulations.

4.3 Simulation study

4.3.1 Model 1: randomly shifted exponentials with random slopes

Let (A1, B1) be a random vector with a bivariate normal distribution with mean µ1 =
(0, 1) and the variance-covariancematrix determined by unit variances and correlation
coefficient 0.9. Similarly, let (A2, B2) be a random vector with a bivariate normal
distribution with mean µ2 = (0,−1) and the same variance-covariance matrix. The
probability model Pi (i = 1, 2) for the functional data on [0, 1] is now given by the
distribution of the process X

X (t) = Ai + Bi e
t + 1

6 ε(t), t ∈ [0, 1], i = 1, 2, (6)

where ε is a noise function defined as

ε(t) = U1 sin(2π t) +U2 cos(2π t) +U3, (7)

withU1,U2 andU3 independent random variables, uniformly distributed on [− 1
2 ,

1
2 ].

Note that inModels 1 and 2 of Cuevas et al. (2007) the authors use as a noise function
a Gaussian process which implies that X is also a Gaussian process. However, this
brings a methodological difficulty in the considered context, since it is known that
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(b) First derivatives
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Fig. 1 One training sample generated from Model 1: a original curves; b first derivatives. Red curves
represent the observations with highest depth value in both groups. These are obtained using depth (5) with
weights (w/2, w/2, 1 − w), for w ∈ [0, 1] chosen by twofold cross-validation (colour figure online)

0.
6

0.
7

0.
8
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1.
0

Proportion of correct classification

ID(0) ID(1) ID(0, 1) RP(0) RP(1) RP2 RPD mode(0) mode(1) mNN(0) mNN(1)

Fig. 2 Box plots for the proportions of correct classification in Model 1

a non-degenerate Gaussian process is not differentiable almost everywhere (see e.g.
Chapter 2 Theorem 9.18 and Problem 9.17 of Karatzas and Shreve 1991). To prevent
from this difficulty we use the noise process given by (7). While in this model the
impact of the noise is pretty limited, due to the coefficient 1

6 in front of ε(t) in (6),
the noise will have a more substantial impact in the models presented in Sects. 4.3.2
and 4.3.3.

One training sample of size 50 generated from (6) is plotted in Fig. 1 and the
simulation results for the methods in Table 1 are summarized as boxplots in Fig. 2.
From Fig. 1 it can be seen that there is evidently some difference in the horizontal shift
among the groups of the curves (as well as their derivatives). It is may be surprising
though that the classification rule ID(0,1), that looks at the original curves and their
derivatives simultaneously, achieves the highest median correct classification rate,
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Fig. 3 Plots of the empirical joint distributions of curves and their derivatives for three values of t

Table 2 Median correct
classification proportions for
Model 1 for several values of ρ

Method ρ

ρ = 0.1 ρ = 0.5 ρ = 0.9

ID(0) 0.79 0.76 0.74

ID(1) 0.84 0.84 0.84

ID(0,1) 0.84 0.87 0.97

RP(0) 0.80 0.77 0.75

RP(1) 0.84 0.84 0.84

RP2 0.83 0.81 0.80

RPD 0.83 0.82 0.84

mode(0) 0.81 0.78 0.76

mode(1) 0.84 0.84 0.84

mNN(0) 0.81 0.83 0.92

mNN(1) 0.82 0.82 0.82

which is close to 0.95. To explain this it is instructive to have a look at the empirical
marginal joint distributions of the two groups of curves at a given t . This is done
in Fig. 3 for three different values of t , where different symbols (crosses and circles)
were used to distinguish the observations from different groups. Note that thanks to the
high correlation of the random coefficients Ai and Bi one can pretty well distinguish
the two clouds of points that correspond to the two groups. As for the other values
of t one can see very similar scatterplots as in Fig. 3, this explains why the ID(0,1)

works so well in this situation. Figure 3 also nicely illustrates why considering only
the (marginal) distributions of the original curves or its derivatives cannot distinguish
the groups so well as the joint distribution.

To investigate this example further, we summarize in Table 2 the simulation results
obtained when using different values for the correlation coefficient ρ. For convenience
we also include the previous results for the case ρ = 0.9 (see the last column). As
expected it is, in general, for several methods harder to distinguish between the groups
when the correlation coefficient is smaller. The method ID(0,1) is still among the best
performing methods for smaller values of ρ.

In a practical setting one mostly does not know whether a classification rule should
be based on the original curve, its derivative curves or should look at these jointly. In
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Fig. 4 Model 1: approximate proportions of correct classification as a function of the weight w, according
to the three scenarios

other words, one does not know whether a preference should be given to the methods
ID(0), ID(1) or ID(0,1). This then brings us to investigate the more generally defined
integrated depth in (3), or in the context of this example, to investigate the depth
function given in (5). Of course, one could try to find an optimal weighting scheme
(w0, w1, w0,1) for which a ‘best’ classification rule would be obtained. For illustration
purpose, we only investigate the weighting scenarios as described in items 2 and 4
of Example 1 in Sect. 2.1. In Fig. 4 we plot, as a solid curve, for each of the three
weighting scenarios, the average proportion of correct classification, as a function of
w, calculated on the basis of 1 000 independent runs. Note the impact of the value of
the weight w in each of the scenarios. We indicate, with horizontal lines, the results
obtained for the special cases when using the data depths ID(0), ID(1) or ID(0,1).
These can for example be compared with the value obtained when using the data-
driven choice of w under the specific weighting scenario.

We implemented two procedures for obtaining a data-driven choice of w. In a
first naive approach we build, for each fixed value of w on a considered grid, the
classification rule based on the training sample.We then apply the classification rule to
classify each element in the training sample. This results into a missclassification rate.
We repeat the same for all values of w on the considered grid. The data-driven value
of w, denoted by say ŵN, is then the value that led to the smallest missclassification
rate. We repeated this for 1 000 independent runs, and depict in Fig. 4 (as a horizontal
“×××××” line) the average correct classification rate obtainedwhen using this data-driven
choice of w.

We also implemented a 2-fold cross-validation approach for obtaining a data-driven
choice for w. For one run, the data-driven choice of w is made as follows. For each
value of w in the considered grid of values, we split the pooled training sample into
two disjoint sets of the same cardinality, preserving the ratio of functions from both
distributions in both sets. Then, we proceed as if the group labels of the curves from
the first set were known and the labels from the second set unknown, and classify the
functions from the second set with respect to the curves from the first set. Finally,
the same procedure is applied with reversed roles of the new sets. For a given value
of w the performance measure is then the mean of the missclassification rates of the
two classifications performed. This is repeated for each value in the considered grid
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of w-values. The selected data-driven value of w, denoted by ŵCV, is then the one
with the smallest mean missclassification rate. We repeated this for 1 000 independent
runs, and present in Fig. 4 the average correct classification rate obtained when using
this data-driven choice of w. See the horizontal “




” line. This cross-validation
procedure is computationally more intensive, but it can lead to better results than the
naive approach.

As can be seen from Fig. 4, both the naive data-driven ŵN choice as well as the
cross-validated data-driven choice ŵCV perform very well. Note that for all scenarios,
the two horizontal lines for flexible integrated data depth classification rule with the
data-driven choices of w, namely ŵN and ŵCV, fall on top of each other. Both on
average lead to the best possible choice among the three (individual) integrated data
depth classification rules, namely ID(0,1), and this in all scenarios considered.

4.3.2 Model 2: location shift with goniometric noise

In this simulation model, the probability model Pi (i = 1, 2) for the functional data
on [0, 1] is described as

X (t) = mi (t) + σ ε(t), t ∈ [0, 1], i = 1, 2 (8)

where

m1(t) = 30 (1 − t) t1.2, m2(t) = 30 t (1 − t)1.2, σ =
√

6
5 ,

and ε(t) is the noise function defined in (7) and σ is a parameter controlling the amount
of noise. In what follows we choose σ = √

6/5 in (8) so that var
(
σ ε(t)

) = 0.2 for
each t ∈ [0, 1] which mimics the marginal variance of the Gaussian noise used in
Cuevas et al. (2007).

One training sample generated fromModel 2 is plotted in Fig. 5. Note that although
there is already a clear difference in the groups when looking at the original curves,
the difference becomes even more obvious when considering the first derivatives of
the curves.

The observation that derivatives are more informative when distinguishing between
the curves is for most of the methods confirmed by the proportions of correct classifi-
cations in 1 000 independent runs presented in Fig. 6 in the forms of box plots. Note
that all methods used in the simulation results do a very good job with amedian correct
classification rate better than 94%. But in particular themNN(1) and themode(1) meth-
ods perform excellently classifying all the curves in all the runs correctly. This can be
explained by the fact that both methods are based on the L2-distance which is very
suitable to detect the local differences in the derivatives of the curves that occur near
the points 0 and 1. Similarly one can explainwhy themethods based on randomprojec-
tions (RP(0), RP(1), RP2, andRPD) perform better than the corresponding methods
based on the integrated data depth (ID(0), ID(1), andID(0,1)). The reason is that
projections are better suited to preserve local features of functions. On the other hand
the integrated data depth is constructed to be a robust measure that is less sensitive to
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Fig. 5 One training sample generated from Model 2: a original curves; b first derivatives. Red curves
represent the observations with highest depth value in both groups (colour figure online)
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Fig. 6 Box plots for the proportions of correct classification in Model 2

local violations of the trends (see also Sect. 4.3.3). Note that the random projection
method RPD is doing almost as well as mNN(1) and mode(1).

The classification problem becomes harder when the noise level increases. This
can be seen from Table 3 which summarizes simulation results obtained for some
different values of σ in (8). For convenience we include again the median values
of the proportion of correct classifications for the value of σ considered before (i.e.
σ = √

6/5, see column 2 in Table 3). Note that in general all methods perform worse
in case of larger values of σ .

Finally, we investigate again the three weight scenarios for the integrated data depth
in (3), as described in (5) in Sect. 2.1. Figure 7 depicts the approximate proportion
of correct classifications in function of the weight w. Also here we present, for each
scenario, the result obtained with the data-driven choices of the weight w (ŵN, via the
naive procedure, and ŵCV via the cross-validation procedure). Note that in scenario
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Table 3 Median correct
classification proportions for
Model 2 for several values of σ

Method σ

σ = √
6/5 σ = 2

√
6/5 σ = 10

√
6/5

ID(0) 0.96 0.74 0.54

ID(1) 0.95 0.78 0.57

ID(0,1) 0.94 0.75 0.56

RP(0) 0.98 0.76 0.53

RP(1) 1.00 0.87 0.60

RP2 1.00 0.86 0.58

RPD 1.00 0.91 0.60

mode(0) 1.00 0.77 0.54

mode(1) 1.00 0.94 0.58

mNN(0) 1.00 0.81 0.53

mNN(1) 1.00 1.00 0.72
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ŵCV

0.
94

5
0.

95
0

0.
95

5
0.

96
0

0.
96

5

Proportion of correct classification

w : weights (w, 0, 1−w)

ID(0)

ID(1)

ID(0, 1)

ŵN
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Fig. 7 Model 2: approximate proportions of correct classification as a function of the weight w, according
to the three scenarios

1 and 2 (left and middle panels) there is a substantial gain made by using the com-
bined rule with data-driven weight w, instead of using one of the individual ID-based
classification rules.

4.3.3 Model 3: location shift with a randomly placed jump

The model considered here is the same as in Sect. 4.3.1 except for the noise term that
now equals ε(t) with

ε(t) = 1+U0
a arctan

(
100 (t + 1

2 − V )
) + U1

3 sin(2tπ) + U2
3 cos(2tπ) +U3, (9)

where a = 2, and U0, U1, U2, U3 and V are independent random variables with
uniform distribution on [− 1

2 ,
1
2 ].

Note that now the first term in the noise function, on the right-hand side of (9),
plays the main role in that noise function. This term represents a ‘smooth jump’ (or
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Fig. 8 One training sample generated from Model 3: a original curves; b first derivatives. Red curves
represent the observations with highest depth value in both groups (colour figure online)
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Fig. 9 Box plots for the proportions of correct classification in Model 3

‘bump’) randomly placed somewhere in the unit interval (0, 1). This is illustrated in
Fig. 8, where one testing sample is plotted.

The simulation results for this model are summarized in Fig. 9. Note that in this
situation the methods based on the integrated data depth outperform the methods
based on random projections with ID(1) being the best from the considered methods,
followed closely by ID(0,1). Note that although mode(0), mode(1) and mNN(0) still
perform very well, they are not as excellent as inModel 2. Moreover, as these methods
are based on the L2 distance, one could suspect them to perform even worse when
considering a model in which the jump is made larger (sharper) or in which another
steep jump is added.

The size of the ‘smooth jump’ in Model 3, is determined by the factor 1/a in (9).
In Table 4 we summarize the simulation results for a few other values of a. The last
column lists the results obtained before (where a = 2). Note that for larger values
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Table 4 Median correct
classification proportions for
Model 3 for several values of the
factor a in (9)

Method a

a = 0.1 a = 1 a = 2

ID(0) 0.52 0.77 0.84

ID(1) 0.93 1.00 1.00

ID(0,1) 0.77 0.94 0.98

RP(0) 0.51 0.73 0.90

RP(1) 0.50 0.75 0.93

RP2 0.51 0.76 0.93

RPD 0.51 0.79 0.96

mode(0) 0.51 0.76 0.94

mode(1) 0.50 0.81 0.97

mNN(0) 0.52 0.94 0.98

mNN(1) 0.50 0.73 0.97
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Fig. 10 Model 3: approximate proportions of correct classification as a function of the weightw, according
to the three scenarios

of a all methods tend to perform better, but that the general comparison between the
performances of the methods is as discussed before. Note in particular the extremely
good performance of the ID(1) method, for all values of a.

Finally, we illustrate the performance of a classification rule using the more flexible
integrated data depth of (3). In this example, one could expect that Scenarios 1 and 3
are most appropriate. Note again that in all scenarios the flexible integrated data depth
classification rule with data-driven choice of the weight performs very well (Fig. 10).

4.3.4 Example 4: the Berkeley growth data

Following Cuevas et al. (2007) and López-Pintado and Romo (2006) the next study is
motivated by the well known data of children’s growth curves (see e.g. Chapter 6.8.2
Ramsay and Silverman 2002). The observations represent the heights of 54 girls and
39 boys measured at 31 time points between the age 1 and 18 years. The data can be
found as a data set called growth in the R-package fda (Ramsay et al. 2013).
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Fig. 11 One training sample generated from Model 4: a original observations; b first derivatives. Red
curves represent the observations with highest depth value in both groups (colour figure online)

As the final height at 18 is a very simple and powerful predictor of the gender, we
only use in this study the age interval from 1 to 15 years. The original curves and their
derivatives are plotted in Fig. 11. Note that the curves are already smoothed using a
local cubic spline smoothing technique in order to achievemonotonicity of the original
curves.

In the sameway as inCuevas et al. (2007)we chose, in each run, a randomsubsample
with 30 observations of boys’ and 30 observations of girls’ curves as the training groups
and the remaining 33 observations were used as the curves to be classified. As in the
other simulation examples, 1 000 independent runs were carried out.

The simulation results based on these runs are summarized in Fig. 12. Note that
similarly as in Model 1 in Sect. 4.3.1 the methods based on the L2-distance of the first
derivatives do the best job. The reason is that both mode(1) and mNN(1) can capture
the difference between the first derivatives of the heights of boys and girls between 10
and 15 years. This difference corresponds to a different timing of the growth spurt that
starts (as well as ends) sooner for girls. Finally, the random projection methods are
performing better than the integrated depth methods. This can be explained by the fact
that random projections are better suited to uncover this kind of (local) differences.

4.3.5 Example 5: the tecator data

The tecator dataset contains 215 spectra of light absorbance as functions of the
wavelength, observed onfinely choppedpieces ofmeat. For amore detailed description
of the data see Chapter 2.1 of Ferraty and Vieu (2006) or Chapter 10.4.1 of Ferraty
and Romain (2011) and the references therein. The data are available as a data set
called tecator in the R-package fda.usc (Febrero-Bande and Oviedo de la Fuente
2012).

To each spectral curve there corresponds a three-dimensional vector – percentage
of (fat, protein, water) in each piece of meat. In this study we used only the fat content
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Fig. 12 Box plots for the proportions of correct classification in Model 4
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Fig. 13 One training sample generated from Model 5: a first derivatives; b second derivatives. Red curves
represent the observations with highest depth value in both groups (colour figure online)

and in the same way as in Chapter 8.4.2 of Ferraty and Vieu (2006) we created two
groups simply by distinguishing the pieces of meat with fat content either lower or
greater than 20 per cent. A random sample of 50 curves from each of the groups is
plotted in Fig. 13. As it is common to use the second derivatives in the analysis of this
dataset, we plot only the first and the second derivatives of the original curves. Also
the classification methods were used on the first and/or the second derivatives of the
original curves.

Following the simulation study in Ferraty and Vieu (2006) we have chosen, in each
run, a random subsample of 43 and 77 observations so that the proportion of groups in
the training sample and in the whole sample is preserved. The remaining curves were
used as the testing sample. We conducted in this way 1 000 independent runs.

The results of the ‘simulation’ study are summarized in Fig. 14. Note that all depth
basedmethods that include the secondderivatives doverywell and are comparablewith
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Fig. 14 Box plots for the proportions of correct classification in Model 5

mode(1) and mNN(1). Among the depth based methods, the method ID(1,2) performs
the best with a slightly better performance than the other depth based methods.

5 Further discussion and conclusions

In this paper we studied supervised classification using (integrated) data depths. More
specifically, we introduce a general data depth function suitable for studying smooth
functions. Our approach is based on the integrated data depth and thus complements
the recent proposal of Cuevas et al. (2007) based on random projections. We illustrate
in the simulation study that considering the joint distribution of the original curves and
their derivatives can reveal structures that are hidden when considering only marginal
distributions of either the original curves and/or their derivatives. In addition, we show
the performance of the more general integrated data depth with a data-driven choice
of weight function.

When comparing themethods based on the integrated data depthwith the data depth
based on randomprojections as suggested byCuevas et al. (2007), our simulation study
shows the following. If the curves stay close together on most of the domain and local
behaviour of the curves is important, then depth based on random projections are
preferable. On the other hand if one is interested how the curves are ordered for most
of the domain and wants to prevent the local behaviour to blur this ordering, then the
integrated data depth presents a better choice.
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