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Abstract A general framework for smooth regression of a functional response on
one or multiple functional predictors is proposed. Using the mixed model representa-
tion of penalized regression expands the scope of function-on-function regression to
many realistic scenarios. In particular, the approach can accommodate a densely or
sparsely sampled functional response as well as multiple functional predictors that are
observed on the same or different domains than the functional response, on a dense
or sparse grid, and with or without noise. It also allows for seamless integration of
continuous or categorical covariates and provides approximate confidence intervals as
a by-product of the mixed model inference. The proposed methods are accompanied
by easy to use and robust software implemented in the pffr function of the R package
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refund. Methodological developments are general, but were inspired by and applied
to a diffusion tensor imaging brain tractography dataset.

Keywords Functional data analysis · Functional regression model · Mixed model ·
Multiple functional predictors · Penalized splines · Tractography data

1 Introduction

Research in functional regression, where the responses and/or predictors are curves,
has received great attention recently: see, e.g., Ramsay and Silverman (2005, Ch. 12),
Ferraty andVieu (2006, 2009),Aneiros-Pérez andVieu (2008),Horváth andKokoszka
(2012, Ch. 8). However, the lack of working statistical inferential tools that are flexible
enough for many settings encountered in practice and that are fully implemented in
software, is a serious methodological and computational gap in the literature. In this
paper we propose an estimation and inferential framework to study the association
between a functional response and one or multiple functional predictors in a variety of
settings. Specifically, we introduce penalized function-on-function regression (PFFR)
implemented in the pffr function of the R (2014) package refund (Crainiceanu et
al. 2014). The proposed framework is very flexible and accommodates (1) multiple
functional predictors observed on the same or different domains than the response,
and in various realistic scenarios such as predictors and response observed on dense
or sparse grids, as well as (2) linear and nonlinear effects of multiple scalar covariates.

The paper considers linear relationships between the functional response and the
functional predictor, so that the effect of the predictor is expressed as the integral
of the corresponding covariate weighted by a smooth bivariate coefficient function.
Function-on-function linear regression models are well known; see, e.g., Ramsay and
Silverman (2005, Ch. 16), and Horváth and Kokoszka (2012, Sect. 8.3).

Most of the work in this area (e.g. Aguilera et al. 1999; Yao et al. 2005b; He et al.
2010;Wu et al. 2010;Horváth andKokoszka 2012, Sect. 8.3) considers regressionwith
a single functional predictor, or with an additional lagged response functional explana-
tory process, see Valderrama et al. 2010, and is based on an eigenbasis expansion for
both the functional predictor and the corresponding functional coefficient.While these
approaches are intuitive, they are also subject to two subtly dangerous problems. First,
estimating the number of components used for the expansion of the functional predic-
tors is known to be difficult, and, as noticed in Crainiceanu et al. (2009), the shape and
interpretation of the functional parameter can change dramatically when one includes
one or two additional principal components. This problem is exacerbated by the fact
that eigenfunctions corresponding to smaller eigenvalues tend to be much wigglier in
applications. Second, the smoothness of the functional parameter is induced by the
choice of basis dimension of the functional predictor. This may lead to strong under-
smoothing when the functional parameter is much smoother than the higher order
principal components. Furthermore, principal component-based function-on-function
regression methods given in the literature currently do not incorporate a large num-
ber of functional predictors or effects of additional scalar covariates. While such an
extension, at least for linear effects of scalar covariates, might be possible using the
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hybrid principal component approach of Ramsay and Silverman (2005, Ch. 10), the
quality of estimation, optimal scaling of variables and scalability to a large number of
functional and/or scalar covariates would certainly need further research. Penalized
approaches with basis functions expansions for function-on-function regression (e.g.
Ramsay and Silverman 2005, Ch. 14, Ch. 16; Horváth and Kokoszka 2012, p. 130) and
their implementations are not currently developed to the fullest generality, focusing
on one functional predictor, no scalar covariates (Matsui et al. 2009), or on the concur-
rent model, for a setting where both variables are observed over the same domain (e.g.
Ramsay and Silverman 2005, Ch. 14). Regression models for functional responses
with non-linear effect of functional predictors have been considered in Ferraty et al.
(2011, 2012). While such modeling approaches are more general in how they account
for the effect of the functional predictor, it is not clear how to extend them to account
for additional functional or scalar predictors. A current work (Fan et al. 2014) dis-
cusses a functional response model with scalar covariates and a single index model
for the functional covariates. This is an interesting approach focusing on prediction,
though not on inference for the estimated effects. Kadri et al. (2011) consider a non-
parametric approach with both functional and scalar covariates based on reproducing
kernels, but this short proceedings paper gives no details on implementation, choice
of kernel, selection of smoothing parameter, simulations or applications, it does not
consider inference in addition to prediction, nor does it provide software. Most of the
discussed approaches are furthermore limited to the case of functional responses and
functional covariates not being sparsely observed.

We propose a novel solution for the linear function-on-function regression setting.
Our approach is inspired by the penalized functional regression (PFR) in Goldsmith et
al. (2011), developed for the simpler case of scalar on function regression. It uses basis
function expansions of the smooth coefficient function/s, based on pre-determined
bases, and applies quadratic roughness penalties to avoid overfitting. The smoothness
of the functional coefficients is controlled by smoothing parameters, which are esti-
mated using restricted maximum likelihood (REML) in an associated mixed model.
Estimation of the functional coefficients is carried out under the working assumption
of independent errors.

To the best of the authors’ knowledge, the developed pffr function is the first
publicly available software for fitting function-on-function regression models with
two or more functional predictors and additional scalar covariates. The fda package
(Ramsay et al. 2014) in R includes functions linmod and fRegress for function-
on-function regression. However, linmod (see Ramsay et al. 2009, Ch. 10.3) cannot
handlemultiple functional predictors or linear or non-linear effects of scalar covariates.
Also, the fRegress function is restricted to concurrent associations, where response
and predictors are observed on the same domain. The PACE package (Yao et al. 2005b)
in Matlab (2014) does not accommodate multiple functional predictors, nor linear
or smooth effects of additional scalar covariates.

The main contributions of this paper thus are the following: (1) It develops a mod-
eling and estimation framework for function-on-function regression flexible enough
to accommodate multiple functional covariates, functional responses and/or covari-
ates observed on possibly different non-equidistant or sparse grids, as well as smooth
effects of scalar covariates, (2) it describes model-based and bootstrap-based confi-
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dence intervals, (3) it provides an open source implementation in the R package refund
and describes the implementation in detail, (4) it tests these methods in an applica-
tion and in extensive simulations, including realistic scenarios, such as covariates or
responses observed sparsely and with noise.

The remainder of the article proceeds as follows:Wepresent our PFFRmethodology
in Sect. 2. Section3 describes the software implementation of this method in detail.
The performance of PFFR in simulations is discussed in Sect. 4. Section5 presents
an application to the motivating diffusion tensor imaging (DTI) tractography dataset.
Section6 provides our discussion.

2 Mixed model representation of function-on-function regression

2.1 Function-on-function regression framework

While the approach is general, the presentation is focused on the case of two functional
predictors, which is also relevant in our DTI application in Sect. 5. Let Yi (ti j ) be the
functional response for subject i measured at ti j ∈ T , an interval on the real line,
1 ≤ i ≤ n, 1 ≤ j ≤ mi , where n is the number of curves or subjects and mi is
the number of observations for curve i . We assume that the observed data for the i th

subject are [{Yi (ti j )} j , {Xi1(sik)}k, {Xi2(riq)}q ,W i ], where {Xi1(sik) : 1 ≤ k ≤ Ki }
and {Xi2(riq) : 1 ≤ q ≤ Qi } are functional predictors and W i is a p × 1 vector
of scalar covariates. Furthermore, it is assumed that {Xi1(sik)} and {Xi2(riq)} are
square-integrable, finite sample realizations of some underlying stochastic processes
{X1(s) : s ∈ S} and {X2(r) : r ∈ R} respectively, where S andR are intervals on the
real line. We start with the following model for Yi (ti j ):

Yi (ti j ) = W t
iγ + β0(ti j ) +

∫
S

β1(ti j , s)Xi1(s) ds +
∫
R

β2(ti j , r)Xi2(r) dr + εi (ti j ),

(1)
where the mean function is modeled semiparametrically (Ruppert et al. 2003; Wood
2006) and consists of two components: a linear parametric function W t

iγ to account
for the covariates W i , whose effects are assumed linear and constant along the inter-
val T , where γ is a p-dimensional parameter, and an overall nonparametric func-
tion β0(t). The effect of the functional predictors is captured by the component∫
S β1(ti j , s)Xi1(s) ds + ∫

R β2(ti j , r)Xi2(r) dr . The regression parameter functions,
β1(·, ·) andβ2(·, ·), are assumed to be smooth and square integrable over their domains.
The errors εi are zero-mean random processes and are uncorrelated with the functional
predictors and scalar covariates. The model will be extended in several different ways
in the following sections.

2.1.1 Extension to sparsely observed functional responses

Our approach is able to accommodate sparseness of the observed response trajectories.
This work is the first, to the best of our knowledge, to consider a sparsely observed
functional response within the general setting of multiple functional and scalar predic-
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tors. Let {ti j : j = 1, . . . ,mi } be the set of grid points at which the response for curve
i is observed such that ∪n

i=1[{ti j }mi
j=1] is dense in T . PFFR can easily accommodate

such a scenario with only few modifications in the implementation, which we outline
in Sect. 3.2. Section4.2 provides simulation results obtained in this setting.

2.1.2 Extension to corruptly observed functional predictors

When the functional predictors are observed with error or not on the same fine grid,
the underlying smooth curves need to be estimated first. If gridpoints are relatively
fine, then a popular method is to smooth each trajectory separately using common
smoothing approaches (Ramsay and Silverman 2005; Ramsay et al. 2009, Ch. 5).
Zhang and Chen (2007) provide justification for local polynomial methods that this
approach can estimate the true curves with asymptotically negligible error under some
regularity assumptions. If grids of time points are sparse, the smoothing is done by
pooling information across curves.We follow an approach similar toYao et al. (2005a):
first consider an undersmooth estimator of the covariance function and then smooth
it to remove the measurement error. At the latter step we use penalized splines-based
smoothing, as previously employed byGoldsmith et al. (2011). In such cases, the PFFR
methodology is recommended to be applied to the reconstructed smooth trajectories,
X̂i1(s) and X̂i2(r), that, in addition, are centered to have zero mean function. This
approach is investigated numerically in Sect. 4.3.

2.2 A penalized criterion for function-on-function regression

In this section we introduce a representation of model (1) that allows us to estimate the
model using available mixed model software, as detailed in Sect. 2.3. We discuss the
case when the predictor curves, Xi1(·) and Xi2(·), are measured densely and without
noise. For simplicity of presentation, consider the case when Ki = K , sik = sk ,
Qi = Q and riq = rq for every i, k and q. Additionally, assume that the response
curves are measured on a common grid, that is mi = m and ti j = t j for every i and j .

To start with, we represent the functional intercept using a basis function expansion
as β0(t) ≈ ∑κ0

l=1 A0,l(t)β0,l , where A0,l(·) is a known univariate basis and β0,l are
the corresponding coefficients. Then, we use numerical integration to approximate the
linear “function-on-function” terms; for example,

∫
S β1(t, s)Xi1(s)ds can be approx-

imated by
∫
S β1(t, s)Xi1(s)ds ≈ ∑K

k=1 �kβ1(t, sk)Xi1(sk), where sk , k = 1, . . . , K ,
forms a grid of points in S and �k are the lengths of the corresponding intervals. The
next step is to expand β1(t, s) ≈ ∑κ1

l=1 a1,l(t, s)β1,l , where a1,l(·, ·) is a bivariate
basis and β1,l are the corresponding coefficients. Thus,

∫
S β1(t, s)Xi1(s)ds can be

approximated by

κ1∑
l=1

{
K∑

k=1

a1,l(t, sk){�k Xi1(sk)}
}

β1,l =
κ1∑
l=1

{
K∑

k=1

a1,l(t, sk)X̃i1(sk)

}
β1,l ,

where X̃i1(sk) = �k Xi1(sk), and the accuracy of this approximation depends on how
dense the grid {sk : k = 1, . . . , K } is. Note that Xi1 values can be included directly in
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the function-on-function term and we do not apply a basis expansion reconstruction
approach for Xi1 if Xi1 is observed densely and without noise. Using similar notation,∫
R β2(t, r)Xi2(r)dr can be approximated by

κ2∑
l=1

⎧⎨
⎩

Q∑
q=1

a2,l(t, rq)X̃i2(rq)

⎫⎬
⎭β2,l .

Thus, we approximate model (1) by the additive model:

Yi (t) = W t
iγ +

κ0∑
l=1

A0,l(t)β0,l +
κ1∑
l=1

A1,l,i (t)β1,l +
κ2∑
l=1

A2,l,i (t)β2,l + εi (t), (2)

where A1,l,i (t) = ∑K
k=1 a1,l(t, sk)X̃i1(sk) and A2,l,i (t) = ∑Q

q=1 a2,l(t, rq)X̃i2(rq)
are known because the predictor functions are observed without noise.

While the presentation is provided in full generality, the various choices involved
are crucial when one develops practical software. Our approach to smoothing is to use
rich bases that reasonably exceed themaximum complexity of the parameter functions
to be estimated and then penalize the roughness of these functions. This translates into
choosing a large number of basis functions, κ0, κ1, κ2, and applying the penalties
λ0P0(β0), λ1P1(β1), and λ2P2(β2), where βd is the vector of all parameters βd,l

for d = 0, 1, 2. Thus, if we denote by μi (t; γ ,β0,β1,β2) the mean of Yi (t), our
penalized criterion to be minimized is

∑
i, j

||Yi (t j ) − μi (t j ; γ ,β0,β1,β2)||2 + λ0P0(β0) + λ1P1(β1) + λ2P2(β2). (3)

This is a penalized least squares or penalized integrated squared error criterion, and
is a natural extension of the integrated residual sum of squares criterion discussed in
Ramsay and Silverman (2005, Ch. 16.1).

Penalties, P0(β0), P1(β1), and P2(β2) are of known functional form with the
amount of shrinkage being controlled by the three scalar smoothing parameters λ0,
λ1, and λ2. We employ quadratic penalties, P0(β0) = β t

0D0β0, P1(β1) = β t
1D1β1,

P2(β2) = β t
2D2β2, where D0, D1, D2 are known penalty matrices associated with

the chosen basis. Examples include integrated square of second derivative penalties
(c.f. Wood 2006, Sect. 3.2.2), B-spline bases with a difference penalty (Eilers and
Marx 1996), but also thin plate splines, cubic regression splines, cyclic cubic regres-
sion splines or Duchon splines (Wood 2006). Among the possible criteria for selection
of the smoothing parameters, generalized cross validation (GCV), AIC and REML are
most popular. We prefer REML in a particular mixed model due to its favorable com-
parison to GCV in terms of MSE and stability (Reiss and Ogden 2009; Wood 2011);
our preference is also motivated by the theoretical results that restricted maximum
likelihood-based selection of the smoothing parameters is more robust than AIC to
moderate violations of the independent error assumption, see Krivobokova and Kauer-
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mann (2007). Estimation of smoothing parameters andmodel parameters are described
next.

2.3 Mixed model representation of function-on-function regression

We note that the penalized criterion (3) with the quadratic penalty choices described
in the previous section becomes

1

σ 2
ε

∑
i, j

||Yi (t j ) − μi (t j ; γ ,β0,β1,β2)||2 + λ0

σ 2
ε

β t
0D0β0

+ λ1

σ 2
ε

β t
1D1β1 + λ2

σ 2
ε

β t
2D2β2,

where σ 2
ε is the variance of the errors εi (t) in model (1). In the literature on semi-

parametric regression (see e.g. Ruppert et al. 2003), such a penalized log-likelihood
has a well-established connection to mixed model estimation, where the β coefficients
are treated during estimation as if they were random effects. The intuition behind this
approach is that a penalty can be thought of as similar to a prior in a Bayesian setting
or a normal distribution for random effects in a mixed model context, in terms of
incorporating prior knowledge (here of smoothness), and in fact the quadratic penalty
corresponds to the logarithm of a normal distribution density for the coefficients.
Mathematically, by denoting σ 2

0 = σ 2
ε /λ0, σ 2

1 = σ 2
ε /λ1, σ 2

2 = σ 2
ε /λ2 and following

arguments identical to those in Ruppert et al. (2003, Sect. 4.9) minimizing the penal-
ized criterion (3) is equivalent to obtaining the best linear unbiased predictor in the
mixed model

Yi (t) ∼ N
{
μi

(
t; γ ,β0,β1,β2

)
, σ 2

ε

}
;

β0 ∼ N
(
0, σ 2

0 D
−1
0

)
; β1 ∼ N

(
0, σ 2

1 D
−1
1

)
; β2 ∼ N

(
0, σ 2

2 D
−1
2

)
,

(4)

where D0, D1, and D2 are known, and shrinkage of the functional parameters is
controlled by σ 2

0 , σ
2
1 , and σ 2

2 , respectively. There is a slight abuse of notation in model
(4), asmatrices D0, D1, and D2 are typically not invertible. Indeed, inmany cases, only
a subset of the coefficients are being penalized or the penalty matrix is rank deficient.
These are well known problems in penalized regression and the standard solution
(Wood 2006, Ch. 6.6) is to either replace the inverse with a particular generalized
inverse or to separate the coefficients that are penalized from the ones that are not. For
example, for the penalty corresponding to β1, the eigendecomposition for matrix D1
is used to split the coefficients into two kinds: one kind that is not penalized, i.e. in
the null-space of the penalty matrix, which would be estimated as fixed coefficients,
and the other kind, say bR1 that is penalized (not in the null-space of the penalty)
and that would be treated as random effects during estimation using the distributional
assumption bR1 ∼ N (0, σ 2

1 D
−1
1+), where D1+ is a projection of D1 into the cone of

positive definite matrices; see Sect. 6.6.1, Wood (2006), for a detailed presentation of
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this partitioningof penalized coefficient vectors into amixedmodel representationwith
fixed and random components for producing smooth estimators for the parameters.

Replacing the penalized approach with the mixed model (4) has many favorable
consequences. First, it allows the estimation of the smoothing parameters as certain
variance ratios in this mixed model, λk = σ 2

ε /σ 2
k , k = 0, 1, 2, using REML estima-

tion. This has favorable theoretical properties as discussed in the previous subsection
and avoids computationally costly cross-validation. Second, models can naturally be
extended in a likelihood framework to adapt to different levels of data complexity,
such as the addition of smooth effects of scalar covariates. This enables us to expand
the scope of function-on-function regression substantially. Third, inferential methods
originally developed for mixed models transfer to function-on-function regression. In
particular, approximate confidence intervals (Wahba 1983; Nychka 1988; Ruppert et
al. 2003) can be obtained as a by-product of the fitting algorithm. This provides a
statistically sound solution to an important problem that is currently unaddressed in
function-on-function regression. We discuss implementation of this inferential tool
when independent identically distributed (i.i.d.) errors in model (1) are assumed.
Online Appendix A discusses first steps towards related inference tools for settings
with non-i.i.d. errors.Moreover, tests on the shape of the association between responses
and covariates are available as well. For suitably chosen bases and penalties, likeli-
hood ratio tests of linearity versus non-linearity, or constancy versus non-constancy, of
the coefficient surfaces along the lines described in Crainiceanu and Ruppert (2004),
Greven et al. (2008) can be performed with the R package RLRsim (Scheipl et al.
2008).

We propose to fit model (4) using frequentist model software based on REML
estimation of the variance components. The robust mgcv package (Wood 2014) in R
(R Development Core Team 2014), which is designed for penalized regression and
has a built-in capability to construct the penalty matrices that are appropriate for the
specified spline bases can be used for model fitting.

3 Function-on-function regression via mixed models software

3.1 Implementation for functional regression with densely observed functional
response

We now turn our attention to implementation. In particular, we explain how model (4)
can be fit using the mgcv package (Wood 2014) in R. Note that our representation of
the function-on-function regression model (2) and (3) is a penalized additive model
where the original basis functions are re-weighted via the expressions A1,l,i (t) =∑K

k=1 a1,l(t, sk)X̃i1(sk) and A2,l,i (t) = ∑Q
q=1 a2,l(t, rq)X̃i2(rq). If a0,l(·), a1,l(·, ·),

and a2,l(·, ·) are, for example, thin plate spline bases, then the mgcv fit can simply be
expressed as

fit <- gam(Y ˜ W + s(t_0) + s(t_1, s_0, by=DX1) + s(t_2, r, by=DX2),
method=’’REML’’).

These very short software lines deserve an in-depth explanation to illustrate the
direct connection to our mixed model representation of function-on-function regres-
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sion. In order to fit the model, the response functions Yi (t) are stacked in an nm × 1
dimensional vector Y = {Y1(t1), . . . ,Y1(tm),Y2(t1), . . . ,Yn(tm)}t , where n is the
number of curves (or subjects) and m is the number of observations per curve. This
vector is labeled Y. The p × 1 dimensional vectors of covariates W i are also stacked
using the same rules used for Yi (t). More precisely, for every subject i the vector
W i is repeated m times and rows are row-stacked in an m × p dimensional matrix
W̃ i . These subject specific matrices are further row-stacked across subjects to form
an mn × p dimensional matrix W . This matrix is labeled W. The next step is to
define a grid of points for the smooth function β0(t) in model (1). The grid corre-
sponds exactly to the stacking of the response functions and is defined as the mn × 1
dimensional vector t0 = (t1, . . . , tm, . . . , t1, . . . , tm)t obtained by stacking n repe-
titions of the grid vector (t1, . . . , tm)t . This vector is labeled t_0. The expression
s(t_0) thus fits a penalized univariate thin-plate spline at the grid points in the
vector t0.

So far, data manipulation and labeling have been quite straightforward. However,
fitting the functional part of themodel requires some degree of software customization.
We focus on the first functional component and build three nm × K dimensional
matrices: (1) t1, obtained by column-binding K copies of the nm × 1 dimensional
vector t0; this matrix is labeled t_1; (2) s0 obtained by row-binding nm copies of the
1 × K dimensional vector (s1, . . . , sK ); this matrix is labeled s_0; and (3) X̃1 the
nm × K dimensional matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̃11(s1), X̃11(s2), . . . , X̃11(sK )

X̃11(s1), X̃11(s2), . . . , X̃11(sK )

. . .

X̃11(s1), X̃11(s2), . . . , X̃11(sK )

X̃21(s1), X̃21(s2), . . . , X̃21(sK )

. . .

X̃n1(s1), X̃n1(s2), . . . , X̃n1(sK )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where each row {X̃i1(s1), . . . , X̃i1(sK )} is repeated m times, for i = 1, . . . , n; this
matrix is labeled DX1. With these notations, the expression s(t_1,s_0,by=DX1)
is essentially building

∑
l A1,l,i (t)β1,l(t), where A1,l,i (t) = ∑K

k=1 a1,l(t, sk)X̃i1(sk).
Without the option by=DX1 the expression s(t_1,s_0) would build the bivariate
thin-plate spline basis a1,l(t, sk), whereas adding by=DX1 it averages these bivariate
bases along the second dimension using the weights X̃i1(sk) derived from the first
functional predictor. A similar construction is done for the second functional predictor.
Smoothing for all three penalized splines is done via REML, as indicated by the option
method=“REML”.

The implementation presented above is simple, but the great flexibility of the gam
function allows multiple useful extensions. First, it is obvious that the method and
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software can be adapted to a larger number of functional predictors. The number
of basis functions used for each smooth can be adjusted. For example, requiring
k0 = 10 basis functions for a univariate thin-plate penalized spline for the β0(·)
function can be obtained by replacing s(t_0) with s(t_0,k=10). Moreover, the
implementation can accommodate unevenly sampled grid points both for the func-
tional response and predictors. Indeed, nothing in the modeling or implementation
requires equally spaced grids. Changing from (isotropic) bivariate thin-plate splines
to (anisotropic) tensor product splines based on two univariate bases can be done by
replacings(t_1,s_0,by = DX1)withte(t_1,s_0,by = DX1). This changes cri-
terion (3) only slightly, such that β1 then has two additive penalties in s and t direction,
respectively. We can also easily incorporate linear effects of scalar covariates allowed
to vary smoothly along t (varying coefficients), that is ziβ3(t), using expressions of
the type s(t_0,by=Z), where Z is obtained using a strategy similar to the one for
functional predictors. For large datasets the function bam is more computationally
efficient than gam.

In practice, it is useful to have a dedicated, user-friendly interface that automatically
takes care of the stacking, concatenation and multiplication operations described here,
calls the appropriate estimation routines in mgcv, and returns a rich model object that
can easily be summarized, visualized, and validated. pffr offers a formula-based
interface that accepts functional predictors and responses in standard matrix form,
i.e., the i th row contains the function evaluations for subject i on an index vector like
t0 or s_0. It returns amodel object whose fit can be summarized, plotted and compared
with other model formulations without any programming effort by the user through
the convenient and fully documented functions summary, plot and predict. The
model formula syntax used to specify models is very similar to the established formula
syntax to lower the barrier to entry for users familiar with the mgcv-package, i.e. to
specify model (2), we use

fit.pffr <- pffr(Ymat ˜ c(W) + ff(X1mat, yind=t) + ff(X2mat, yind=t))

where Ymat, X1mat, X2mat are matrices containing the function evalua-
tions, and where ff(Xmat, yind=t) denotes a linear function-on-function term∫
X (s)β(t, s)ds. A functional intercept β0(t) is included by default. The term c(W)

corresponds to a constant effect of the covariates in W , i.e., Wtγ . By default, pffr
associates scalar covariates with an effect varying smoothly on the domain of the
response, i.e., ˜W yields an effect Wγ (t). Our implementation also supports non-
linear effects of scalar covariates zi that may or may not be constant over the domain
of the response, i.e., f (zi ) or f (zi , t), specified as c(s(z)) or s(z), respectively, as
well as multivariate non-linear effects of scalar covariates z1i , z2i that may or may not
be constant over the domain of the response, i.e., f (z1i , z2i ) or f (z1i , z2i , t), specified
as c(te(z1, z2)) or te(z1, z2), respectively.

Prior to applying our pffr procedure, we recommend to center the functional
predictors. For each functional predictor, the mean function is estimated (e.g. Ramsay
et al. 2009, Sect. 6.1; Bunea et al. 2011) and subtracted from each curve i . When
the functional predictors are centered, the functional intercept has the interpretation
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of the overall mean function for observations with functional predictor values at the
respective mean values.

3.2 Implementation for functional regression with sparsely observed functional
response

We have already seen in Sect. 3.1 that the class of models covered by our frame-
work is much broader than model (1); specifically the proposed framework accom-
modates easily multiple functional predictors, varying coefficient effects, and non-
linear effects of one or multiple scalar covariates. Here we present extensions to
another realistic setting. PFFR can easily accommodate a function-on-function regres-
sion scenario when the functional response is sparsely observed, with only few
modifications in the fitting procedure. First, the vector of responses, labeled Y,
accommodates subject-responses observed at different time points, and has the form
Y = {Y1(t11), . . . ,Y1(t1m1),Y2(t21), . . . ,Y2(t2m2), . . . ,Yn(tnmn ))}t . Second, the vec-
tor labeled t_0 has the form t0 = (t11, . . . , t1m1 , . . . , tnmn )

t . Third, the matrix of
covariates, labeled W, is obtained by taking mi copies of the 1 × p row vector of
covariates W i for subject i , column-stacking these into a mi × p-dimensional matrix
W̃ i , and then further column-stacking these matrices across subjects. The functional
components labeled DX1 and DX2 are constructed using a similar logic. There is no
modification in the definitions of the vectors labeled t1 and s0. Our implementation
in pffr performs these modified pre-processing steps automatically if a suitable data
structure for sparsely observed functional responses is provided. With these adjust-
ments, the fitting procedure can proceedwithgam as described in Sect. 3.1. Section4.2
provides simulation results obtained in this setting.

4 Simulation study

We conduct a simulation study to evaluate the performance of PFFR in realistic sce-
narios including both densely or sparsely observed functional predictors, and for a
functional response that is densely or sparsely sampled.

Due to the lack of other available implemented methods to do regression with
multiple functional and scalar covariates, we compare PFFR to a sequence of scalar-
on-function regressions; see Sect. 4.4 for a comparison with linmod (Ramsay et
al. 2009), for the simpler setting of a single functional covariate and no additional
scalar covariates. More precisely, for every fixed t , the function-on-function regres-
sion model (1) becomes a scalar on function regression that can be fit using, for
example, PFR (Goldsmith et al. 2011), as implemented in the R function pfr from
the refund package. PFR provides estimates of the functional parameters β1(t, s)
and β2(t, r) for every fixed t . Aggregating these functions over t leads to surface
estimators that are then smoothed using a bivariate penalized spline smoother. This
approach is labeled modified-PFR in the remainder of the paper. Without bivariate
smoothing themodified-PFRwas found not to be as competitive. For themodified-PFR
method, the upper and lower bound surfaces of the confidence intervals were obtained
analogously by smoothing the upper and lower bounds estimated by PFR for each
fixed t .
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4.1 Densely sampled functional predictors

The curvesYi (t)were observed on an equally spaced grid t ∈ { j/10 : j = 1, 2, ..., 60}
and the functional predictors were observed on equally spaced grids, but on different
domains: Xi1(s) on s ∈ {k/10 : k = 1, 2, ..., 50} and Xi2(r) on r ∈ {q/10 : q =
1, 2, ..., 70}. The bivariate functional parameters β1(t, s) = cos(tπ/3)sin(sπ/5) and
β2(t, r) = √

tr/4.2 have comparable range and are displayed in the top left panels
of Fig. 2. The functional intercept is β0(t) = 2e−(t−2.5)2 and the random errors εi (t j )
were simulated i.i.d. N (0, σ 2

ε ).
We generated n functional responses Yi (t) from model (1) by approximating

the integrals via Riemann sums with a dense grid for each domain S and R.
For the first functional predictor we considered the following mean zero process
Vi1(s) = Xi1(s) + δi1(s), where Xi1(s) = ∑Es

k=1{vik1sin(kπs/5) + vik2cos(kπs/5)}
with Es = 10, and where vik1 , vik2 ∼ N(0,1/k4) are independent across subjects i .
For the second functional predictor we considered Vi2(r) = Xi2(r) + δi2(r), where
Xi2(r) = ∑Er

k=1(2
√
2/(kπ))Uiksin(kπr/7) with Er = 40, and where Uik ∼ N(0,1),

and δi1(s), δi2(r) ∼ N(0, σ 2
X ) are mutually independent. More precisely, Xi1(s) and

Xi2(r) were the true underlying processes used to generate Yi (t) from model (1)
and Vi1(s) and Vi2(r) were the actually observed functional predictors. The choice
of Xi1(s), β1(·, ·) and β2(·, ·) is similar to the choices in Goldsmith et al. (2011),
whereas Xi2(r) is a modification of a Brownian bridge. For the scalar covariates, we
considered a binary variable W1 = 1{Unif[0, 1] ≥ .75}, and a continuous variable
W2 ∼ N (10, 52). A univariate cubic B-spline basis with κ0 = 10 basis functions with
second-order difference penalty (Eilers and Marx 1996) was used to fit β0(·). Tensor
products of cubic B-splines with κ1 = κ2 = 25 basis functions and second-order
difference penalties in both directions were used to fit β1(·, ·) and β2(·, ·). For more
complex functional parameters, increasing the number of basis functions may be nec-
essary to capture the increased complexity. In our setting, increasing the number of
basis functions for the bivariate smoothers from 25 to 100 did not significantly affect
the fit or computation times.

We considered all possible combinations of the following choices:

1. Number of subjects: (a) n = 100 and (b) n = 200.
2. Functional predictors: (a) noiseless σX = 0 and (b) noisy σX = 0.2.
3. Standard deviation for the error: σε = 1.
4. Effects of the scalar covariates:

(a) no scalar covariates, and
(b) scalar covariates W1 and W2 with γ1 = 1 and γ2 = −0.5.

The combination of the various choices provides eight different scenarios and for
each scenariowe simulated 500 data sets. For illustration, Fig. 1 displays one simulated
data set for scenario 4(a). Curves for three subjects are highlighted in color, with
each color representing one subject across the three panels. PFFR uses two steps for
case 2(b). First, the functional predictors were estimated as X̂i1(s) and X̂i2(r) using
the smoothing approach previously used in Goldsmith et al. (2011). Second, these
estimated functions were used instead of Xi1(s) and Xi2(r) when fitting model (1).
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Fig. 1 The left panel displays a sample of 200 simulated functional responses Yi (t) with σε = 1. The
middle and right panels display 200 simulated functions from Xi1(s) and Xi2(r), respectively, highlighting
three examples of the functional predictors with no error (solid) and with measurement error σX = 0.2
(dashed)

We computed the integrated mean squared error (IMSE), integrated squared bias
(IBIAS2), and integrated variance (IVAR), where IMSE{β̂(t, s)} = ∫

T
∫
S E[{β̂(t, s)

− β(t, s)}2]dtds, IBIAS2{β̂(t, s)} = ∫
T

∫
S [E{β̂(t, s)} − β(t, s)]2dtds, and

IVAR{β̂(t, s)} = ∫
T

∫
S Var{β̂(t, s)}dtds. Here E{β̂(t, s)} and Var{β̂(t, s)} were

estimated by the empirical mean and variance of β̂(t, s) in 500 simulations. To
characterize the properties of the pointwise confidence intervals we report the
integrated actual pointwise coverage (IAC) and integrated actual width (IAW),
where IAC = E[∫T

∫
S 1{β(t, s) ∈ C Ip(t, s)}dtds], where C Ip is the point-

wise approximate confidence interval for the model parameter β(t, s), based on
an independence assumption of the errors. We implemented approximate point-
wise confidence intervals for the nominal level 0.95. For example, an approximate
95% pointwise confidence interval C Ip(t0, s0) for β1(t0, s0) can be constructed as
β̂1(t0, s0) ± 1.96 ŝd{β̂1(t0, s0)}. As β̂1(t0, s0) = ∑κ1

l=1 a1,l(t0, s0)β̂1,l , for every

(t0, s0), ŝd{β̂1(t0, s0)} =
√
a1(t0, s0)Σ̂1at1(t0, s0), where Σ̂1 is the estimated covari-

ance matrix of β̂1, and a1(t0, s0) = {a1,l(t0, s0)}l . We use the Bayesian posterior
covariance matrix, see Ruppert et al. (2003), available under the Vp specification for
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gam; alternatively, for REML estimation, a Vc option that additionally accounts for
smoothing parameter uncertainty is available in the mgcv R-package (Wood 2014)
and can in some cases lead to slightly improved coverage. The width of this confi-
dence interval is 3.92 ŝd{β̂1(t0, s0)} and IAW = 3.92E[∫T

∫
S ŝd{β̂1(t, s)}dtds]. As a

measure of accuracy of the fit we provide the functional R2, denoted by fR2, and com-
puted as fR2 = 1 − {∑i

∑
j [Yi (t j ) − μ̂i (t j )]2}/{∑i

∑
j [Yi (t j ) − μ̂Y (t j )]2}, where

μ̂Y (t j ) = ∑n
i=1 Yi (t j )/n, and μ̂i (t j ) are the estimated μi (t j ) using the fitted model.

Table1 compares the averages of these measures over simulations, whereas Online
Appendix B displays boxplots of these measures for the bivariate functional parame-
ters calculated for each data set. Overall, our results indicate that PFFR outperforms
the modified-PFR in terms of estimation precision. To provide the intuition behind
these results, Fig. 2 displays the fits using PFFR and PFR obtained in one simulation
for the setting n = 200, σε = 1, σX = 0 and case 4(a). Both methods capture the
general features of the true parameter surfaces well, but the modified-PFR method
does not borrow strength between the neighboring values of the functional responses
since it is derived from PFR. As our results show, this causes unnecessary roughness
of the estimates along the t dimension. In contrast, PFFR provides a much smoother
surface that better approximates the shape of the true underlying functions.

Results in Table1 can be summarized as follows. PFFR performs better than
modified-PFR in terms of IMSE for almost all the estimated parameters, and gives
comparable performance in a few cases, irrespective of the noise level in the functional
predictors and the presence of additional non-functional covariates; see the columns
labeled IMSE. For the bivariate functional parameters, the variability of the MSEs of
PFFR and modified-PFR is comparable, and the median MSE of PFFR is smaller than
that of modified-PFR; see Online Appendix B. As the number of subjects increases,
IMSE for both methods decreases, confirming that in the settings considered, the
methodology yields consistent estimators; this is expected to hold more generally,
see, for example Claeskens et al. (2009), for the asymptotics of penalized splines.
In terms of the performance of the pointwise approximate confidence intervals, the
PFFR intervals are reasonably narrow and have a coverage probability that is rela-
tively close to the nominal level; see the columns corresponding to IAW and IAC in
Table1. By contrast, confidence intervals for modified-PFR are constructed based on
models for each t separately, which do not make use of the full information available,
and intervals are thus excessively wide. While this results in coverage close to 1 for
some settings, in other settings the point estimates have such high IMSE and IBIAS
values that intervals are incorrectly centered and give very low coverage despite the
large width. Overall, confidence intervals based on PFFR are narrower, more properly
centered and give coverage more reliably close to the nominal level, despite some
amount of undercoverage in some of the settings. For PFFR confidence intervals, as
the number of subjects increases, IAW decreases, as expected, while maintaining IAC
close to the nominal level. The approximate confidence intervals discussed in this
section provide results that overall perform rather close to the 0.95 nominal level.
Alternative bootstrap confidence intervals are discussed in Online Appendix A. Over-
all, when functional predictors are measured with error, the estimation of parameters
and coverage of confidence intervals tends to deteriorate slightly. Otherwise, results
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Fig. 2 Displayed are the bivariate functional parameters β1(t, s) (left panels) and β2(t, r) (right panels):
true values (top panels), estimates for one simulation iteration via PFFR (middle panels), and estimates via
PFR (bottom panels). Scenario: n = 200, σε = 1, σX = 0 and case 4(a)

are similar to the setting without noise. The accuracy of the fit seems similar for PFFR
and modified-PFR, as illustrated by fR2.

Compared to PFFR, the modified-PFR alternative yields inferior results. First, fit
results tend to be rougher and may require additional and specialized smoothing.
Second, running a large number of scalar on function regressions can lead to longer
computation times. Third, confidence intervals are not easy to obtain, which may
further affect computation times.

4.2 Sparsely sampled functional response

Consider again scenario 4(a) described in Sect. 4.1 and assume that for each sub-
ject i , the functional response is observed at randomly sampled mi points from
t ∈ { j/10, j = 1, 2, ..., 60}. Estimation of the parameter functions was carried out
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using our PFFR approach with κ0 = 10 basis functions for the univariate spline basis,
and κ1 = κ2 = 25 for the bivariate spline bases. The estimates are evaluated using the
samemeasures as described in Sect. 4.1. In the situation of sparsely sampled functional
response, our method does not have any competitors.

Table2 shows the results for two sparsity levels,mi = 20 andmi = 6. As expected,
the sparsity of the functional response affects both the bias and the variance of the
parameter estimators, as well as the width of the confidence intervals; compare Table2
with the PFFR results of Table1 corresponding to scenario 4(a) and n = 200. Never-
theless PFFR continues to showvery good performance formany levels ofmissingness
in the functional response with coverage of the confidence intervals similar to before.

4.3 Functional predictors sampled with moderate sparsity

The sparse design for the functional predictors was generated by starting with the
scenario 4(a) described in Sect. 4.1 with few changes. The number of eigenfunctions
for the two functional predictors was set to Es = 2 and Er = 4 respectively. For
each functional predictor curve i , 1 ≤ i ≤ n, we randomly sampled Ki points from
s ∈ {k/10, k = 1, 2, ..., 50} and Qi points from r ∈ {q/10, q = 1, 2, ..., 70}. We
apply the same smoothing approach used in Goldsmith et al. (2011) to reconstruct the
trajectories for each functional predictor; see the digitally available R program for Sec
4.3 at the first author’s website.

For illustration, Fig. 3 displays the simulated data and predicted values for four
curves, two for process Xi1(s) displayed in the two leftmost columns, and two for
process Xi2(r) displayed in the two rightmost columns. The true underlying curves
are shown as black dotted lines, the actual observed data are the red dots and the
predicted curves are the solid red lines. Visual inspection of these plots indicates that
the smoothing procedure recovers the underlying signal quite well. This is one of the
main reasons PFFR continues to perform well for these scenarios.

Table3 displays the results for our model parameters for the case of functional
predictors observed with moderate sparsity, n = 200 subjects and different sparsity
levels. Both the IMSE and the coverage performance of the PFFR are affected by
the sparsity of the predictor function. Due to the sparsity of the functional predictors,
a reduced number of basis functions is used for estimating the bivariate parameters.
Throughout this simulation exercise we used κ0 = 10 basis functions for the univariate
basis, and κ1 = κ2 = 20 basis functions for the two bivariate bases.

4.4 Simulations: a single functional predictor

In this section we compare pffr to the fully functional regression model of Ram-
say and Silverman (2005, Ch. 16), which is implemented in the linmod function in
the R-package fda (Ramsay et al. 2009, Sects. 10.3–4). As linmod cannot handle
more than one functional covariate and sparsely sampled functional responses and/or
covariates,we consider amodelwith a single functional predictor anddensely observed
functions. Our simulation design for this section corresponds to that in Sect. 4.1, Sce-
nario 4(a), σX = 0, with the exception that now the model has a single functional
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Fig. 3 Prediction of trajectories for functional predictors in simulation settings with Ki = 12, Qi = 25
points per curve, and σX = 0.20. Shown are: Xi1(sik ) for two subjects (leftmost two panels) and Xi2(riq )

for the same subjects (rightmost two panels). For each panel we have the true signal (dotted lines), the
observed signal (points), and the predicted signal (solid lines)

predictor, X1(s), instead of two functional predictors. We generate n realizations of
functional responses from the model:

Yi (t) = β0(t) +
∫
S

β1(t, s)Xi1(s)ds + εi (t).

The linmod function requires the construction of functional data objects for the
functional response and functional predictor prior to the model fitting step. We first
outline the requirements for setting up the functional data objects, and then provide
details for using the linmod function. One first has to choose the basis for object gen-
eration (Ramsay et al. 2009, Sect. 5.2.4), which must be the same as the basis used for
the representation of the regression parameters: the functional intercept β0(t), and the
bivariate regression slope β1(t, s). In addition to the choice of basis for functional data
representation,linmod requires themanual specification of the smoothing parameter.
We use generalized cross validation search across 41 values ranging from 10−5 to 105

in steps of 100.25 in a manner similar to the implementation described in Sect. 5.3. of
Ramsay et al. (2009). Separate cross validations are performed for obtaining functional
data objects for the functional response and the functional predictor, respectively.

The linmod function requires the specification of three additional smoothing
parameters: one for the functional intercept, and one each for the s and t direc-
tions of the regression coefficient β1(s, t). The specification of these three para-
meters, necessary for fitting the linmod function, is determined with the help
of a leave-one-curve-out cross-validation. Section 10.1.3 of Ramsay et al. (2009)
presents implementation examples for a leave-one-curve-out cross validation. We
use the choices λβ0 = {10−4, 10−5, 10−6} for the smoothing parameter for β0, and
λ

β
(s)
1

= {102, 103, 104} for the smoothing parameter in the s direction for β1(t, s),

λ
β

(t)
1

= {102, 103, 104} for the smoothing parameter in the t direction for β1(t, s).
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Table 4 Results for
function-on-function regression
with a single densely sampled
functional predictor. Numbers
are averages across 200
simulations. Computation time
for one fit, listed as cpu, is
reported in minutes

Method (×103)

√
I MSE

√
I V AR

√
I B I AS2

n = 100

β0(t)

PFFR 38.46 35.04 15.83

modified-PFR 37.81 37.41 5.50

linmod 93.20 28.60 88.71

β1(t, s)

PFFR 42.83 41.94 8.69

modified-PFR 75.34 43.10 61.80

linmod 83.24 47.66 68.24

fR2 cpu

PFFR 75.46% 0.08

modified-PFR 75.11% 0.06

linmod 74.86% 26.66

These correspond to extended choices compared to the implementation of the linmod
function introduced inSect. 10.4 ofRamsay et al. (2009). This constructed grid consists
of 27 options available for the leave-one-curve-out cross validation. We executed our
search using the cross-validated integrated squared error CV I SE(λβ0 , λβ

(s)
1

, λ
β

(t)
1

) =∑n
i=1

∫
T (Yi (t) − Ŷ (−i)

i (t))2dt , where Ŷ (−i)
i (t) = β̂

(−i)
0 (t) + ∫

S β̂
(−i)
1 (t, s)X1i (s)ds

was computed as the predicted value forYi (t)when it was omitted from estimation.We
tracked computation time for the linmodmodel fitting (that includes the generalized
cross validations, and the leave-one-curve-out cross validation), and for sample size
n = 100 the time was approximately 20 minutes on a MacBook 2GHz. Table4 shows
the computation time for all considered approaches and shows that our approach is
faster than linmod by several orders of magnitude. This is likely due to the need for
cross-validation for linmod as opposed to REML estimation in our case.

Table4 also shows that our approach improves onlinmod in termsofmean squared
error, bias, variance and fR2. This finding might be related to the fact that REML can
determine the optimal smoothing parameters more precisely than a grid search using
cross-validation can do within a reasonable computation time, especially for multiple
smoothing parameters. Another benefit of our method might be that not having to
smooth the outcome functions before estimation might allow for a more accurate
incorporation of uncertainty into the model fit. The current linmod function does
not permit to obtain confidence intervals for the regression parameters, whereas pffr
enables the estimation of lower and upper bounds for pointwise confidence intervals.

5 Application to DTI-MRI tractography

We consider a DTI brain tractography study of multiple sclerosis (MS) patients; cf.
Greven et al. (2010), Goldsmith et al. (2011), Staicu et al. (2012), McLean et al.
(2014). Diffusion tensor imaging is a magnetic resonance imaging (MRI) technique
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that quantifies water diffusion, whose properties we will use as a proxy for demyeli-
nation. DTI, at some level of output complexity, estimates the water diffusion at every
voxel using its first three directions of variation (Basser et al. 1994, 2000). Multiple
sclerosis is a demyelinating autoimmune-mediated disease that is associatedwith brain
lesions and results in severe disability. Little is known about in-vivo demyelination
including whether it is a global or local phenomenon, whether certain areas of the
brain demyelinate faster, or whether lesion formation in certain areas is associated
with demyelination in other areas of the brain. Also, it is unclear how these patterns
in the demyelination process differ in MS patients from the normal aging process in
healthy subjects. Here we attempt to provide an answer to some of these questions
using function-on-function regression.

We focus on three major tracts that are easy to recognize and identify on the MRI
scans: the corpus callosum (CCA), corticospinal (CTS) and optical radiation (OPR)
tracts. The study comprises 160MS patients and 42 healthy controls, who are observed
at multiple visits. At each visit, functional anisotropy (FA) is extracted along these
three major tracts for each subject, resulting in three functional measurements per
observation. For illustration, the panels in Fig. 4 display the FA in the MS and con-
trol groups for the three tracts—CCA tract (left), CTS tract (middle) and OPR tract
(right)—at the baseline visit. Depicted in red/blue/green are the FA measurements
corresponding to three subjects in each group (subjects are color coded).

Our goal here is mainly exploratory, as we are trying to further understand the
spatial and temporal course of the disease. Following Tievsky et al. (1999) and Song
et al. (2002), we use FA as our proxy variable for demyelination of the white mat-
ter tracts; larger FA values are closely associated with less demyelination and fewer
lesions. MS is typically associated with lesions and axon demyelination in the corpus
callosum. In advanced stages of MS, there is evidence for significant neuronal loss
in the corpus callosum (e.g. Evangelou et al. 2000; Ozturk et al. 2010). To study the
spatial association between demyelination along the CCA, CTS and OPR, we focus
in our first regression model on the CCA—one of the main structures in the brain—
as the response, and CTS and OPR as the covariates. It would also be possible, and
potentially of interest, to look at regression models with each of the other two white
matter tracts as the response. Interpretation of the associations between demyelination
in certain areas of the different tracts can potentially inform medical hypotheses on
spatial progression of the disease. In addition, models for each of the three responses
could also be thought of as potential future building blocks in a mediation analy-
sis (Lindquist 2012) with functional variables, to investigate the causal pathway of
the effect of changes in the brain during MS on disability outcomes (e.g. Huang et
al. 2013). This would involve both extension of the Lindquist (2012) method to the
fully functional setting and expert clinical knowledge to interpret the neurological
findings.

Consider that the response of interest is the FA along the CCA tract, and the func-
tional predictors are the FA along the left CTS and left OPR tracts, at the baseline visit.
The first step is to de-noise and deal with missing data in the functional predictors, as
discussed in Sect. 2. Following the notation in Sect. 2, Yi (t) denotes the FA along the
CCA tract at location t , Xi1(s) and Xi2(r) denote the centered de-noised FA along
the left CTS tract at location s, and the left OPR tract at location r , respectively, of
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Fig. 4 FA in the CCA tract (left panels), FA in the left CTS tract (middle) and FA in the left OPR tract
(right panels) for the MS patients (top panels) and controls (bottom panels) observed at the baseline visit.
In each of the top and bottom panels, depicted are the FA measurements for three subjects, with each mark
representing a subject

subject i . We use regression model (1), where W i is the vector of age and gender of
subject i . The proposed methods are employed to estimate the regression functions
β0(·), β1(·, ·) and β2(·, ·) as well as the regression parameters γ .

Figure5 shows the regression function estimates along with information on their
pointwise approximate 95% confidence intervals for each of the two groups: MS sub-
jects (left column) and controls (right column). We begin with β̂0(t), which accounts
for a relative R2 of 28.9% for theMS group and 38% for the control group. For theMS
group, the estimated overall mean of the FA for the CCA tract has a wavy shape, with
two main peaks, one near the beginning of the tract, around location 10, and one at
the end, around 90. For the control group, the estimated mean function shows similar
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Fig. 5 Estimates of the regression functions β̂0 (top panels), β̂1 (middle panels) and β̂2 (bottom panels)
corresponding to the MS group (left column) and the control group (right column). The dashed lines (top
panels) correspond to the pointwise 95% confidence intervals. The facets of the surface mesh are marked:
darker shades for more than approximately two standard errors above/below zero, and lighter shades for
less than approximately two standard errors above/below zero

patterns, but we observe lower FA values for the MS group than for the control; this
is biologically plausible, as FA values tend to decrease in MS-affected subjects due
to lesions or demyelination. Next, we consider the effect of the FA for the left CTS
tract; the relative R2 corresponding to this predictor is 10.8% for the MS group and
15.9% for the control group. The estimated function β̂1(t, s), displayed in the middle
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row of Fig. 5, shows the association between the FA for the CTS tract at location s
and the FA of the CCA tract at location t . Pointwise 95% confidence intervals for the
coefficient functions are constructed under independence assumption of the errors,
and are displayed using different colors of the facets of the surface mesh. Specifically,
red represents positive values, β̂1(t, s) > 0, that are found to be significant, blue rep-
resents significant negative values, β̂1(t, s) < 0; light red and light blue correspond
to the remaining positive and negative values, respectively.

For the control group, most of the CTS–FA values (corresponding to locations
below 40) are positively associated with FA values along the CCA, indicating that
demyelination occurs simultaneously in those tracts. The coefficient surface for the
control group is mostly constant, indicating a spatially homogeneous association for
most regions of these two tracts. In MS patients, on the other hand, there are areas (30
to 45, and around 10) of the CTS for which FA measures show negative associations
with the FA values in the CCA. This might indicate regions of those tracts where
demyelination due to lesions typically occurs only in one tract at a time, while stronger
positive associations may suggest that lesions often occur simultaneously in those
areas. Our results support the expected pattern that the pathological demyelination in
MSpatients is amore localized phenomenon than demyelination in control patients due
to aging. These findings, while exploratory, may yield new insights into the motivating
question of whether lesion formation in certain areas of the brain is associated with
demyelination in other areas of the brain and can lead to hypotheses for further studies.

We examine the effect of the FA of the left OPR tract, as estimated by β̂2(t, r).
The profile of the left OPR tract seems to be less predictive of the response for the
control group (relative R2 is 12.6%) and more predictive for the MS group (relative
R2 is 25.7%). Here, the associations between the FA of the OPR and the FA of the
CCA seem somewhat similar between the two groups, but more pronounced for the
MS patients, especially for the inferior OPR; see Fig. 5, bottom panels.

The estimates of the additional covariates, age andgender (reference group: female),
are 0.0002∗(0.00004) and 0.0008(0.0009), for theMSgroup, and−0.0003∗(0.00005)
and−0.0052∗(0.0018) for the control group, respectively, where the asterisks indicate
significance at level 0.01. Standard errors are displayed within brackets. Negative age
effects as seen in the controls are expected, as myelination and FA values tend to
decrease with age even in healthy subjects.

6 Discussion

We develop a novel method for function-on-function regression that: (1) is applicable
to one ormultiple functional predictors observed on the same or different domains than
the functional response; (2) accommodates sparsely and/or noisily observed functional
predictors as well as a sparsely observed functional response, (3) accommodates linear
or non-linear effects of additional scalar predictors; (4) produces likelihood-based
approximate confidence intervals based on a working independence assumption of the
errors, as a by-product of the associated mixed model framework; (5) is accompanied
by open-source and fully documented software. In Online Appendix A we briefly
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discuss and numerically investigate bootstrap-based confidence intervals to account
for non-i.i.d. error structure.

PFFR was applied and tested in a variety of scenarios and showed good results
in both simulations and a medical application. Equally important PFFR is an easy to
use automatic fitting procedure implemented in the pffr function of the R package
refund.

Recent work by Scheipl et al. (2014) develops a framework of regression models
for correlated functional responses, allowing for multiple partially nested or crossed
functional random effects with flexible correlation structures for, e.g., spatial, tempo-
ral, or longitudinal functional data. While the focus is on modeling of the covariance
structure for correlated functional responses, Scheipl et al. (2014) successfully use our
PFFR methods for modeling the dependence of the functional mean on functional and
scalar covariates within their framework. This shows that methods introduced in this
paper are potentially useful in a much wider range of settings than considered here and
can be seen as an important building block in the development of flexible regression
models for functional responses.

Electronic supplementary material

Additional material is available with our article and consists of the following online
appendices available as supplementarymaterial online.Material is organized asOnline
Appendix A, B, and C. Online Appendix A outlines our pffr bootstrap confidence
intervals. Online Appendix B consists of box plots corresponding to numerical mea-
sures on mean squared error, coverage of the approximate confidence intervals, and
width for β1 andβ2 parameters and simulation settings presented in Section 4.1. Online
Appendix C consists of an additional exploratory study of our data for the temporal
progression of demyelination inMS patients across two consecutive visits, both within
the same location and with spatial propagation.
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