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Abstract In this study, a recently proposed data-fitting factor analysis (DFFA) proce-
dure is generalized for categorical variable analysis. For generalized DFFA (GDFFA),
we develop an alternating least squares algorithm consisting of a multiple quantifica-
tion step and a model parameters estimation step. The differences between GDFFA
and similar statistical methods such as multiple correspondence analysis and FAC-
TALS are also discussed. The developed algorithm and its solution are illustrated with
a real data example.

Keywords Data-fitting factor analysis · Categorical variables ·
Multiple quantification · Multiple correspondence analysis · FACTALS

1 Introduction

Exploratory factor analysis (EFA) is a time-honored statistical method that aims to
explain the interrelationships among observed variables by latent variables called
common factors. EFA assumes that factor scores can be treated as latent random
variables (e.g., Anderson and Rubin 1956; Yanai and Ichikawa 2007). The model
parameters of EFA are traditionally estimated by minimizing the differences between
a model correlation structure and a sample covariance matrix using least squares or
maximum likelihood discrepancy measures (e.g., Harman 1976; Mulaik 2010).

Recently, an alternative method for estimating model parameters has been devel-
oped, in which all parameters are treated as fixed and unknown (de Leeuw 2004, 2008;
Unkel and Trendafilov 2010, 2011; Adachi 2012). In this study, we denote this esti-
mation procedure as data-fitting factor analysis (DFFA) because the model parameters
are directly fitted to the data matrix. If X is an n-observations × p-variables matrix of
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standardized observed data (with n > p), then the DFFA loss function is defined as
minimization of the difference between the observed data matrix and the EFA model
parameters:

‖X − FA′ − U�‖2. (1)

Here, F is an n-observations × c-factors matrix of common factors, A is a p × c
matrix of factor loadings, U is an n × p matrix of unique factors, and � is a p × p
diagonal matrix of uniqueness. We assume that the columns of F and U have a mean
of zero and are scaled to have unit norm, and all common factors and unique factors
are mutually uncorrelated. We also assume that the unique factors are orthogonal to
the common factors. The idea behind these assumptions is that the common factors
account for the correlation structure among the set of observed variables, while each
unique factor corresponds to that portion of a particular observed variable that cannot
be accounted for by the common factors. Thus, the model parameters are obtained by
minimizing (1) over F, A, U, and �, subject to the following constraints:

n−1F′F = Ic, n−1U′U = Ip, F′U = Oc×p, � diagonal, (2)

where Ip is a p × p identity matrix and Oc×p is a c × p null matrix.
The DFFA procedures are limited to cases where all observed variables are numeri-

cal. However, social or behavioral research must frequently analyze multivariate cate-
gorical variables. For example, in questionnaires, participants are asked to choose one
of the several response alternatives (categories) for each set of questions (variables).
Quantification is a widely used statistical technique for analyzing categorical variables,
in which the observed categorical variables are transformed into quantitative scores
such that the data analysis model most closely matches the observations (Gifi 1990;
Young 1981). Using the quantification technique, we propose a generalized DFFA
(GDFFA) for categorical variables, which is defined as a problem that minimizes the
difference between the quantified categorical data and the EFA model parameters.

Alternative methods such as multiple correspondence analysis (MCA) (Benzecri
1974, 1992; Greenacre 1984; Gifi 1990; Murakami et al. 1999) and FACTALS (Takane
et al. 1979) also adopt the quantification technique. MCA is a famous technique to
detect and represent underlying structures in categorical data, and FACTALS is a
common factor analysis procedure for nonmetric datasets. The statistical models in
MCA and FACTALS are quite similar to that in GDFFA. Later, in this study, we discuss
the similarities and differences between GDFFA and these related methods.

The remaining parts of this paper are organized as follows. In the next section, we
introduce the DFFA algorithms and propose a GDFFA procedure. In Sect. 3, GDFFA
is compared with MCA and FACTALS. In Sect. 4, GDFFA is applied to categorical
data. Concluding remarks are provided in Sect. 5.

2 Proposed method

We describe a DFFA algorithm in Sect. 2.1 and generalize the DFFA procedure in
Sect. 2.2. An alternating least squares estimation algorithm is proposed in Sect. 2.3.
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2.1 Estimation procedures for DFFA

There are two major algorithms in DFFA: de Leeuw’s algorithm (de Leeuw 2004,
2008), and Unkel and Trendafilov’s algorithm (Unkel and Trendafilov 2011). In both
the algorithms, the factor score estimation and the factor loading estimation steps are
iterated alternately, but different procedures are used in the former. In this paper, we
briefly introduce Unkel and Trendafilov’s algorithm, in which F and U are successively
updated by solving the following orthogonal Procrustes problems.

First, find F that minimizes

‖(X − U�)− FA′‖2, (3)

subject to n−1F′F = Ic for given A, U, and �. The optimal solution of F is explicitly
given by the singular value decomposition (SVD) of (X − U�)A.

Next, find U that minimizes

‖(I − PF )(X − U�)‖2, (4)

subject to n−1U′U = Ip and F′U = Oc×p for given F, A, and �. Here, PF is a
projection matrix for the column space of F. The optimal U is found by the SVD of
�X′(In − PF ).

After updating factor score matrices F and U, A, and� are obtained by solving the
regression problems for both algorithms:

A = n−1X′F, (5)

� = n−1diag(X′U). (6)

In EFA, common and unique factors cannot be uniquely identified. This form of
indeterminacy is known as factor indeterminacy (e.g., Mulaik 2010). In other estima-
tion methods, the factor score matrices F and U can be obtained after estimating A
and �. However, DFFA allows simultaneous estimation of all model parameters, and
non-uniqueness of the common and unique factor scores is not a problem from an
algorithmic perspective as seen above.

2.2 Generalized DFFA (GDFFA)

We rewrite the loss function (1) as a problem that minimizes the difference between
the column vector xi = [x1i , . . . , xni ]′ (n × 1) and the corresponding EFA model
parameters:

‖X − FA′ − U�‖2 =
p∑

i=1

‖xi − Fai − ψi ui‖2, (7)

where ai = [ai1, . . . , aic]′ (c × 1), ui = [u1i , . . . , uni ]′ (n × 1) and ψi is the i th
diagonal element of �.
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When the i th variable is categorical, xi is transformed into quantitative scores by a
quantification procedure. If Ki denotes the number of categories in the i th variable and
Gi denotes the n×Ki indicator matrix, then Gi Qi represents multiple quantification of
xi where Qi (Ki -categories× Ri -dimensions) is the quantification parameter matrix of
the i th variable. The number of dimensions Ri is required to be pre-specified and must
satisfy 1 ≤ Ri ≤ min(Ki − 1, c) for each variable. The lower bound in the inequality
is trivial; the upper bound will be discussed in Sect. 2.3. To avoid trivial solutions, the
quantified data are assumed to be centered and orthonormal in a column-wise manner:

1′
nGi Qi = 0′

Ki
, n−1Q′

i G
′
i Gi Qi = IRi , (8)

where 1n is an n-dimensional vector whose elements are all ones and 0Ki is a Ki -
dimensional vector whose elements are all zeros.

Combining the quantification technique with the loss function (7), we obtain the loss
function of GDFFA for categorical variables. GDFFA is defined as the minimization
of

p∑

i=1

‖Gi Qi − FAi − Ui� i‖2, (9)

over F, Ai , Ui ,� i , and Qi (i = 1, . . . , p), subject to constraints (2) and (8). Here, Ai

(c × Ri ) is a loading matrix, Ui (n × Ri ) is a unique factor matrix, and � i (Ri × Ri )
is a diagonal matrix of uniqueness, which are the corresponding model parameters of
the multidimensionally quantified i th variable. In a multiple quantification situation,
the corresponding EFA model parameters are not vector-formed. The quantified i th
variable Gi Qi is fitted to the corresponding model parameters in the i th variable
FAi + Ui�i . The matrix-formed parameters Ai , Ui , � i , and Qi reduce to the vectors
or the scalar ai , ui , ψ i , and qi when Ri is set to one. Here, qi is the quantification
parameter vector (Ki × 1). We refer to this situation as single quantification, which is
a special case of multiple quantification.

When quantifying categorical variables, the number of dimensions of each variable
must be determined. Single quantification is preferred, particularly when categories
in variables have a clear ordinal interpretation (van Burg et al. 1988). However, cases
are likely to exist for which categories in a nominal variable cannot be scaled unidi-
mensionally (Adachi and Murakami 2011; Nishisato 2006). In other words, nominal
variables are not necessary to have an ordinal interpretation. Therefore, single quan-
tification is insufficient for analyzing nominal variables, and we perform multiple
quantification for such variables.

2.3 Estimation of quantification and model parameters

In quantification processes, a loss function is optimized by alternating two major steps.
The parameters in GDFFA can be estimated by alternate iterations of the operations
that quantify the categorical variables and that obtain the EFA model parameters.
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2.3.1 Update of quantification parameters

We reparametrize Gi Qi as

Gi Qi = Gi (G
′
i Gi )

−1/2(G
′
i Gi )

1/2Qi

= Hi Bi ,

where Hi = n1/2Gi (G′
i Gi )

−1/2 and Bi = n−1/2(G′
i Gi )

1/2Qi . Substituting Hi and Bi

in (9), the problem reduces to minimizing

‖Hi Bi − FAi − Ui� i‖2, (10)

over Bi , subject to (8) for fixed model parameters. This minimization can be viewed as
an orthogonal Procrustes problem because Bi is column-orthonormal matrix where:
B

′
i Bi = n−1Q

′
i G

′
i Gi Qi = IRi . Let us define the SVD as Hi (FAi − Ui� i ) = K�L′

with K′K = L′L = LL′ = IRi , and let� be the q ×q diagonal matrix whose diagonal
elements are arranged in descending order. The optimal Bi is given by

Bi = KL′ (11)

(ten Berge 1993), and then we have

Qi = n1/2(G
′
i Gi )

−1/2KL′. (12)

The rank of Hi (FAi −Ui� i ) at most is equal to the smaller of Ki −1 or c. Consequently,
the dimension of quantification Ri is upper bounded by min(Ki − 1, c).

2.3.2 Update of model parameters

After updating the quantification parameters, the model parameters are updated using
the DFFA algorithms introduced in Sect. 2.1. That is, the model parameters can be
obtained if the observed numerical data are replaced by quantified data in the DFFA
algorithms.

2.3.3 Complete algorithm

The alternating procedure described in the previous section is continued until a pre-
specified convergence criterion ε, say 10−6, is met. The GDFFA algorithm is summa-
rized as follows:

Step 1. Initial values are chosen for Qi , F, Ui , Ai and � i . Take arbitrary matrix
Qi which satisfies (8). Values for F and Ui can be chosen randomly, and
they should satisfy the constraints in (2). Then, Ai and � i are given as A =
n−1Q′

i G
′
i F, � = n−1diag(Q′

i G
′
i Ui ), respectively.

Step 2. Update the quantification parameters by solving the orthogonal Procrustes
problems.
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Step 3. Update the EFA model parameters using the DFFA algorithm.
Step 4. Finish if the decrease in (9) from the previous step is less than ε; otherwise,

return to Step 2.

The proposed algorithm monotonically decreases the loss function. Since the loss
function is bounded below, it converges to a solution that is at least a local optimum
(Young 1981). To increase the chance of finding the global maximum, the algorithm
should be run several times, with different initial values. In Step 4, either de Leeuw’s
algorithm (de Leeuw 2004, 2008) or Unkel and Trendafilov’s algorithm (Unkel and
Trendafilov 2011) can be used.

3 Comparison between GDFFA and related methods

GDFFA is compared with MCA and FACTALS in Sects. 3.1 and 3.2, respectively.
The relationships among all three methods are summarized in Sect. 3.3.

3.1 Multiple correspondence analysis

Multiple correspondence analysis (MCA) is a useful technique to find underlying struc-
tures inherent in categorical data. There are various approaches to formulate an MCA,
but they have proved to give essentially equivalent solutions originating in different
theoretical foundations (Tenenhaus and Young 1985). Among these formulations, we
introduce Murakami, Kiers and ten Berge’s formulation (Murakami et al. 1999), in
which MCA is defined as minimization of the difference between the quantified data
and the corresponding MCA model parameters. That is, the loss function

p∑

i=1

‖Gi Qi − FAi‖2, (13)

is minimized over F, Ai , and Qi (i = 1, . . . , p), subject to the constraint n−1F
′
F = Ic.

In ordinary MCA, the number of quantification dimensions is fixed to the smaller
of the number of factors or categories minus one and can be solved explicitly. For this
MCA formulation, the number of dimensions can be set in 1 ≤ Ri ≤ min(Ki − 1, c).
This type of MCA is referred to as rank-restricted MCA (Murakami et al. 1999), which
includes ordinary MCA as a special case. When all categorical variables are unidimen-
sionally quantified, rank-restricted MCA reduces to nonmetric principal component
analysis (NPCA) (Adachi and Murakami 2011; Murakami et al. 1999). The loss func-
tion is defined as follows:

p∑

i=1

‖Gi qi − Fai‖2. (14)

NPCA also aims to find underlying structures inherent in categorical variables, but
categorical variables are assumed to have a unidimensional structure in NPCA.

It has been previously shown that MCA and NPCA are each a generalization of
principal component analysis to nonmetric data (Adachi and Murakami 2011), and
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that the unique term distinguishes the EFA model from the PCA model (de Leeuw
2004; Trendafilov et al. 2013). Another difference, however, occurs between GDFFA
and MCA. Let N be a nonsingular matrix (c × c) and Ti (Ri × Ri ) be an orthonormal
matrix (i = 1, . . . , p). Then, the parameters can be transformed without changing the
fitness of the MCA loss function:

p∑

i=1

‖Gi Qi − FA′
i‖2 =

p∑

i=1

‖Gi Qi Ti − FN′−1N′A′
i Ti‖2. (15)

This non-uniqueness is called rotational indeterminacy or rotational freedom. In MCA,
two rotational indeterminacies exist in the quantification parameter and loading matri-
ces. Generally, to simplify the interpretations, the loading matrix is rotated in such a
way that when considering one variable, few squared loadings are large and as many as
possible are close to zero. Murakami (1999) proposed a modified orthomax criterion
in which the loading matrix is rotated towards the simple structure by pre- and post-
multiplied rotation matrices N and Ti (i = 1, . . . , p), respectively. Oblique rotation
is probably more appropriate in most practical situations, because fewer constraints
are imposed in oblique rotation and it is generally possible to obtain a solution more
easily than in orthogonal rotation (Browne 2001). However, the orthogonal rotations
alone are permitted by Murakami’s criterion, and thus the rotated solutions may be
difficult to interpret.

In contrast, the unique term in GDFFA eliminates rotational indeterminacy of the
quantification matrix, as seen in the following loss function:

p∑

i=1

‖Gi Qi − Si�i‖2 =
p∑

i=1

‖Gi Qi − [FN
′−1 Ui ][A′

i N � i ]′‖2. (16)

Consequently, the difficulties inherent in pre- and post-multiplied rotation of the MCA
solution are precluded in GDFFA. Although the two techniques are very similar, the
unique term in GDFFA creates a very different structure from that in MCA.

3.2 FACTALS

FACTALS is a nonmetric factor analysis procedure for analyzing categorical vari-
ables (Takane et al. 1979). FACTALS and GDFFA are both nonmetric factor analysis
procedures, but the assumptions made for quantification are different. The difference
between FACTALS and GDFFA, is most clearly seen by expressing both models as
follows:

GDFFA: Gi Qi ∼= FAi + Ui�i , (17)

FACTALS: Gi qi ∼= Fai + ψi ui , (18)

where ∼= denotes a least squares approximation. Thus, FACTALS loss function is
defined as follows:

p∑

i=1

‖Gi qi − Fai − ψi ui‖2. (19)

123



286 N. Makino

Table 1 Relationships among
GDFFA, MCA, FACTALS,
NPCA, PCA, and DFFA

Model

PCA model EFA model

Quantification

Numerical PCA DFFA

Single NPCA FACTALS

Multiple MCA GDFFA

Essentially, while only single quantification is applied to all categorical variables in
FACTALS, multiple quantification can be applied in GDFFA. Then, GDFFA and FAC-
TALS are equivalent when all categorical variables are unidimensionally quantified.
Hence, GDFFA can be viewed as a generalization of FACTALS to multiple quantifi-
cation.

3.3 Relationships among GDFFA, MCA, and FACTALS

As described above, GDFFA, MCA, NPCA and FACTALS are chiefly distinguished
by their model parameters and the quantification dimensions. In single quantification,
quantification parameters are assumed to be 1′

nGi qi = 0′
Ki

, n−1q′
i G

′
i Gi qi = 1.

In the case of numerical variables, standardized numerical variables also satisfy the
constraints above. In other words, standardization of numerical variables is a restricted
version of single quantification, in which quantification parameters are already known.
Thus, FACTALS and NPCA are equivalent to DFFA and PCA respectively when all
variables are numerical. GDFFA and MCA are also generalizations of DFFA and PCA
as well as FACTALS and NPCA. The hierarchical relationships among GDFFA, MCA,
FACTALS, NPCA, PCA, and DFFA are summarized in Table 1.

The purpose of PCA, NPCA and MCA is to reduce large sets of variables into
smaller sets of components that summarize the information contained in the data.
However, DFFA, FACTALS and GDFFA are aimed at depicting the relationships
between variables and latent factors, and the rank of model parts is greater than that of
the observed data. The factor scores and principal components are close to each other
in some conditions (Schneeweiss and Mathes 1995), but PCA and EFA models have
fundamentally different bases and standpoints.

4 Real data example

The proposed algorithm is illustrated using Japanese baseball data (Adachi 2012). We
also compared GDFFA with MCA. This dataset describes the scores of 62 batters
in Japanese professional baseball in 2010 under the following six variables: batting
average, runs, doubles, home runs, runs batted in, and strikeouts. All variables in this
dataset are numerical, and we categorized as higher or lower. Next, we added the
batting order to Adachi’s categorized data: group 1 comprising first and second (Nos.
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Table 2 Factor loadings,
unique variances (UV) and
factor correlation obtained by
FACTALS with R7 = 1

Factor 1 Factor 2 UV

Batting average 0.68 0.11 0.54

Runs 0.99 −0.02 0.01

Doubles 0.67 −0.11 0.52

Home runs 0.02 0.85 0.29

Runs batted in −0.15 0.91 0.11

Strikeouts 0.13 0.59 0.65

Batting order 0.36 0.45 0.71

Factor correlation

Factor 1 1 0.11

Factor 2 1

1 and 2), group 2 (Nos. 3–5), and group 3 (Nos. 6–9). The analyzed data are presented
in “Appendix”.

In Adachi (2012), these data are best-fitted by an EFA model with two common
factors (c = 2), which can be interpreted as expressing whether batters hit for average
(table setters) or power (sluggers), respectively. In general, the batting order is mainly
determined by two factors. Members of the group 1 are expected to hit consistently
but not necessarily with great strength because their goal is to ensure the team has
base runners for more powerful hitters who come to bat later. In contrast, members
of group 2 are expected to consistently hit with power because their goal is to “drive
in” base-runners. Although members of group 3 are postulated to be better at defense
than hitting, some members of this group will hopefully fit more home runs than those
of the group 1. In other words, the batting order categories are assumed to be closely
related to the two extracted factors and not expected to be scaled unidimensionally.
In GDFFA, the number of dimensions must be pre-specified. In this dataset, since
min(K7 − 1, c) = 2, possible dimensions in batting order are one or two.

In Tables 2 and 3, we briefly report the matrices A and �2 obtained from the one-
and two-dimensional quantification analyses, as well as the factor correlation matrices.
The MCA solution is reported in Table 4. The estimated quantification parameters are
presented in Tables 5, 6 and 7. The resulting loading matrices are rotated by the geomin
method (Browne 2001, p. 119) to yield a simple structure. That is, because we expect
fewer and smaller cross-loadings in this data example and geomin might be used in such
a situation (Schimitt and Sass 2011). Although two rotational indeterminacies exist in
the MCA solution as discussed in Sect. 3.1, we only rotate the loading matrix in MCA
for the comparison between GDFFA and MCA. Absolute values with coefficients
exceeding 0.40 are listed in bold font.

Factor 1 is positively correlated with batting average, runs, and doubles, which are
associated with reliable batters, i.e. players whose main concern is to reach bases and
hit constantly. Factor 2 is positively correlated with home runs, runs batted in, and
strikeouts. This second factor characterizes sluggers who frequently hit home runs and
drive in a lot of runs, but whose long swings lead to many strikeouts. Thus, the same
factors previously identified in Adachi (2012) are extracted in this analysis.
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Table 3 Factor loadings,
unique variances (UV), and
factor correlation obtained by
GDFFA with R7 = 2

Factor 1 Factor 2 UV

Batting average 0.69 0.12 0.53

Runs 0.97 0.01 0.05

Doubles 0.69 −0.11 0.48

Home runs 0.02 0.82 0.33

Runs batted in −0.17 0.93 0.08

Strikeouts 0.12 0.61 0.63

Batting order (DIM1) −0.15 −0.59 0.66

Batting order (DIM2) −0.42 0.06 0.81

Factor correlation

Factor 1 1 −0.11

Factor 2 1

Table 4 Component loadings
obtained by MCA with R7 = 2

Component 1 Component 2

Batting average 0.78 0.15

Runs 0.91 −0.01

Doubles 0.81 −0.11

Home runs −0.02 0.85

Runs batted in −0.24 0.87

Strikeouts 0.11 0.75

Batting order (DIM1) −0.08 −0.73

Batting order (DIM2) −0.59 −0.01

Component correlation

Component 1 1 0.06

Component 2 1

Table 5 Estimated
quantification parameters in
FACTALS (R7 = 1)

DIM 1

Group 1 1.50

Group 2 −0.43

Group 3 −1.17

Table 6 Estimated
quantification parameters in
GDFFA (R7 = 2)

DIM1 DIM2

Group 1 1.49 −0.48

Group 2 −0.82 −0.46

Group 3 0.02 2.15
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Table 7 Estimated
quantification parameters in
MCA (R7 = 2)

DIM1 DIM2

Group 1 1.44 −0.62

Group 2 −0.86 −0.38

Group 3 0.23 2.14

The GDFFA solutions differ widely between single and multiple quantification.
In the two-dimensional solution (R7 = 2), the obtained batting order dimensions
are strongly associated with both Factors 1 and 2. However, in the one-dimensional
solution (R7 = 1), which reduces to FACTALS, a large loading is assigned only to
Factor 2. According to Table 6, the estimated quantification parameter in the two-
dimensional solution complies with the assumptions, but the quantification parameter
in the one-dimensional solution is irrational to estimated factors. Considering the roles
of each group, the two-dimensional solution seems reasonable because batting order
is presumably related to both factors.

In MCA, component 1 produces large loadings to batting average, runs, and doubles,
and component 2 shows large loadings to home runs, runs batted in, and strikeouts. This
can be interpreted as expressing table setters and sluggers, respectively. Comparing
the solutions in GDFFA with R7 = 2 and MCA, we get similar results. Although both
solutions are quite similar, they cannot be directly compared because the purposes of
GDFFA and MCA are fundamentally different, as discussed in Sect. 3.3. Trendafilov
et al. (2013) pointed out that differences between PCA and EFA solutions have often
been obscured because both techniques produce very similar solutions in a number
of practical cases. It is possible that the same thing mentioned in Trendafilov et al.
(2013) occurred in this real data example.

5 Conclusion

The GDFFA procedure has been proposed for multivariate categorical data analysis
in this study. The proposed procedure is a nonmetric factor analysis model that allows
multiple quantification of categorical variables. GDFFA is shown to be a generaliza-
tion of the FACTALS procedure, which is designed solely for single quantification.
It should be noted that DFFA, which is applicable to completely numerical vari-
ables, is a special case of nonmetric factor analysis. That is, GDFFA and FACTALS
reduce to DFFA when all observed variables are numerical. Consequently, hierar-
chical relationships can be established among the GDFFA, FACTALS, and DFFA
methods.

Although MCA and GDFFA are algebraically similar, substantial differences exist
between them. In the numerical case (PCA and DFFA), it has already been men-
tioned that the unique term U� distinguishes the EFA model from the PCA model
(de Leeuw 2004; Trendafilov et al. 2013). In the nonmetric case (MCA and GDFFA),
we have proved that the unique term in GDFFA eliminates the rotational indeter-
minacy of the quantification parameter, although it remains in MCA. That is, the
unique term not only engenders differences between the PCA and the EFA models
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but also determines whether the rotational indeterminacy exists in the quantification
parameters.

As illustrated in the real data example, single quantification may be inadequate for
some categories of a nominal variable. Nishisato (2006) noted that single quantification
is sometimes insufficient, and recommended the use of multiple quantification for cat-
egorical data analysis . For instance, Adachi and Murakami (2011) presented examples
that nominal variables cannot be unidimensionally quantified, and Murakami (2001)
applied multiple quantification to categorical variables and investigated the justifia-
bility of the Likert scale by means of (rank-restricted) MCA and NPCA. The findings
of these earlier studies indicate that GDFFA can be a better alternative to MCA and
NPCA.

Although we advocate multiple quantification, two problems are still present. First,
it is difficult to determine the optimal number of dimensions in quantification. This dif-
ficulty is also encountered in rank-restricted MCA and other statistical methods with
multiple quantification. In practice, an appropriate number of dimensions should be
determined through fitting and parsimony. Considering applications, the dimension of
quantification for nominal variables is set to be the same as that of conventional MCA
or lower to facilitate interpretation. Second, when the number of variables is more,
many iterations and significant computation time may be required for convergence
of the ALS algorithm. In this paper, we applied GDFFA to the smaller dataset. For
the application to GDFFA to very large datasets, acceleration techniques like NPCA
(e.g., Kuroda et al. 2012) or algorithms for large datasets like rank-restricted MCA
(Murakami et al. 1999; Murakami 1999) needed to be considered. Dimensions set-
ting in multiple quantification and the application to large datasets, however, remain
subjects of further discussion.

Acknowledgments The author would like to thank Prof. Kohei Adachi for his very helpful comments on
previous versions of this paper.

Appendix

Japanese baseball data in 2010

The first six variables are the same as those reported in Adachi (2012), while the addi-
tional nominal variable was obtained from http://www.baseball-data.com/10/lineup/.
The first six variables are as follows: [1] batting average (BA), defined as the propor-
tion of hits to at-bats multiplied by one thousand; [2] runs (R), referring to the number
of times a batter scored; [3] doubles (D), indicating the number of two-base hits; [4]
home runs (HR), i.e., the number of homers hit; [5] runs batted in (RBI), referring to
the number of times the batter was responsible for runs scored; and [6] strikeouts (SO)
denoting the number of times the batter struck out. The six variables are dichotomized
into lower (1) and higher (2). For batting order (BO), batters are categorized into the
following three groups: those hitting in the first two slots (1), those hitting in the middle
three slots (2), and those hitting in the bottom four slots (3) (Table 8).
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Table 8 Six scores achieved by 62 batters and their batting order in Japanese professional baseball, 2010

Batter BA R D HR RBI S BO Batter BA R D HR RBI S BO

1 2 2 2 1 1 1 1 32 2 2 2 1 1 2 1

2 2 2 1 1 1 1 1 33 2 2 1 1 1 1 1

3 2 2 2 2 2 1 1 34 2 2 2 1 2 1 2

4 2 2 2 2 2 1 2 35 2 1 1 2 2 2 2

5 2 2 2 2 2 1 2 36 2 2 2 2 2 2 2

6 2 2 2 1 1 1 2 37 2 2 2 1 1 1 2

7 2 2 2 2 2 2 2 38 2 2 2 1 1 1 1

8 2 1 2 1 1 1 2 39 2 1 1 1 1 2 3

9 2 2 1 2 2 2 2 40 2 2 2 2 2 2 2

10 2 2 2 1 1 1 1 41 2 2 2 1 2 2 2

11 2 2 2 2 2 2 2 42 2 2 2 1 2 1 1

12 2 2 2 2 2 1 3 43 2 2 2 1 1 2 2

13 2 2 2 2 2 2 2 44 2 2 2 1 1 1 1

14 2 1 1 1 1 1 1 45 2 2 1 1 1 1 1

15 2 2 1 2 2 2 2 46 1 2 2 1 1 1 1

16 1 1 1 1 1 1 2 47 1 2 2 1 2 2 2

17 1 1 1 1 1 2 1 48 1 2 2 2 2 2 2

18 1 1 2 1 1 1 1 49 1 1 1 1 1 2 1

19 1 1 1 1 1 1 3 50 1 1 2 1 2 1 2

20 1 1 1 2 1 1 3 51 1 1 2 2 2 2 2

21 1 1 1 1 1 1 3 52 1 1 1 1 1 1 2

22 1 2 2 2 2 2 2 53 1 1 1 1 1 1 1

23 1 2 2 2 2 1 1 54 1 1 1 2 2 2 2

24 1 1 1 1 1 1 3 55 1 1 1 2 2 2 2

25 1 1 1 1 1 1 3 56 1 1 1 1 1 1 2

26 1 1 1 2 1 1 3 57 1 1 1 2 2 2 3

27 1 1 1 1 1 1 2 58 1 1 1 1 1 2 2

28 1 1 1 1 1 1 1 59 1 1 1 1 1 2 3

29 1 1 1 2 2 2 2 60 1 1 1 2 2 2 3

30 1 2 2 2 2 2 2 61 1 1 1 2 2 2 2

31 1 1 2 2 2 2 2 62 1 1 1 2 2 2 2
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