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Abstract Given a functional regression model with scalar response, the aim is to
present a methodology in order to approximate in a semi-parametric way the unknown
regression operator through a single index approach, but taking possible structural
changes into account.Our paper presents thismethodology and illustrates its behaviour
both on simulated and real curves datasets. It appears, from an example of interest
in spectrometry, that the method provides a nice exploratory tool both for analyzing
structural changes in the spectrum and for visualizing the most informative directions,
still keeping good predictive power. Even if themain objective of thiswork is to discuss
applied issues of the method, asymptotic behaviour is shortly described.

Keywords Functional predictor · Single Index Model · Additive models ·
Structural points · Spectrometric data

1 Introduction

The well-known functional regression model with scalar response (see Horváth and
Kokoszka 2012; Ferraty and Vieu 2006 or Ramsay and Silverman 2005, for general
discussions) postulates a relation between a real random variable Y and a random
function X , which belongs to a functional space F of real functions defined on a
compact interval I , via a real valued operator ras follows:
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Fig. 1 Spectrometric curves from Tecator dataset (left panel) and their second derivatives (right panel)

Y = r [X ] + E

where E is a centered real random error uncorrelated with the regressor.
It is opportune to note that some parts of the curves, or even some of their particular

points, may be more interesting than others in order to explain the relation between X
and the response Y . Various approaches have recently been developed on this topic,
including the partial no effect tests proposed in Cardot et al. (2004) in the context of
linear models, the structural nonparametric tests introduced in Delsol et al. (2011) and
Delsol (2013), or the methods based on variables selection as for instance in Ferraty
et al. (2010) and Aneiros et al. (2011) for a nonparametric model or in McKeague and
Sen (2010) in the functional linear framework.

Indeed one can suppose, in some situations, that specific parts of the whole curve
X act in a different way for explaining the response Y . Hence, partitioning I in s
contiguous sub-intervals I j , and denoting X j the restriction of X to I j , one can write
the following additive decomposition of the regression operator:

r [X ] =
s∑

j=1

r j
[
X j

]
. (1)

Consider for instance the problem of estimating the chemical composition of a given
aliment by using spectrometric curves, namely the absorbances of light irradiated on
the aliment varying the wavelength of emission. In the chemometric literature it is
known that some features of the spectra (see Leardi 2003) or some specific parts of
the spectrometric curves (see Delsol 2013) are more interesting than others to predict
the proportion of a specific substance.

Figure 1 shows the near-infrared absorbance spectra corresponding to 215 pork
samples, recorded on a Tecator Infratec Food and Feed Analyzer, and the second
derivatives of such spectral curves. Such dataset has become a benchmark in func-
tional regression studies: the aim is to predict the percentage of fat contained in each
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A partitioned Single Functional Index Model 675

sample of meat from its near-infrared spectrum. Some empirical evidences on such
case study emerge from literature: as pointed out in Ferraty et al. (2013), the regression
function exhibits a nonlinear nature; moreover the role of some specific points of the
spectrometric curve in explaining the fat content has been emphasized in Ferraty et al.
(2010). Combining previous observations, it is reasonable to expect that the decompo-
sition (1) can lead to a regression model with better prediction ability, and which can
be able to provide a key to better understand the relationship between predictor and
response. These data will be presented with more details and analyzed further along
this paper (see Sect. 4).

The decomposition (1) includes a broad class of modelizations: as, for instance,
Linear models with functional coefficients having s points of jump discontinuity (see
for instanceHorváth andReeder 2012), or Generalized Linearmodels (see for instance
James 2002) that act on specific parts of the random curve. In these examples, the shape
of r j s is entirely specified (since they are modeled in a parametric way): although that
allows to give some interpretations of the estimated coefficients involved, it appears
quite restrictive and the specification of the link is difficult to implement in the func-
tional regression context.

On the other hand, awide class of flexible and useful tools tomodelize the regression
operator r is represented by the Functional Single Index models (FSIM in the sequel).
Themain idea is to search the direction θ0 ∈ F alongwhich the projection of the covari-
ate X captures the most information on the response Y . This presents various interests:
Firstly, it is avoiding problems due to the dimensionality which one can be meet in
the full nonparametric approach (see Ferraty and Vieu 2002); Secondly, it is much
more flexible than standard parametric/linear modelization (see James 2002); Finally,
estimating the relevant functional direction θ0 provides an easily interpretable tool.

The Single Index approach is well-known in the standard multivariate context: the
interest both for its prediction abilities and for interpretability is attested by various
works appeared in the last two decades: see Härdle et al. (1993), Härdle and Stoker
(1989), or Xia and Härdle (2006) for a selected sample of references, and see Härdle
et al. (2004) for a general presentation of semi-parametric approaches. The extensions
to the functional framework of these ideas, such a functional semi-parametric method-
ology, have been intensively studied in the literature: conditions for identifiability for
FSIM have been introduced in Ferraty et al. (2003) and several estimation techniques
are proposed in Ait-Saïdi et al. (2008), Amato et al. (2006) and Ferraty et al. (2011).
Moreover, this approach can be seen as the first step of the Functional Projection
Pursuit regression developed in Ferraty et al. (2013).

The aim of this paper is to exploit the flexibility of FSIM in the additive decom-
position (1) in order to treat situations when structural changes occur. More precisely
we write:

r j
[
X j

]
= g j

(∫

I j
θ j (t) X (t) dt

)
(2)

where g j is an unknown real link function and θ j are unknown directions such that∫
I j

θ2j (t) dt = 1.
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676 A. Goia, P. Vieu

To the sake of simplicity, we will study specifically the introductory case s = 2.
More in detail, we introduce an estimation procedure based on a backfitting algorithm
where each term (2) is fitted by a procedure combining a spline approximation of
the direction and the one-dimensional Nadaraya-Watson kernel regression estimate.
Some considerations on the way to obtain asymptotic results are sketched: the crucial
aspect emerging is the insensitiveness of the method to dimensionality effects. The
selection of the breaking-point for cutting I into two parts is discussed and a fully data-
drivenmethod for that is presented. The study is completed with an extended empirical
analysis based both on real and simulated data: as well as emphasizing on the good
predictive performance of our method, the study highlights the interpretability of the
functional directional outputs.

The paper is organized as follows. In Sect. 2 we deepen some technical aspects
about the partitioned model and the estimation technique is described. Section 3 is
devoted to some computational issues: in Sect. 3.1 the finite sample performances of
the approach are illustrated through simulations, whereas the behaviour of the data-
driven procedure for choosing the breaking-point is shown in Sect. 3.2. Finally, an
application to the spectrometric dataset is presented in Sect. 4. A short discussion on
asymptotics is provided in the final “Appendix”.

2 Model and methodology

2.1 The partitioned FSIM

Our aim is to study the model (2), but in order to make things clearer we only detail
the simplest case when s = 2; extensions to higher values of s are straightforward.

Let us fix some notations. Consider a functional r.v. X = {X (t), t ∈ I } and the real
r.v. Y defined over the same space. Without loss of generality, we take I = [0, 1] and
E [X (t)] = 0 for all t . Define the regression model:

Y = r [X ] + E (3)

where r is a real value operator and E is a real random error with finite variance and
such that E [E |X ] = 0 a.s.. As usually in the literature, we assume that X take values
in the separable Hilbert space L2 (I ) of square integrable real functions.

Introduce a breaking-point λ ∈ (0, 1) and split I into two subintervals in the
following way:

I1 = [0, λ] I2 = (λ, 1] .

We define the two-terms Partitioned Functional Single Index Model (PFSIM in the
sequel) as

Y = α + g1

(∫

I1
θ1 (t) X (t) dt

)
+ g2

(∫

I2
θ2 (t) X (t) dt

)
+ E (4)
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A partitioned Single Functional Index Model 677

where α is a real coefficient, g1 and g2 are some real smooth functions. For standard
identifiability reasons one has to assume that the directions θ j satisfy

∫

I1
θ21 (t) dt =

∫

I2
θ22 (t) dt = 1

as well as
∫

I1
θ1 (t) e1 (t) dt =

∫

I2
θ2 (t) f1 (t) dt = 1

where e1 and f1 are the first elements of some orthonormal bases of L2 (I1) and L2 (I2)
respectively.

At this stage it is worth being noted the high degree of flexibility of the model.
From one side it can be seen as a natural extension of the standard FSIM model as
discussed for instance in Ait-Saïdi et al. (2008):

Y = α + g

(∫

I
θ (t) X (t) dt

)
+ E,

as well, of course, as an extension of the basic linear model as discussed for instance
in Cardot et al. (2003):

Y = α +
∫

I
θ (t) X (t) dt + E .

More surprisingly, it can also be seen as a kind of extension of the fully nonpara-
metric model (3) in the sense that it allows the use of an unsmooth operator r , while
the nonparametric literature (see Ferraty and Vieu 2006) is based on continuity-type
assumptions. Under this perspective, PFSIM provides a useful approximator for the
regression operator:

r [X ] ≈ α + g1

(∫

I1
θ1 (t) X (t) dt

)
+ g2

(∫

I2
θ2 (t) X (t) dt

)
(5)

with constraints
∫
I1

θ21 (t) dt = ∫
I2

θ22 (t) dt = 1. It should be noted that in such con-
text, this decomposition is not unique: indeed, one can found two different couples of

terms
{(
g j , θ j

)
j=1,2

}
and

{(
g̃ j , θ̃ j

)
j=1,2

}
such that

∑
j=1,2 g j

(∫
I j

θ j (t) X (t) dt
)

= ∑
j=1,2 g̃ j

(∫
I j

θ̃ j (t) X (t) dt
)
. If that lack of unicity may cause problem for inter-

pretating the outputs, it should be stressed that it has no effects on the twomain features
of the model, namely its interest for detecting existence of a possible breakpoint and
its high degree of flexibility that will guarantee nice prediction performances.

2.2 Fitting the partitioned FSIM

Consider now the problem of estimating the link functions g j and the directions θ j in
themodel (4), from a sample {(Xi ,Yi ), i = 1, . . . , n} of r.v.s identically distributed as
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(X,Y ). In a first attempt we consider that the breaking point λ is known; the important
question of estimating λ in practice will be addressed in Sect. 2.3. From the additive
nature of the model, we propose a backfitting algorithm (see e.g. Hastie et al. 2009)
in which each term is estimated by an alternating optimization strategy similar to the
one used in Ferraty et al. (2013) and whose principle is illustrated in the following.

For j = 1, 2, consider the
(
q j + k j

)
-dimensional space of spline functions defined

on I j with order q j and with k j − 1 interior equispaced knots (with q j > 2 and

k j > 1, integers) and let
{
B j
s

}
be normalized B-splines basis of such space. In such

basis θ j (t) is represented as δTj B j (t), where B j (t) is the vector of all the B-splines.
To remove trivial ambiguity, each vector δ j of coefficients is such that its first element
is positive, and satisfies the normalization condition:

δTj

∫

I j
B j (t)B j (t)

T dt δ j = 1. (6)

The estimation procedure is based on the algorithm described below, which has been
implemented in R code and exploits the Nelder-Mead optimization algorithm (see
Nelder and Mead 1965). In the following we denote by {(xi , yi ), i = 1, . . . , n} the
observed values of the random pairs (Xi ,Yi ).

• Initialize - Set α̂ = n−1 ∑n
i=1 yi , initialize the current residuals ε̂i = yi − α̂, and

fix j ( j = 1 or j = 2).
• Cycle - Find δ̂ j which minimizes over d ∈ R

q j+k j the empirical quadratic cross-
validation criterion:

CVj (d) = 1

n

n∑

i=1

[(
ε̂i − ĝ[−i]

j

(
d′b j,i

))2]
(7)

where b j,l = 〈
B j , xl

〉
and

ĝ[−i]
j (z) =

∑

l �=i

K j

(
z−d′b j,l

h j

)

∑
l �=i K j

(
z−d′b j,l

h j

) · ε̂i

with K j a kernel function and h j a suitable smoothing parameter. As it is made con-

ventionally in the additivemodels literature,we assume thatn−1 ∑n
l=1 ĝ

[−i]
j

(
δ̂′
jb j,l

)

= 0.
Then, update the residuals

ε̂i = yi − α̂ − ĝ[−i]
j

(
δ̂′
jb j,l

)

and swap the value of the index j .

The process is continued until stabilization of the quadratic error measure
n−1 ∑n

i=1 (yi − ŷi )2, where ŷi are the estimated values.
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A partitioned Single Functional Index Model 679

The estimator is tuned by three couples of parameters: the order of splines q1 and
q2, the number of knots k1 and k2, and the bandwidths h1 and h2. If the order of
splines may be fixed to 3, the number of knots k j has to be chosen conveniently in
order to capture to complexity of the shape of the direction θ j to estimate: classical
Akaike Information Criterion, AIC, and the Schwartz Information Criterion, BIC (for
a general presentation, see Burnham and Anderson 2002) can be useful in this view.
Often, however the choice may be done heuristically. Finally, since the estimator of
g j is an usual nonparametric regression kernel estimator, the choice of the smoothing
parameters h j can be performed by data-driven selectors of the bandwidth such as
cross-validation. Due to the nature of Nelder-Mead method, the proposed algorithm
is inclined to get stuck in a local minimum: to alleviate this problem, one can use
multiple random initialization of the parameters.

2.3 Data-driven breaking-point selection

While the previous procedure is defined for fixed value of the parameter λ, the question
of how choosing it in practice is a natural one. The main idea for that is to use the
value leading to the minimal prediction error. This work as follows:

• Step 1 Choose a grid � of possible values for λ;
• Step 2 Compute for each λ ∈ � the estimates of the direction θ j and the link
functions g j by running the algorithm defined in Sect. 2.2;

• Step 3 Choose the value λ̂ which minimizes the cross-validation criterion

CV (λ) = 1

n

n∑

i=1

[(
yi − r̂ [−i]

λ (xi )
)2]

, (8)

where r̂ [−i]
λ is the leave-one-out version of the estimate computed along the step 2

for the value λ.

The selection method above is easy to implement but it could fail in detecting the
“true” breaking-point due to non unicity problems of the approximation (5) stressed at
the end of Sect. 2.1. Moreover, in case of misspecification of λ, the extreme flexibility
of the approach leads however to obtain a good fitting which counterpoises the erro-
neous evaluation: the theoretical remarks in “Appendix” will make us clear how this
procedure is accurate if one is only looking for predictive performance. Its behaviour
on finite sample will be analyzed in Sect. 3.2.

3 Computational issues

3.1 Assessing the performances by simulations

We illustrate the finite sample performances of our procedure, comparing it to sev-
eral linear and non-linear functional approaches in a series of simulation studies. To
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Fig. 2 A random selection of
30 functional predictors used in
the simulation experiments
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avoid introducing noises connected with a misspecification of the breaking-point, we
suppose λ known.

Data were generated according to the following regression models:

Yi = r [Xi ] + σEi i = 1, . . . , n (9)

where n = 300,Ei ∼ N (0, 1) andσ 2 = ρ2Var (r [X ]),ρ controls the signal-to-noise
ratio (we used ρ = 0.1, 0.3). The functional covariates obey to

Xi (t) = ai + bi t
2 + ci exp (t) + sin (di2π t) t ∈ [−1, 1] (10)

where ai , bi , ci and di are real r.v.s independent and uniformly distributed over (−1, 1),
so that E [Xi (t)] = 0, t ∈ [−1, 1]. Each functional predictor is discretized over a grid
of 200 equispaced design points

{
t j , j = 1, . . . 200

}
to obtain the 300 × 200 matrix[

xi
(
t j

)]
. A random selection of these functional data is plotted in the Figure 2.

Regression operators r [Xi ] have been obtained as the sum of two terms acting on
I1 = [−1, 0] and I2 = (0, 1]. As illustrated in the following, they may be linear,
generalized linear or full nonparametric terms, so as to cover a wide range of possible
regression links and to show how PFSIM behaves in the different cases.

More in detail, we introduced the real functional coefficients:

ϕ1 (t) = κ1 cos(2π t
2) ϕ2 (t) = κ2 sin

(
3

2
π t

)3

where κ j are such that
(∫

I j

[
ϕ j (t)

]2
dt

)1/2 = 1, and the random functions, obtained

by transformations of the original random data Xi :

mXi
1 (t) = sin (Xi (t)) mXi

2 (t) = √|Xi (t)|.
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A partitioned Single Functional Index Model 681

Then we considered the following cases:

1. The regression operator is linear with a discontinuous functional coefficient:

r1 [Xi ] =
∫ 1

−1

[
ϕ1 (t) 1t∈I1 + ϕ2 (t) 1t∈I2

]
Xi (t) dt,

where 1t∈A is the indicator function of subset A.
2. The regression operator is linear over I1 and non linear over I2. About the second

addend, we analyzed both the case of generalized linear structure with cubic link
function:

r2.a [Xi ] =
∫ 0

−1
ϕ1 (t) Xi (t) dt + 4

(∫ 1

0
ϕ2 (t) Xi (t) dt

)3

,

and the one of a full nonparametric term:

r2.b [Xi ] =
∫ 0

−1
ϕ1 (t) Xi (t) dt +

∫ 1

0
mXi

2 (t) dt.

3. Both terms composing r [Xi ] are nonlinear:

r3.a [Xi ] = sin

(
π

∫ 0

−1
ϕ1 (t) Xi (t) dt

)
+ 4

(∫ 1

0
ϕ2 (t) Xi (t) dt

)3

,

or full nonparametric:

r3.b [Xi ] =
∫ 0

−1
mXi

1 (t) dt +
∫ 1

0
mXi

2 (t) dt.

We estimated the previous models with the algorithm illustrated in Sect. 2.2 over
training-samples of size 200 with λ fixed to zero. We used cubic splines with the same
number of internal knots: k1 = k2 = 3; the smoothing parameters h j are selected by
a leave-one-out cross-validation procedure. Prediction outcomes were quantified on
test-sets of size n.out = 100, by the Relative Mean Square Error of prediction:

RMSE =
∑n.out

i=1

(
youti − ŷi

)2
∑n.out

i=1

(
youti − y

)2

where youti are the elements of the test-set, ŷi are the corresponding estimated values
and y = n−1 ∑n

i=1 y
out
i . Each simulation was repeated for 100 times to obtain a

frequency distributions of the RMSE.
Prediction results with PFSIM were compared with those obtained from the fol-

lowing competitors:

1. Functional Single Index Model (FSIM) fitted with the first step of the alternating
least square algorithm proposed in Ferraty et al. (2013): we used cubic splines

123



682 A. Goia, P. Vieu

(a) (b) (c) (d)

0
.1

0
0
.1

5
0

.2
0

0
.2

5
0
.3

0
0
.3

5
r1(x) ρ = 0.01

(a) (b) (c) (d)

0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

r1(x) ρ = 0.03

Fig. 3 RMSE for regression model involving operator r1 with ρ = 0.1 and ρ = 0.3. a stands for PFSIM,
b for FSIM, c for FLM and d for FNPM

with 5 knots and a leave-one-out cross-validation procedure for the selection of
the bandwidth;

2. Functional Linear Model (FLM) where the functional coefficient was estimated
with a penalized B-spline procedure (based on cubic splineswith 20 internal knots)
and the smoothing parameter in the penalization (controlling second derivatives)
was selected with a cross-validation procedure (see e.g. Cardot et al. 2003);

3. Functional Nonparametric Model (FNPM) estimated using the κ -nearest neigh-
bour functional kernel estimator (with κ chosen by local cross-validation) with
proximity between curvesmeasuredwith the classical L2 norm (for details see Fer-
raty and Vieu 2006).

Comparison between the empirical distributions of RMSEs resulting from the
above estimation strategies can be made analyzing Figs. 3, 4, 5, 6 and 7.

The simulations show that our method performs very well in all the examples, also
in comparison with the other proposed methods. Indeed, when the model is linear
(see Fig. 3) the PFSIM is practically equivalent to the FSIM and the FLM. Moreover,
it produces the best prediction performances when the regression operator r [X ] is

decomposable in two parts of the type g j

(∫
I j

θ (t) X (t) dt
)
(see Figs. 4 and 6).

Finally, when a full nonparametric term appears, PFSIM widely outperforms FSIM
and FLM estimators, and it is equivalent to the full nonparametric approach (see
Figs. 5, 7).

From the study it emerges that our approach represents a valid alternative to the pure
nonparametric one. Compared to this, one can bring out some advantages: the dimen-
sionality problem is avoided, the task of choosing a “good” semi-norm is skipped, and,
in same cases, it is possible to detect some latent structures in the regression operator
when they exist.
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Fig. 4 RMSE for regression model involving operator r2.a with ρ = 0.1 and ρ = 0.3. a stands for PFSIM,
b for FSIM, c for FLM and d for FNPM
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Fig. 5 RMSE for regression model involving operator r2.b with ρ = 0.1 and ρ = 0.3. a stands for PFSIM,
b for FSIM, c for FLM and d for FNPM

To appreciate the latter aspect, we reproduce in Fig. 8 the estimates of link functions
g j and directions θ j when the responses yi are generated by amodelwith the regression
operator r2.a and ρ = 0.1. In this case the graphs highlight the nature of the link
between the predictor and the response: it is possible to detect the existence of a
linear relation between the first part of the covariates and Yi , and a nonlinearity in
correspondence to the second part of the interval.

123



684 A. Goia, P. Vieu

(a) (b) (c) (d) (a) (b) (c) (d)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

r3.b (x) ρ = 0.1 r3.a (x) ρ = 0.3

Fig. 6 RMSE for regression model involving operator r3.a with ρ = 0.1 and ρ = 0.3. a stands for PFSIM,
b for FSIM, c for FLM and d for FNPM
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Fig. 7 RMSE for regression model involving operator r3.b with ρ = 0.1 and ρ = 0.3. a stands for PFSIM,
b for FSIM, c for FLM and d for FNPM

3.2 Illustrating the selection of the breaking-point

To show how the selection algorithm described in Sect. 2.3 works in practice, in this
section we illustrate the results of a simulation study conducted using the regression
operators r2.b and r3.a defined in Sect. 3.1, where the “true” breaking-point is λ0 = 0 .
Data have been generated according to (10) and the regression model (9) in the same
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Fig. 8 Estimates of the directions θ j (top panel) and link functions g j (bottom panels) in the case of the
regression operator r2.a

way as in Sect. 3.1, with ρ = 0.1. Estimations were based on the same parameter
conditions used in the previous section (cubic splines with k1 = k2 = 3, and h j

selected by a leave-one-out CV), and the search of the optimal λ is done between
−0.9 and 0.9 with grid width 0.1 (i.e. � = {−0.9,−0.8, . . . , 0.8, 0.9}). In order to
evaluate the role of a misspecification of the breaking-point on the predictive abilities
of the PFSIM, once λ̂ was identified, RMSEs have been computed over the test-set
using both λ̂ as well as λ0. The experiment has been replicated using 100 different
random samples, of small, medium and moderately large sample sizes (n = 50, 100
and 200) in order to relate the identification of λ with the sample size.

Observing the smoothed distributions of the selected λ̂ varying the sample size n
(see plots in Fig. 9) it emerges that, in the proposed examples, the selection method
produced some estimates of the parameter λ slightly biased with a variability that
decreases, as expected, with n. However, detection problems, ascribable to those raised
in the end of Sect. 2.3, do not produce effects on the capacity of the PFSIM to provide
good predictions, and this for the flexibility of the procedure. Indeed the box-plots in
Figs. 10 and 11 show that the data-driven selected parameters λ̂ gives similar prediction
errors as the true λ0, which is unknown in practice. This fact justifies the employ of
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Fig. 9 Estimates of density of selected λ when one uses the regressor operators r2.b (left panel) and r3.a
(right panel), varying the sample size n

the proposed cross-validation principle in applied frameworks, where the prediction
aspect plays a central role.

4 Application to spectrometric datasets

To knowing the composition of an aliment, instead of relying on expensive chemical
analysis, it is often preferable to obtain an estimate by spectroscopic analysis: a spec-
trometer measures the absorbtion of light emitted with different wavelengths by the
studied substance. Absorbtion in function of the wavelength represents a functional
data. During the last years, the use of various functional techniques has been widely
explored for data of such nature (see for instance, Ferraty and Vieu 2002; Saeysa et
al. 2008 or Ferraty et al. 2013).

In what follows, we illustrate an application of our PFSIM method in chemo-
metric analysis: we use the well known Tecator dataset (available at lib.stat.cmu.
edu/datasets/tecator): it consists in 215 spectra in the near infrared (NIR) wavelength
range from 852 to 1,050 nm, discretized on a mesh of 100 equispaced measures, corre-
sponding to as many finely chopped pork samples. The aim is to predict the fat content
yi , measured by chemical analysis, from the spectrometric curve. To avoid the well-
known “calibration problem”, due to the presence of shifts in the curves that cause
noises, it is conventional to take as regressor xi the second derivatives of spectrometric
curves instead of the original ones (see Ferraty and Vieu 2002).

The regression methodology described in Sect. 2 has been applied over a learning-
sample formed by the first 160 couples (xi , yi ), and the goodness-of-fit evaluated over
a test-set containing the remaining 55.

We proceeded with the selection of the breaking-point λ by using the Cross-
validation procedure illustrated in Sect. 2.3 , with candidates between 860 and 1,040
withmeshwidth 10, so that� = {860, 870, . . . , 1,030, 1,040}. The estimator for each
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Fig. 10 Estimates of RMSEs when one uses λ and the true breaking-point for regression operator r2.b and
varying n

λ ∈ � was based on cubic splines with k1 = k2 = 6 internal knots. The minimum for
CV (λ) achieved at λ̂ = 960 (see the left plot of Fig. 12).

Fixed the breaking-point at 960, the PSFIM applied to data by using cubic splines
with k1 = 9 and k2 = 5 internal knots: this choice allows to improve sensibly the
performances respect to take the same number of knots for either additive terms.
Applying the estimated model to the testing sample, we obtained a square prediction
error MSE = 1

55

∑55
i=1

(
youti − ŷi

)2 equal to 1.3916 and its relative version RMSE
equal to 0.00823. The out-of-sample prediction accuracy can be appreciated looking
at the right panel of Fig. 12.

To provide an interpretation of estimated model, we analized the estimated addi-
tive terms. First we computed the explained variance by each component as the

ratio between the empirical variance of ĝ j

(∫ 1050
805 θ̂ j (t) x j (t) dt

)
and the variance

of response yi . We obtained 0.96 for the first term and 0.02 for the second one: this
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Fig. 11 Estimates of RMSEs when one uses λ and the true breaking-point for regression operator r3.a and
varying n
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Fig. 13 Estimated directions θ j and link functions g j for spectrometric data

Table 1 Mean square errors
MSE and relative MSE on the
testing-set for PFSIM, FSIM,
FLM and FNPM

Model MSE RMSE × 10−2

PFSIM 1.392 0.823

FSIM 3.704 2.191

FLM 8.439 4.992

FNPM 1.915 1.134

said us that the second part of the spectrum, corresponding to wavelengths longer than
960 nm, is in practice negligible in explaining the fat content. Therefore, to deepen on
the nature of the link function over the relevant part of the spectrum, we look at the
estimated directions plotted in Fig. 13: it appears that the wavelengths between 850
and 890 nm seem not relevant, whereas the ones in the range 890–950 are the most
important. This is coherent with the results on selection of variables in Ferraty et al.
(2010) where such interval appears the most interesting.

To conclude the analysis we compared the obtained results with ones gave by the
same competitors used in Sect. 3.1. Reading the out-of-sample performances reported
in Table 1 one can conclude that PFSIM is the best among the proposed techniques.
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Because these data have been widely explored in literature, becoming a benchmark,
it is possible to make a large comparison with a lot of methodologies. One can see, for
instance, the summary Table 9 in Ferraty and Vieu (2011) and notice that our method
appears to be one of the best in terms of prediction. In a nutshell, our method is of
great interest on these data for exploratory purpose (see Fig. 13) but it is also one of
the most powerful in terms of predictive performance (see Table 9 in Ferraty and Vieu
2011).

5 Conclusions

In this paper we have illustrated a methodology, in the framework of functional regres-
sionmodeling with scalar response, which allows to approximate in a semi-parametric
way the unknown regression operator through a single index approach, but taking
possible structural changes into account. The novelty of the methodology consists in
treating Single Index Model which can manage ruptures using unsmooth functional
directions and additive link functions. In such perspective, our work can be included
in the front of literature on selection variable, rather than only in the semi-parametric
regression context. In that sense, our paper can be seen as taking part on the recent
advances devoted to explore links between Functional Data Analysis and Variable
Selection Procedures (see for instance Bongiorno et al. 2014).

An extensive simulation study, made to compare the predictive performance of
the method with some classical functional regression competitor (parametric, semi-
parametric and nonparametric), has pointed out the abilities of the proposed approach.
Moreover it has been shown, through an application to a real benchmark data set, that
the method reaches the usual goals of semi-parameric modelling in the sense that it
combines good predictive power and interpretability of the outputs: indeed the results
obtained are relevant and corroborated by former studies of the same data.

It should be noted that even though the implemented method rests on regressors
which are curves, extensions to general functional objects, such as images and arrays,
are always possible. Moreover, one can consider situations with a binary response
variable.
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Appendix: A few words on asymptotic behaviour

Cross-validation ideas have been firstly used in nonparametric framework for band-
width selection in standard multivariate setting (see for instance Härdle and Marron
1985; Marron and Härdle 1986). Afterwards they have been extended for bandwidth
selection in functional framework (see Rachdi and Vieu 2007), and more generally to
other automatic parameter choices in functional data analysis, like choosing direction
in functional single indexmodelling (seeAit-Saïdi et al. 2008), selecting the dimension
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in functional projection pursuit regression (see Ferraty et al. 2013) or structural-points
in complex regression models (see Ferraty et al. 2011). This is why cross-validation
has been used in our work both for fitting the model in (7) and for choosing the
break-point in (8).

Observing that the partitioned model (4) can be equivalently written as

Y = α + g1

(∫

I
θ1 (t) X (t) dt

)
+ g2

(∫

I
θ2 (t) X (t) dt

)
+ E

where

θ j (t) =
{

θ j (t) t ∈ I j
0 otherwise

with θ1 and θ2 orthogonal by construction, PFSIM can be seen as some special case
of the Functional Projection Pursuit Regression model developed recently in Ferraty
et al. (2013). As a matter of conclusion, one could derive directly asymptotic results
for the method proposed here just by straightforward adaptation of the proofs in the
above mentioned paper. In particular one could get the following kinds of results:

i. Asymptotic optimality (in terms of minimal quadratic prediction error) of the
estimates of the directions θ j obtained in (7), just from the proof of Theorem 5 in
Ferraty et al. (2013);

ii. Univariate rate of convergence of the estimates of the link functions g j , just from
the proof of Theorem 4 in Ferraty et al. (2013).

In the same spirit, by following the general methodology as presented in Ferraty et
al. (2011) for structural parameter estimation, one could also get:

iii. Consistency of the selected parameter λ̂ towards the value λ0 ∈ � minimizing
quadratic prediction errors;

iv. Asymptotic optimality (inside of �) of the data-driven value λ̂.
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