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Abstract In the current study, we set out to extend the three-parameter Modified
Weibull (MW) distribution in an attempt to propose a four-parameter distribution
named the Modified Weibull Poisson (MWP) distribution including such noticeable
submodels as Exponential Poisson, Weibull Poisson, and Rayleigh Poisson known as
the distributions subsumed under the umbrella termMWP.Depending on its parameter
values, this overarching distribution was demonstrated by this work to exhibit some
hazard rates like decreasing, increasing, bathtub, and upside-down bathtub ones. In
addition to the hazard rates of the MWP, the mathematical properties as well as the
properties of maximum likelihood estimations were brought to the forefront, and the
very capability of the quantile measures to be explicitly expressed in terms of the
Lambert W function was vigorously discussed. To shed light on the functioning of the
maximum likelihood estimators and their asymptomatic results for the finite sample
sizes, some numerical experiments were carried out leading to two data sets intended
chiefly to illustrate or explicate the higher levels of importance and flexibility of the
MWP in comparison with its standard counterparts, namely the Weibull, Gamma, and
MW distributions.
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1 Introduction

In many, if not all, applied sciences such as medicine, engineering and finance mod-
eling and analyzing lifetime data are crucial. Several lifetime distributions like the
exponential, Weibull, Gamma or their generalizations have been used to model such
kinds of data. Each distribution has its own characteristics due specifically to the shape
of the hazard function which may be monotonically decreasing, increasing, or con-
stant in its behavior, on the one hand, or non-monotonically bathtub-shaped or even
upside-down bathtub-shaped, on the other hand.

Here we consider the Modified Weibull (MW) distribution, introduced by Lai
et al. (2003). The MW distribution characterized best by the density and distribu-
tion functions g (x) = αxγ−1(γ + βx)eβx−αxγ eβx

and G (x) = 1 − e−αxγ eβx
, where

α > 0, β ≥ 0, γ > 0, respectively. It has recently received considerably high atten-
tion. For example, Carrasco et al. (2008) extended the MW distribution by adding
another shape parameter in order to introduce a four-parameter Generalized Modified
Weibull (GMW). Also, Silva et al. (2010) introduced the beta modified Weibull by
combining the beta and MW distributions. In similar vein, the aim of this paper is to
introduce a generalization of the MW distribution which offers a more flexible distrib-
ution for modelling lifetime data. As for the procedure through which the authors went
to achieve the extension goal, the MW distribution was combined with the Poisson
distribution using the concept of minimum order statistics distribution. Needless to
say, the genuine motives behind the introducing of this new distribution were both its
quantile formula, which can be written in terms of the Lambert W function, and flex-
ibility in accommodating different types of density and hazard functions. Judiciously
used, the two data sets were intended to show that the proposed distribution represents
a good alternative to the most popular Gamma and Weibull lifetime distributions that
fail to exhibit bathtub and upside-down bathtub-shaped hazards. Another striking fea-
ture of the new distribution is that it has closed-form expressions for its cumulative
distribution function (cdf) and hazard function, which is not the case, for instance,
for the Gamma distribution. Moreover, it has several particular cases. Hence, the new
distribution is expected to provide a flexible framework which could have a wider
range of applications in the lifetime studies.

After the MW distribution is explicated, the Modified Weibull Poisson (MWP)
distribution along with some of its basic properties such as shapes, moments and
quantiles are dealt with in the second section followed by a discussion about the
survival and hazard functions made in Sect. 3. Afterwards, the maximum likelihood
estimations and a simulation study of the MWP distribution are presented. Prior to
drawing a conclusion in the last, but not the least, part of the current paper, much
importance and emphasis is attached to and placed upon the new distribution proposed
by the authors in Sect. 5. Interestingly enough, this distribution is fit to two real data
sets with the aim of conducting a comparative investigation.
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2 The Modified Weibull Poisson distribution

Let Z1, Z2, . . . , Zn be a random sample from distribution with the probability density
function (pdf) αzγ−1(γ + βz)eβz−αzγ eβz

. Also, let n be a random variable with the
zero-truncated Poisson probability mass function (pmf) λe−λ/

[
n! (1 − e−λ

)]
, λ > 0

for n ∈ N where Z and n are independent. Let us define X = min {Zi }ni=1. Then

f (x |n) = αne−αnxγ eβx
xγ−1(γ +βx)eβx , and the marginal pdf of X can be obtained

as

f (x; θ) = αλxγ−1 (
1 − e−λ

)−1
(γ + βx) e

βx−αxγ eβx−λ
(
1−e−αxγ eβx

)

, x > 0 (1)

where θ = (α, β, γ, λ). The pdf of (1) is termed theModifiedWeibull Poisson (MWP)
density function. The cdf corresponding to (1) can be derived as follow:

F (x; θ) = 1 − e
−λ

(
1−e−αxγ eβx

)

, α, λ > 0, β, γ ≥ 0 (2)

The MWP distribution contains some noticeable, compounded distributions. The
Weibull-Poisson (WP) arises as a special sub-distribution for β = 0 and its spe-
cial cases are also special sub-distributions of the MWP distribution. In addition, the
exponential-Poisson (EP) introduced by Kus (2007) and Raleigh-Poisson (RP) distri-
butions are interesting particular cases from the MWP distribution arise for β = 0,
when γ = 1 and γ = 2, respectively. The MW distribution is the limiting case of the
MWP distribution for λ ↓ 0.

Now, let us study the shape of the MWP density function. Since the behavior of
f (x; θ) is completely similar to that of log f (x; θ), for simplicity we consider the
behavior of log f (x; θ). The first derivative of log f (x; θ) is:

γ − 1 + βx (γ + βx)−1 + βx = α (γ + βx) xγ eβx
(
1 − λe−αxγ eβx

)
(3)

There may bemore than one root to equation (3). To study the shapes of theMWP den-
sity functionwith respect to its parameters, suppose f1 (x) = γ −1+βx (γ + βx)−1+
βx , and f2 (x) = α (γ + βx) xγ eβx (1 − λe−αxγ eβx

) be two parts of relation (3).
Clearly, f1 (x) is an increasing function of x and f2 (x) is an increasing function of x
when 0 < λ ≤ 1, and f2 (x) < 0 when λ > 1. Thus, from (3), it can be seen that:

1. For λ > 1, γ > 1, α ↓ 0 and β ↓ 0, f1 (x) − f2 (x) > 0 and hence
dlog f (x; θ)/dx > 0 which implies the increasing behavior of f (x).

2. For λ ↓ 0 and x < e−{ln(α)+γLambertW[βe− ln α
γ /γ ]}/γ , f1 (x) − f2 (x) < 0 and

hence dlog f (x; θ) /dx < 0 which implies the decreasing behavior of f (x). [For
more information on the Lambert W function see Corless et al. (1996)]

3. For 0 < γ < 1 and α ↓ 0, there exists a change point τ1 = β−1
(−γ + √

γ
)
,

when 0 < x < τ1, f (x; θ) is decreasing and when x > τ1, f (x; θ) is increasing.
Hence, the density function exhibits a uniantimodal shape.
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4. For γ ↓ 0, λ ↓ 0 and 0 < α < 1, there is a change point τ2 = −β−1 logα, when
0 < x < τ2, f (x; θ) is decreasing and when x > τ2, f (x; θ) is increasing. As a
result, the density function shows a uniantimodal shape.

Using the expansion of eλe−αxγ eβx

in Eq. (1) results in

f (x; θ) =
∞∑

j=0

w j g(α ( j + 1) , β, γ ) (4)

where w j = λ j+1e−λ
[(
1 − e−λ

)
( j + 1)!]−1

are constants such that
∑∞

j=0 w j = 1
and g(α ( j + 1) , β, γ ) is the pdf of the MW distribution. Expression (4) indicates
that the MWP distribution can be expressed as an infinite weighted sum of the MW
distribution with common shape and accelerated parameters, and a different scale
parameter. From (4) we can obtain an elementary expression for the r th moment of

the MWP distribution
′
μr = ∑∞

j=0 w jη
′
r ( j) where η′

r ( j) denotes the r th moment of
the MW(α ( j + 1) , β, γ ) distribution. Using the general representation for the r th
moment of the MW distribution offered by Carrasco et al. (2008), we obtain

′
μr =

∞∑

j=0

∞∑

i1,...,ir=1

w j
Ai1,...,ir �(sr/γ + 1)

[α ( j + 1)]sr /γ
(5)

where Ai1,...,ir = ai1 . . . air , sr = i1 + . . . + ir and ai = (−1)i+1i i−2

(i−1)!
(

β
γ

)i−1
.

We can simulate the MWP distribution and derive the quantile measures in terms
of the Lambert W function by solving the nonlinear equation F (x) = u, 0 < u < 1
with respect to x . Using MAPLE to solve the equation γ log x + βx = C where C =
log

[− (
log

{
1 + log

[
1 − u(1 − e−λ)

]
/λ

})
/α

]
leads to the following expression:

xu = e
−γ

{[

Lambert W
(

βe
C
γ

γ

)]

γ−C

}

(6)

3 Survival and hazard functions

Let X be distributed according to the MWP (α, β, γ, λ), the corresponding sur-
vival and hazard functions can be written, respectively, as S (x) = e−λ

(
1 − e−λ

)−1

(
eλe−αxγ eβx − 1

)
, and

h (x) = αλeλxγ−1 (γ + βx)

(
eλe−αxγ eβx − 1

)−1

e
βx−αxγ eβx−λ

(
1−e−αxγ eβx

)

(7)

Here, we show that the hazard function of the MWP distribution can be increasing,
decreasing, bathtub-shaped or upside-down bathtub-shaped, depending on its para-
meter values. Mathematically, the study of the hazard function involves the analysis
of the d log h(x)/dx , i.e,
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Fig. 1 The hazard function of the MWP distribution for some values of the parameters

γ − 1 + βx (γ + βx)−1 + βx − αv (γ + βx)

[
1 − λe−λe−αv

(
1 − e−λe−αv

)−1
]

(8)

where v = xγ eβx and 0 < e−λe−αv
< 1. To characterize (8) with respect to its

parameters, let us define h1 (x) = γ − 1 + βx (γ + βx)−1 + βx , and h2 (x) =
αv (γ + βx)

[
1 − λe−λe−αv (

1 − e−λe−αv )−1]. Clearly, h1 (x) is an increasing func-
tion of x , but h2 (x) exhibits different behaviors of x due to its functional form and
parameter values. It is not difficult to observe that some items discussed before are
common between density and hazard functions. Therefore, we summarize them as
follows:

1. For α ↓ 0 and γ > 1, h(x) is increasing.
2. For λ > 1, 0 < γ < 1 andβ ↓ 0, h(x) is decreasing.
3. For 0 < γ < 1and α ↓ 0, hazard function exhibits a bathtub shape.
4. If λ ↓ 0, β ↓ 0 and γ > 1 hazard function exhibits an upside-down bathtub shape.
5. For γ ↓ 0, λ ↓ 0 and 0 < α < 1, the hazard function exhibits an upside-down

bathtub shape. Fig. 1 represents two types of shapes of the MWP hazard function.

4 Maximum likelihood estimation

4.1 Inference

Let x1, x2, . . . , xn be an independent random sample of size n from the MWP dis-
tribution with an unknown parameter vector θ = (α, β, γ, λ)T . The MLEs of the
parameters can be obtained by solving a system of equations by setting the following
partial derivatives equal to zero (provided they fall within the feasible region).
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Uα = ∂
 (θ)

∂α
= nα−1 −

n∑

i=1

xγ

i e
βxi (1 + λe−ui ),

Uβ = ∂
 (θ)

∂β
=

n∑

i=1

xi
γ + βxi

+
n∑

i=1

xi −
n∑

i=1

xi ui (1 + λe−ui ),

Uγ = ∂
 (θ)

∂γ
=

n∑

i=1

log xi +
n∑

i=1

1

γ + βxi
−

n∑

i=1

ui
(
1 + λe−ui

)
log xi ,

Uλ = ∂
 (θ)

∂λ
= nλ−1 − ne−λ

1 − e−λ
−

n∑

i=1

(
1 − e−ui

)
,

where ui = αxγ

i e
βxi is a transformed observation.

Applying the usual large sample approximation, the MLE of θ can be treated as
being approximately 4-variate and normal with the mean θ and variance-covariance
matrix, which is the inverse of the information matrix Jθ . The elements of the infor-
mation matrix, Jθ , are calculated by taking the expectations of the elements of the
observed Fisher information matrix, IF (θ) = −∂2
 (θ)/∂θ∂θT . The elements of the
observed Fisher information and information matrices are given in the Appendix. The
inverse of Jθ evaluated at θ̂ provides the asymptotic variance-covariance matrix of
the MLEs. Hence, the 4-variate normal distribution can be used to construct approxi-
mate confidence intervals for the parameters when the sample size is sufficiently large.
We examine the effect of the small sample size on the confidence intervals through a
simulation study presented in the following subsection.

4.2 Simulation study

Here, we present some numerical experiments to see how the MLEs and their asymp-
totic results work for finite samples. All numerical computations have been performed
using the following random generator algorithm. This method is checked out by the
following steps
Step 1: Sample the random variable n from the zero-truncated Poisson (λ) pmf.
Step 2: For each value of n generate Z1, Z2, . . . , Zn from the MW pdf, say:

Z = e
−γ −1

{[

Lambert W
(

βe
I
γ

γ

)]

γ−I

}

where, I = log
[− log (1 − u) /α

]
and u is a randomvariablewith the uniformU (0, 1)

distribution. Note that theMW random variable formula is attained using theMAPLE.
Step 3: Set the minimum of Zi ’s, say X = min(Z1, Z2, . . . , Zn) as a realization of
the MWP distribution.

The numerical study (based on 1,000 iterations) has been performed for the MWP
distribution with R package. One thousand samples of the sizes 25, 50, 100, 200 and
400 have been randomly sampled for each value of θ . For each iteration the MLE of
θ is obtained by solving a system of nonlinear equations using the iterative technique.
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Table 1 The mean and standard error of the simulated MWP

(α, β, γ, λ) n av(θ̂ ) s.e(θ̂)

(0.7, 0.1, 1, 3) 25 (0.8548, 0.2730, 0.9751, 2.3107) (0.2381, 0.2396, 0.2607, 0.0000)

50 (0.7805, 0.2006, 0.9752, 2.7127) (0.1813, 0.1721, 0.1839, 0.0000)

100 (0.7643, 0.1411, 0.9827, 2.9403) (0.1286, 0.1233, 0.1305, 0.0000)

200 (0.7425, 0.1157, 0.9825, 3.0979) (0.0912, 0.0876, 0.0927, 0.0000)

400 (0.7437, 0.1004, 0.9907, 3.0968) (0.0623, 0.0624, 0.0654, 0.0000)

(1.5, 0.1, 1.1, 3.5) 25 (1.9641, 0.5815, 1.0508, 2.3631) (0.1149, 0.1103, 0.3078, 0.0000)

50 (1.7968, 0.3732, 1.0563, 2.8895) (0.0834, 0.0786, 0.2187, 0.0000)

100 (1.6706, 0.2408, 1.0781, 3.3142) (0.0604, 0.0559, 0.1539, 0.0000)

200 (1.6185, 0.1664, 1.0795, 3.4825) (0.0431, 0.0402, 0.1092, 0.0000)

400 (1.5816, 0.1175, 1.0887, 3.6198) (0.0301, 0.0285, 0.0772, 0.0000)

(1, 0.1, 1, 2.4) 25 (1.0209, 0.3260, 0.9742, 2.2289) (0.2026, 0.2027, 0.2701, 0.0000)

50 (0.9520, 0.2391, 0.9688, 2.5573) (0.1484, 0.1453, 0.1915, 0.0000)

100 (0.9249, 0.1754, 0.9758, 2.7873) (0.1053, 0.1052, 0.1358, 0.0000)

200 (0.9394, 0.1432, 0.9767, 2.7981) (0.0725, 0.0754, 0.0964, 0.0000)

400 (0.9568, 0.1199, 0.9836, 2.7606) (0.0492, 0.0542, 0.0681, 0.0000)

The averages of the 1,000 MLEs av(θ̂) together with the standard error s.e(θ̂) are
computed.The results are given inTable 1.Moreover, to study the asymptotic behaviors
of the MLEs, we approximated the variance-covariance matrix of the MLEs from the
information matrix. The results based on the 1,000 random samples of the sizes 50,
100, 500, 1,000 and 10,000 are presented. The approximated values determined by
averaging the corresponding values obtained from the information matrix and the
observed information matrix are separately displayed in Tables 2 and 3.

Some of the points are very clear from the numerical experiments. It is observed
that for all the parametric values the bias and standard error of the parameters decrease
when the sample size increases. It verifies the large sample properties of the MLEs as
mentioned in Sect. 4.1. For fixed β as λ increases, the bias of λ increases, whereas the
corresponding standard errors and biases of β decrease for all sample sizes. Therefore,
estimation of λ becomes better as λ decreases. On the other hand, for fixed β, as λ

increases, the biases of both β and λ increase. Note that the γ̂ /γ remains constant
for all parameter values when the sample size increases. It can also be observed that
the MLEs of β and γ are positively and negatively biased, respectively, although the
biases go to zero as the sample size increases. Interestingly, it can be seen that the
variances and covariances of theMLEs obtained from the observed informationmatrix
are quite close to those of the information matrix for large values of n (Tables 2 and 3).
This is also followed by the asymptotic behaviors of the MLEs.

Note that similar results were obtained when we generated the MWP random vari-
able based on the expression (6) or inverse transform sampling method (The results
are not shown here).

As part of the numerical experiments, we also investigated the confidence intervals
of theMLEs via bootstrap sampling in small samples. To this end, we generated a data
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Table 4 Simulated 95% confidence intervals of the MLEs of θ based on 2000 bootstrapping

MWP(α, β, γ, λ) n α̂ β̂ γ̂ λ̂

(1, 0.5, 0.5, 1) 10 (0.2221, 1.9052) (0.1242, 1.7982) (0.2551, 0.6315) (0.0000, 2.3762)

15 (0.3105, 1.6077) (0.1403, 1.7871) (0.3452, 1.0705) (0.0000, 2.6706)

20 (0.3396, 1.1367) (0.2812, 1.2825) (0.2996, 0.7807) (0.0000, 2.1739)

25 (0.4284, 1.0750) (0.2876, 1.0142) (0.2926, 0.5818) (0.0000, 1.7979)

(0.5, 1, 0.5,1) 10 (0.5496, 2.0194) (0.0394, 1.3802) (0.4322, 1.0482) (0.0000, 2.1794)

15 (0.3736, 1.8915) (0.0944, 1.5913) (0.4371, 1.0745) (0.0000, 2.0804)

20 (0.1939, 1.0565) (0.5964, 2.0559) (0.2798, 0.8031) (0.0000, 2.4887)

25 (0.2420, 0.9808) (0.5312, 1.5974) (0.3703, 0.8891) (0.0000, 1.8586)

(0.5, 0.5, 0.5, 0.5) 10 (0.2000, 1.3444) (0.0000, 0.9052) (0.1525, 1.0399) (0.0000, 2.9362)

15 (0.2417, 1.3777) (0.0000, 1.8731) (0.4518, 1.5855) (0.0000, 4.1204)

20 (0.1558, 1.1504) (0.0000, 1.6836) (0.4793, 1.7482) (0.0000, 4.2345)

25 (0.2094, 0.6841) (0.2634, 0.7893) (0.2829, 0.6572) (0.0000, 2.1717)

(0.5, 0.5, 1, 1) 10 (0.1327, 1.1641) (0.0000, 1.4137) (0.5755, 1.7295) (0.0000, 2.7506)

15 (0.0808, 0.6355) (0.0000, 1.5308) (0.5499, 2.6566) (0.0000, 2.9528)

20 (0.0802, 0.5708) (0.4731, 1.6550) (0.2874, 1.1533) (0.0000, 2.5298)

25 (0.2637, 0.9306) (0.0000, 0.8264) (0.7733, 1.5627) (0.0000, 1.8724)

set from the MWP(x;α, β, γ, λ) distribution of size n. Two thousand samples of the
sizes 10, 15, 20 and 25 have been sampled using sampling with replacement. Then,
the vector θ is estimated 2,000 times. For each parameter of θ the 5 and 95% quantiles
are found. The results of desired confidence intervals are illustrated in Table 4. It is
observed that confidence intervals become more precise as the sample size increases.
It is also detected that most of the approximated confidence intervals maintain the
true and estimated values for the small sample sizes. Therefore, the MLEs and their
asymptotic results can be used for estimation and construction of confidence intervals
even for the small sample sizes.

5 Applications

In this sectionwe illustrate the applicability of theMWPdistribution to lifetime data by
drawing on two data sets. The first was awidely used data on lifetime of 50 components
from Aarset (1987). The second data set representing the failure times (in minutes)
for a sample of 15 electronic components in an accelerated life test was adopted from
Lawless (2003).

In order to identify the hazard shape of the two data sets, we used a graphicalmethod
based on the TTT transform introduced by Barlow and Campo (1975). The empirical
TTT transform for Aarset’s data possess a bathtub-shaped failure rate property as
shown in the left panel of Fig. 2. Since it is initially convex, but becomes subsequently
concave, this leads to the bathtub hazard. The right panel of Fig. 2 also shows that the
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Fig. 2 The TTT plot for the first (left panel) and second data (right panel)

Table 5 Estimates of the parameters along with comparison criteria

Data Distribution MLEs -log-likelihood W∗ A∗

1st data set MWP 0.0053, 0.0238, 0.3350, 13.0274 227.8811 0.3649 2.4066

MW 0.0625, 0.0233, 0.3549 227.1553 0.3620 2.4003

Weibull 0.9490, 0.0223 241.0018 0.5255 3.2278

Gamma 0.8000, 0.0175 240.1903 0.5228 3.2036

2nd data set MWP 0.0164, 0.0161, 0.9743, 0.6948 63.6582 0.0428 0.3097

MW 0.0239, 0.0134, 0.9530 63.6886 0.0435 0.3126

Weibull 1.3051, 0.0336 64.0202 0.0403 0.3067

Gamma 1.4421, 0.0523 64.1859 0.0390 0.2988

TTT plot of the second data set leads to an increasing hazard. Hence, fitting the MWP
distribution to these data sets seems to be a good choice.

We fit the MWP distribution to the two data sets and compare its fitting with some
usual lifetime distributions. Table 5 shows the fitting of the MWP along with the
Weibull, Gamma and MW distributions. The MLEs of the parameters and values
of the log-likelihood function are calculated. We also provide formal goodness-of-
fit tests in order to compare the fitting of the mentioned distributions to these data
sets. We apply the Cramér-von Mises (W ∗) and Anderson-Darling (A∗) test statistics
described in detail by Chen and Balakrishnan (1995). Generally, the smaller the values
of the statistics W ∗ and A∗, the better they fit the data. The computations are made
with R package. The lower values of the log-likelihood and goodness-of-fit tests for
the MWP and MW distributions indicate that these distributions could be chosen the
best distributions to fit the two data sets. In any case, since the differences between
the statistics are quite small for the Weibull and Gamma distributions, the proposed
distribution seems to be a very competitive distribution for lifetime data analysis.
Figure 3 shows the goodness-of-fitting for the distributions that are depicted by Table 5
for both data sets.
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Fig. 3 Estimated densities of distributions fitted to the two data sets presented in Table 5

6 Conclusion

In this paper we proposed a new four-parameter distribution called the MWP distribu-
tion by combining the modifiedWeibull and Poisson distributions using the concept of
minimum order statistics distribution. It was observed that the MWP exhibits various
forms of density and hazard functions which are desirable for lifetime data analysis
purposes. We provided expansions for the density function and moments. Also, the
quantilemeasures were derived in an explicit form in terms of the LambertW function.
Maximum likelihood estimates of the parameters were discussed. The results of the
numerical study carried out for the finite sample confirmed the asymptotic behavior
of the MLEs. These two real data sets we showed that the proposed distribution is a
very competitive distribution compared with its standard counterpart’s distributions.
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7 Appendix

The Fisher observed information matrix for the parameter vector θ whose elements
are given by:

Uαα = −nα−2 + λ

n∑

i=1

(
xγ

i e
βxi

)2
e−ui ,

Uαβ = Uβα = −α−1
n∑

i=1

xi ui
[
1 + λ (1 − ui ) e

−ui
]
,

Uαγ = Uγα = −α−1
n∑

i=1

ui
[
1 + λe−ui (1 − ui )

]
log xi ,Uαλ = Uλα
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= −α−1
n∑

i=1

ui e
−ui

Uββ = −
n∑

i=1

x2i (γ + βxi )
−2 −

n∑

i=1

x2i ui
[
1 + λe−ui (1 − ui )

]
,

Uγβ = Uβγ = −
n∑

i=1

xi (γ + βxi )
−2 −

n∑

i=1

xiui
[
1 + λe−ui (1 − ui )

]
log xi ,

Uβλ = Uλβ = −
n∑

i=1

xiui e
−ui ,

Uγ γ = −
n∑

i=1

(γ + βxi )
−2 −

n∑

i=1

ui
[
1 + λe−ui (1 − ui )

]
(log xi )

2

Uγ λ = Uλγ = −
n∑

i=1

ui e
−ui log xi and Uλλ = −nλ−2 + ne−λ

(
1 − e−λ

)−2

Using the Xγ eβX ∼ EP(α, λ), the Fisher information matrix can be obtained as:

E

(
−∂2
 (θ)

∂α2

)
= nα−2 − 0.25nλe−λα−2 (

1 − e−λ
)−1

F3,3 ([2, 2, 2] , [3, 3, 3] , λ)

E

(
−∂2
 (θ)

∂α∂β

)
= nI (γ + 1, 0, 1, 0) + nλI (γ + 1, 0, 1, 1) − nλI (2γ + 1, 0, 2, 1)

E

(
−∂2
 (θ)

∂α∂γ

)
= nI (γ, 1, 1, 0) + nλI (γ, 1, 1, 1) − nαλI (2γ, 1, 2, 0)

E

(
−∂2
 (θ)

∂α∂λ

)
= 0.25nλe−λ

[
α

(
1 − e−λ

)]−1
F2,2 ([2, 2] , [3, 3] , λ) ,

E

(
−∂2
 (θ)

∂β∂λ

)
= nI ((γ + 1, 0, 1, 1)

E

(
−∂2
 (θ)

∂β2

)
= nJ (2, 2) + nα I (γ + 2, 0, 1, 0) + nαλI (γ + 2, 0, 1, 1)

−nαλI (2γ + 2, 0, 2, 1)

E

(
−∂2
 (θ)

∂β∂γ

)
= nJ (1, 2) + nα I (γ + 1, 1, 1, 0) + nαλI (γ + 1, 1, 1, 1)

+nαλI (2γ + 1, 1, 2, 1)

E

(
−∂2
 (θ)

∂γ 2

)
= nJ (0, 2) + nα I (γ, 2, 1, 0) + nαλI (γ, 2, 1, 1)

−nα2λI (2γ, 2, 2, 1)

E

(
−∂2
 (θ)

∂γ ∂λ

)
= nα I ((γ, 1, 1, 1) , E

(
−∂2
 (θ)

∂λ2

)
= nλ−2 − ne−λ

(
1 − e−λ

)−1
,
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where Fv,w ([a1, . . . , av] , [b1, . . . , bw] , γ ) is the generalized hypergeometric func-
tion with the following definition provided by Gradshteyn and Ryzhik (2000).

Fv,w ([a1, . . . , av] , [b1, . . . , bw] , γ ) =
∞∑

k=0

γ k ∏v
i=1 � (ai + k) �−1(ai )

� (k + 1)
∏w

i=1 � (bi + k) �−1(bi )
,

and I (i, j, k, l) = E
[
Xi (log X) j ekβX−lαXγ eβX

]
, J (i, j) = E

[
Xi (γ + βX)− j ]

are expectations which can be computed numerically.
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