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Abstract A method for robust estimation of dynamic mixtures of multivariate distri-
butions is proposed. The EM algorithm is modified by replacing the classical M-step
with high breakdown S-estimation of location and scatter, performed by using the
bisquare multivariate S-estimator. Estimates are obtained by solving a system of esti-
mating equations that are characterized by component specific sets of weights, based on
robust Mahalanobis-type distances. Convergence of the resulting algorithm is proved
and its finite sample behavior is investigated by means of a brief simulation study and
n application to a multivariate time series of daily returns for seven stock markets.

Keywords Bisquare · EM · HMM · Mahalanobis distance · Mixture · Robust
distance · S-estimation

1 Introduction

A hidden Markov model (HMM) is a flexible and general model for time series with
applications in many fields (see, e.g., MacDonald and Zucchini 1997). Multivariate
HMMs can also be used to monitor the simultaneous evolution of many dependent
and independent time series. In that context the model is often referred to as Latent
Markov model (Bartolucci et al. 2013). The basic formulation of a HMM relies on
two assumptions: first, the observation at time t is independent of previous observa-
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tions conditionally on the value of an unobserved discrete random variable. Secondly,
the latent discrete random process evolves according to a homogeneous first-order
Markov chain. There are many generalizations of this framework, possibly including
constraints, covariates, or relaxing some of the basic assumptions [for instance, Altman
(2007), Yu (2010), Bartolucci and Farcomeni (2010), Bartolucci et al. (2013)]. HMMs
can be seen as discrete mixture models in which the mixing proportions evolve over
time. There are, then, k sampling distributions, identified by the levels of the latent
process, often assumed to be multivariate normals with class-specific mean vector and
covariance matrix.

The latter model specification may in practice be unsatisfactory since it can happen
that a small fraction of data follows a different random mechanism, exhibits a different
pattern or no pattern at all. These atypical values are called outliers. Outliers can
lead to unreliable inference if they are not taken properly into account: observations
located far from the bulk of the data may break down component specific parameter
estimates, bridge points (e.g., points between two components) may force genuinely
separate components to be artificially merged, with a consequent bias in the estimate
of location and an inflation in the estimate of scatter. Outliers can be isolated and/or
clustered in one or more spurious additional components, which may lead to over
estimate the complexity of the underlying discrete latent variable.

The need for robust procedures in the estimation of mixture models has been first
addressed in Cambpell (1984) who suggested to replace standard maximum likelihood
with M-estimation, but in the case of a static mixture model. In the same framework
of static mixtures, recent contributions can be found in Markatou (2000), who applied
the weighted likelihood methodology, Neykov et al. (2007), who used the trimmed
likelihood estimator, as well as Cuesta-Albertos et al. (2008) (see also Farcomeni
2013, 2014), and Gallegos and Ritter (2009) where two step procedures are proposed
based on trimming and censoring. There also is a different approach in the literature,
characterized by the use of flexible models. The Gaussian mixture assumption is
relaxed by embedding it in a supermodel: important contributions can be found in
McLachlan and Peel (2000), who introduced a mixture of Student’s t distributions in
place of the commonly used Gaussian components, Fraley and Raftery (1998), who
considered an additional component modeled as a Poisson process to handle noisy
data, Hennig (2004), who considered the addition of an improper uniform mixture
component to improve breakdown point properties of maximum likelihood estimators.
The use of an enlarged model is not always the best solution, because it may only be able
to deal with outliers in some direction, therefore focusing on a possibly thin subspace
of the possible departures from the assumed sampling model (Ronchetti 1997; Huber
and Ronchetti 2009). In particular, the strategy of simply introducing an additional
latent class may not solve the problem, as outliers may be scattered among underlying
centroids, and very far apart. In the worst case, each outlier should be included in a
separate latent class, making the model not estimable and overly complex.

Despite probably the first instance of the EM algorithm was developed for esti-
mation in HMMs (Baum and Petrie 1966; Baum et al. 1970), there are not many
papers dealing with robustness issues in HMMs. Moreover, up to our knowledge,
all available approaches to date provide robust solutions based on a supermodel that
includes the dynamic Gaussian mixture as a special case; with the single exception
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of Maruotti (2014) in the context of hidden Markov univariate regression models.
Among the proposed solutions, we can mention those based on the use of the mixture
of multivariate Student’s t distribution (Humburg et al. 2008; Bulla 2011). Another
interesting proposal has been suggested by Shah et al. (2006) in one dimension. Shah
et al. (2006) split each conditional density of the mixture into two components, one of
which is aimed at handling outliers. They obtain inference in a Bayesian context and
a multivariate extension of their method is beyond the scope of our paper.

In this paper we propose a formal robust strategy for estimation in HMMs, which
does not rely on flexible modeling, but on the use of robust S-estimators at the M-step
of the EM algorithm. This technique provides estimates that are close to maximum
likelihood estimates (MLE) under normality both in terms of accuracy and precision
and that are insensitive to small departures from the model assumptions.

The idea of employing S-estimators in the EM algorithm has already been consid-
ered by Bashir and Carter (2005, 2007) in the context of discriminant analysis under
the assumption of a common covariance matrix. Here, we generalize their approach to
any finite mixture model, without assumptions on the covariance matrices, with a spe-
cific interest on S-estimation of HMMs. A sample non-optimized R code can be found
at http://afarcome.altervista.org/ES.r. The rest of the paper is organized as follows.
Necessary background is reviewed in Sect. 2. In Sect. 3 we illustrate an Expectation
S-estimation (ES) algorithm for robust fitting of HMMs and show its convergence.
Some numerical studies are given in Sect. 4 and a real data example is discussed in
Sect. 5. We give a brief discussion in Sect. 6.

2 Set up and background

In this section we briefly review multivariate S-estimation of location and covariance
matrix (see Maronna et al. (2006) and references therein for a more detailed account),
with particular attention to the case where data arise from multivariate normal dis-
tributions. Let y = (y1, . . . , yn) be a matrix of i.i.d. observations from a family of
multivariate normal distributions

F =
{

f (y; θ) = h(d(y;μ,�))√|�| , θ = (μ,�), μ ∈ R p, � ∈ P DS(p), p > 1

}
,

(1)

where h(d) = (2π)−p/2 exp
(
− d2

2

)
, d(y;μ,�) = [(y − μ)T �−1(y − μ)]1/2 is

the Mahalanobis distance and P DS(p) is the set of all positive definite symmetric
p × p matrices. Any different choice of a positive function h(·), with strictly negative
derivative and such that f (y; θ) integrates to unity leads to an elliptically symmetric
family of distributions. A relevant example of non normal elliptical distribution is the
multivariate Student’s T distribution.

The MLE of θ = (μ,�) can be found by maximizing the log-likelihood function

�(θ) = −n

2
log |�| −

n∑
i=1

ρ(di ), (2)
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with di = d(yi ;μ,�), ρ(d) = − log h(d). The MLE can equivalently be obtained
by the solution to the system of estimating equations

Ψμ(y; θ) =
n∑

i=1

(yi − μ)wi = 0

Ψ�(y; θ) = 1

n

n∑
i=1

(yi − μ)(yi − μ)T wi − � = 0 , (3)

with w = w(d) given by (∂ρ(d)/∂d)/d. In the case of the normal distribution, we
have that wi = 1. The system of estimating Eq. (3) defines an M-estimator of location
and scatter. See “Appendix 1” for a derivation of (3).

S-estimates of location and scatter (Davies 1987; Lopuhaa 1989) are defined as the
minimizer of the determinant |�| subject to the bound

1

n

n∑
i=1

ρ (di ; c0) = δ, 0 < δ < sup ρ(d; c0). (4)

A popular choice is the Tukey’s bisquare function

ρ(d; c0) = c2
0

6
min

⎧⎨
⎩1, 1 −

[
1 −

(
d

c0

)2
]3

⎫⎬
⎭ . (5)

The solution to the constrained minimization above also satisfies the system of M-type
estimating equations of the form

Ψ (y; θ) = (Ψμ(y; θ), Ψ�(y; θ))T = 0

with

Ψμ(y; θ) =
n∑

i=1

(yi − μ)w(di ) = 0

Ψ�(y; θ) =
n∑

i=1

[
p(yi − μ)(yi − μ)T w(di ) − v(di )�

]
= 0 , (6)

and

w(z) = 1

z

∂ρ(z; c0)

∂z
=

(
1 − z2

)2
I (z ≤ c0) ,

v(z) = w(z)z2 . (7)

A detailed derivation of (6) is given in “Appendix 2”. The constant c0 in (5) is fixed
according to the following considerations. Define the asymptotic breakdown point
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(BP) of an estimate as the minimal proportion of outliers the data may contain before
that its bias becomes unbounded. In order to attain a given asymptotic BP b ≤ 0.5 one
should set c0 as the solution to

EF [ρ(Z; c0)] = δ = b sup ρ = b
c2

0

6
. (8)

Some loss of efficiency with respect to classical M-estimates is inevitable, and the
higher the BP, the lower the efficiency.

Existence, consistency, asymptotic normality and breakdown properties of S-
estimators have been investigated by Davies (1987). Some recent developments can
be found in Riani et al. (2014). The influence function has been derived by Lopuhaa
(1989). The system (3) may have multiple solutions, because the first derivative of
ρ(·) is a re-descending function (see Maronna et al. 2006), and one of them is the
S-estimate that solves the minimization problem (4) (Lopuhaa 1989).

In the following we will focus on the multivariate normal case, where F = Φ, but
the S-estimation procedure, and therefore our ES algorithm, is still valid for any F
within the elliptically symmetric family.

3 Robust estimation in HMM

Let now y = (y1, y2, . . . , yn) be a multivariate time series of repeated observations
at n consecutive occasions. We assume yi ∈ R

p and that the marginal density of yi is
an element of the family (1).

Hidden Markov modeling proceeds by assuming that at each time occasion there is
a binary latent random vector zi = (zi1, zi2, . . . , zik), with

∑
j zi j = 1, which affects

the distribution of y. This discrete latent variable is unobserved and evolves over time
according to a first order time homogeneous Markov chain. More precisely,

p(yi |θ, zi j = 1) = f (yi , μ j , � j ).

By denoting πi j = Pr(Zi j = 1), we can set the model in the form of a finite mixture
of k distributions as

p(yi |τi ) =
k∑

j=1

πi j f (yi ;μ j , � j ), (9)

where τi = (θ1, . . . , θk, πi1, . . . , πik). The main feature of expression (9) is that
the mixing probabilities πi j are specific to time occasion i and not held fixed for each
component, as it happens in the context of static mixtures. In HMM these probabilities
are not assumed to evolve freely over time, but to follow those connected with a
first order homogeneous Markov chain. The number of free parameters is therefore
drastically reduced to the k(k − 1) transition probabilities Pr(Zi j2 = 1|Zi−1, j1 =
1) = π j1 j2 , j1, j2 = 1, . . . , k, collected in the hidden transition probability matrix Π .
Identifiability is guaranteed as long as the latent state at the first occasion is arbitrarily
fixed. Conventionally, this is the first latent state. The reason behind this constraint
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resides in the need of conditioning on a baseline measurement in first order Markovian
time series.

The vector πi collecting the k probabilities at the i-th occasion is computed as

πi = ηΠ i−1,

where η is a vector of zeros with a one indicating the (fixed and arbitrarily chosen)
latent state at the first occasion. For an element of the family (1) defined by a positive
function h(·), the complete data log-likelihood for the proposed HMM can be written
as

�c(τ ) =
n∑

i=2

k∑
j1=1

k∑
j2=1

zi j2 zi−1, j1 log π j1 j2 +
n∑

i=1

k∑
j=1

zi j log f (yi ;μ j , � j )

=
k∑

j1=1

k∑
j2=1

log π j1 j2

n∑
i=2

zi j2 zi−1, j1 −
n∑

i=1

k∑
j=1

zi j

{
1

2
log |� j | + ρ(di j )

}
.

(10)

The complete data log-likelihood is the basis for the commonly used EM algorithm,
which is used to find the MLE. Robust estimation of τ is achieved by iterating the
classical E step and a robust version of the standard M step involving S-estimation,
that we call S-step. In the E-step conditional expected values for zi j and zi j2 zi−1, j1 are
computed through appropriate recursions. These are the classical HMM recursions,
adapted from Baum and Petrie (1966); Baum et al. (1970). First, one applies a forward
recursion initialized with

α1 j = f (y1;μ j , � j )η j ,

and iterated as

αi j = f (yi ;μ j , � j )

k∑
h=1

αi−1,hπh j , i = 2, . . . , n.

After that, a backward recursion is applied by setting βnj = 1 and then

βi j =
k∑

h=1

f (yi+1;μh, �h)βi+1,hπ jh, i = n − 1, . . . , 1

It can be shown that

E[zi j |y, τ ] = mi j = αi jβi j∑k
j=1 αnj

. (11)

and

E[zi j2 zi−1 j1 |y, τ ] = mi j1 j2 = π j1 j2αi−1, j1 f (yi ;μ j , � j )βi j2∑k
j=1 αnj

, i = 2, . . . , n.

(12)
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To avoid numerical issues, the strategy in appendix of Farcomeni (2012) has been
used. For a detailed rationale behind the forward and backward recursions and expres-
sions (11) and (12), see for instance MacDonald and Zucchini (1997); Bartolucci et
al. (2013). It can be noted that all these follow from the conditional independence
assumptions of yi given zi , and of zi and z1, . . . , zi−2 given zi−1

Given that its expression is linear in zi j and zi j2 zi−1, j1 , the conditional expectation
of (10) is obtained by plugging-in the conditional expected values (11) and (12), i.e.

E
[
�c(x; τ)|y, τ (s)

]
=

k∑
j1=1

k∑
j2=1

log π j1 j2

n∑
i=2

m(s)
i j1 j2

−
n∑

i=1

k∑
j=1

m(s)
i j

{
1

2
log |� j | + ρ(di j )

}
, (13)

where the superscript (s) denotes the estimate at the sth iteration. In the S-step, the
components of θ j = (μ j , � j ) are estimated by multivariate S-estimators, while per-
forming the M-step for π1 and Π in a standard fashion. In detail, the transition prob-
abilities are updated as π j1 j2 ∝ ∑n

i=2 mi j1 j2 , whereas the estimates of μ j and � j are
obtained by solving k minimization problems, one for each component. Within each
class it is aimed at minimizing |� j | subject to the bound

1

n j

n∑
i=1

ρ(di j ; c0)mi j = δ, (14)

with n j = ∑n
i=1 mi j . The S-step can be summarized as maximizing

Q (τ | τ (s)) =
k∑

j1=1

k∑
j2=1

log π j1 j2

n∑
i=2

m(s)
i j1 j2

−
n∑

i=1

k∑
j=1

m(s)
i j

{
1

2
log |� j | − λ j

[
ρ(di j ; c0) − δ

]}

=
k∑

j1=1

k∑
j2=1

log π j1 j2

n∑
i=2

m(s)
i j1 j2

−
k∑

j=1

L
n(s)

j
(θ j , λ j ) . (15)

It is worth noting that we stated the S-estimators as in (15), rather than in a more
classical form (Lopuhaa 1989), in order to stress the connection with expression (13).
The resulting estimating equations for θ j = (μ j , � j ) are similar to (6):

Ψμ j (y; θ j ) =
n∑

i=1

(y − μ j )w
(s)
i j m(s)

i j = 0
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Ψ� j (y; θ j ) =
n∑

i=1

[
p(yi − μ j )(yi − μ j )

T w
(s)
i j − v

(s)
i j � j

]
m(s)

i j = 0, (16)

with w
(s)
i j = w(d(s)

i j ), v
(s)
i j = v(d(s)

i j ), d(s)
i j = d(yi ;μ

(s)
j , �

(s)
j ), j = 1, 2, . . . , k, as

defined in (7).
For details on the derivation of (16), refer to “Appendix 3”.
The ES algorithm requires that k distinct S-estimation problems are solved. These

depend not only on the estimated mi j but also on k component-wise sets of weights
wi j .

The resulting ES algorithm can be summarized as follows:

Initialization. τ (s) = (θ
(s)
1 , . . . , θ

(s)
k , π

(s)
1 , π

(s)
k )

E-step. By forward and backward recursions find m(s)
i j and m(s)

i j1 j2
as in

(11) and (12), respectively.
S-step. By using the current distances d(s)

i j maximize (15): first, obtain
the robustness weights defined in (7), then, update estimates:

w
(s)
i j =

[
1 −

(
d(s)

i j

)2
]2

I{di j <c0}

v
(s)
i j = w

(s)
i j

(
d(s)

i j

)2

π
(s+1)
j =

∑n
i=1 m(s)

i j

n

μ
(s+1)
j =

∑n
i=1 yi m

(s)
i j w

(s)
i j∑n

i=1 m(s)
i j w

(s)
i j

�
(s+1)
j = p∑n

i=1 m(s)
i j v

(s)
i j

n∑
i=1

(
yi − μ

(s+1)
j

) (
yi − μ

(s+1)
j

)T
m(s)

i j w
(s)
i j .

Anomalous observations can be identified by examining the weights at convergence.
A data point will be flagged as an outlier when all the corresponding weights, one for
each component of the mixture, are small enough. For a good data point at least one
weight is expected to be close to one. Moreover, standard tools based on the inspection
and display of the robust Mahalanobis distances can be used to detect outliers and even
to verify goodness of fit [e.g., Cerioli and Farcomeni (2011), Cerioli et al. (2013), and
references therein].

A final comment concerns the choice of the number of latent states. As a general
result, the incomplete data log-likelihood associated with the current values of the
parameters is exactly equal to

∑k
j=1 αnj . Here, the likelihood is still derived under the

assumed mixture of normal components but it is evaluated at the robust estimates. Note
that the likelihood at convergence can be employed in the choice of the number of latent
states using for instance the Bayesian Information Criterion (BIC), see McLachlan and
Peel (2000) and Bartolucci et al. (2013).
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3.1 Properties

We now prove that at each iteration of the ES algorithm an increase of (15) corresponds
to an increase in the incomplete data likelihood function, in parallel with the EM
algorithm. To this end, it is enough to show that

Q̃
(
τ (s+1)|τ (s)

)
− Q̃

(
τ (s)|τ (s)

)
≥ 0, (17)

where Q̃
(
τ |τ (s)

) = E
[
�c(x; τ)|y, τ (s)

]
, as the fact that the likelihood increases is

a direct consequence of (17) (see e.g. Dempster et al. 1977). To assess that relation
(17) holds, first note that (13) coincides with (15) for what concerns the first term.
Consequently, (17) holds in a standard fashion at the E-step. Then, to see that the
inequality (17) also holds after the S-step, it is sufficient to demonstrate that

n∑
i=1

k∑
j=1

m(s)
i j

{
ρ

(
d(s+1)

i j

)
+ 1

2
log |�(s+1)

j |
}

≤
n∑

i=1

k∑
j=1

m(s)
i j

{
ρ

(
d(s)

i j

)
+ 1

2
log |�(s)

j |
}

, (18)

where τ (s+1) is the maximizer of (15) obtained after the S-step. The proof is given in
“Appendix 4”.

Since the estimating equations in (16) may have multiple roots corresponding to
local maxima, in order to increase the chances of ending up in the global maximum it is
recommended to initialize the algorithm from few different starting values. There is no
general optimum strategy. A possibility is to initialize the parameters for the manifest
distribution as those estimated using robust techniques for static finite mixtures, such
as the PAM or tclust algorithm, and to initialize the hidden transition matrix as
being close to diagonal. See for instance Bartolucci et al. (2013) on this. Other initial
solutions can be obtained by randomly perturbing the deterministic starting solution
and/or the final one obtained from it. In this work we have obtained a total of 20
initial solutions in the real data application. For the numerical studies that follow, we
have found that the deterministic solution usually leads to the largest optimum for the
likelihood. Let θ0 = (μ0 j , �0 j ), j = 1, 2, . . . , p be the ES estimates of location and
covariance obtained from using the PAM estimates as initial values. Multiple initial
solutions are then obtained by randomly perturbing μ0 j to get new initial values μ1 j .
We tried two situations: in the first we ran the ES algorithm for 50 initial values of the
form θ∗ = (μ1 j , �0 j ), in the second we only used μ1 j and set the starting estimates for
the covariance matrices equal to unit matrices of dimension p. We ran some numerical
studies and found that in the first case the deterministic solution always leads to a global
maximum, whereas in the second case this happens at an average rate larger than 85 %.
Based on these findings, we conclude that in our problem the deterministic solution
may be believed to lead to a global optimum and that 10–50 random starts are enough
to guarantee it. Furthermore, we have also experienced the ES algorithm to be less
dependent of the initial solution than the standard EM when data are contaminated.
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It is natural now to wonder about the characteristics of the estimate obtained at
convergence of the ES algorithm. What we can intuitively argue is that in absence of
contamination the ES and EM algorithm give approximately the same estimates. This
is a consequence of consistency of the S-estimates at the normal model, and will be
illustrated in simulation below.

3.2 Classification

The classification after the last iteration of the ES algorithm proceeds with the pre-
diction of the most likely hidden state zi . It would be tempting to set zi = j in
correspondence of the state which is a-posteriori most likely, as in the context of static
mixtures. This would maximize the expected number of correct individual states, but
would not take into proper account the joint probability of the resulting sequence. For
instance, even if a transition between two states is impossible they may still be the
most likely at neighboring time points marginally, so producing inconsistent estimates.
Hence, one must estimate the hidden states jointly, producing the most likely sequence
of hidden states. This is performed through the Viterbi algorithm (Viterbi 1967; Juang
and Rabiner 1991).

The algorithm can be summarized as follows:

Step 1, Initialization.
ξ1 = π̂1.

Step 2, Recursion.

ξi+1, j =
[

max
1≤ j1≤k

ξi j1 π̂ j1, j

]
f (yi+1;μ j , � j ), 1 ≤ j ≤ k, 1 ≤ i ≤ n − 1,

γi+1, j = arg max
1≤ j1≤k

ξi j1 π̂ j1, j , 1 ≤ j ≤ k, 1 ≤ i ≤ n − 1.

Step 3, Termination. After n steps we set the most likely exit state zn as
arg max1≤ j≤k ξnj .

Step 4, Backtracking. Finally, the most likely hidden sequence is recursively
unraveled by setting the most likely hidden state at time i as γi,zi+1 , for
i = n − 1, . . . , 1.

4 Simulations

We performed numerical studies in order to investigate the performance of ES com-
pared to EM and t-based EM. Data have been drawn from conditionally Gaussian
random variables, centered on μ0 j = 5i , i = 1, . . . , k, j = 1, . . . , p, with unit vari-
ance and constant correlation ρ. The initial probabilities are uniform over {1, . . . , k}
and the cd-th element of the hidden transition matrix has been set proportional to 0.1
whenever c �= d and to 1.1 whenever c = d. The number of components k is assumed
to be known in this section.
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A time series of length n has been generated and contamination has been introduced
by replacing a proportion ε of the n elements by a random draw from a uniform random
variable, independently in each dimension, in such a way that outliers are far from
the bulk of the data in each component. We used an acceptance-rejection algorithm,
according to which only points having squared Mahalanobis distances from the centre
of each component of the mixture larger than the χ2

p;0.975 quantile are considered, until
reaching the chosen amount 	nε
 of clear outliers. In the numerical studies as well
as in the real data application, the tuning constant c0 has been determined in order to
achieve 50 % BP for each component.

After generating data, we fitted the classical HMM with Gaussian manifest distrib-
ution, through the EM procedure (E M in the tables); our robust Gaussian HMM using
the ES procedure (E S), and an HMM with multivariate t distributions as manifest
(t − E M).

For each setting and each procedure we report the Euclidean distance between the
estimated and true μ0 and Π0, the log condition number of �−1

0 �̂, and the modified
Rand index (Hubert and Arabie 1985) for the estimated latent states. The latter is a
measure of agreement between the estimated and true labels. The results are based on
1,000 replicates for each setting.

Tables 1 and 2 show the results for k = 3, p = 3, 8, ρ = 0.1, 0.5, ε = 0, 0.10
and n = 50,300. It can be seen that the robust method behaves reasonably well when
contamination does not occur, whereas it is not affected by outliers in the contami-
nated scenarios. More in detail, outliers can break down EM based estimates for the
mean parameters and scatter matrices whereas the ES leads to reliable estimation of
them in general under contamination. The ES based estimation of the mean vectors
and variance–covariance matrices is stable across the considered scenarios and con-
sequently appears to be resistant to the presence of outliers. Some loss of efficiency
is seen when outliers are not present, but the trade-off seems satisfactory. The use of
the t-mixture also leads to a stable estimation of location but is not able to protect the
estimation of scatter from outliers: scatter estimates are inflated as well as those from
standard EM.

Anomalous values have a mild effect on the non robust estimates of the latent
parameters and on the classification. In particular, the same rate of classification,
measured by the Rand index, is achieved by all methods when there are not outliers in
the sample at hand. Under contamination, the classification rate provided by the ES is
always not smaller than that given by the EM and t-EM algorithm.

In order to assess the reliability of the ES under the general assumption of elliptical
families (1), a numerical study has also been carried out in which data have been drawn
from conditionally Student’s t random variables, with the same setting of the previous
Monte Carlo analysis. Results in Tables 3 and 4 suggests that the ES algorithm still
leads to reliable results.

5 A real data example

Let us consider the stock market data analyzed also in Dias et al. (2008) and Bartolucci
and Farcomeni (2010). For the markets of Argentina, Brazil, Canada, Chile, Mexico,
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Table 1 HMM example

||μ̂ − μ0|| ||Π̂ − Π0|| − log cond(�−1
0 �̂) Rand inx.

ε = 0, ρ = 0.1, p = 3

EM 0.06 0.16 1.40 1.00

ES 0.07 0.16 1.55 1.00

t-EM 0.06 0.16 1.40 1.00

ε = 0, ρ = 0.1, p = 8

EM 0.06 0.15 3.72 1.00

ES 0.06 0.15 3.74 1.00

t-EM 0.06 0.15 3.76 1.00

ε = 0, ρ = 0.5, p = 3

EM 0.07 0.15 1.55 0.99

ES 0.07 0.15 1.69 0.99

t-EM 0.07 0.15 1.61 0.99

ε = 0, ρ = 0.5, p = 8

EM 0.06 0.15 4.03 1.00

ES 0.06 0.15 4.05 1.00

t-EM 0.06 0.15 4.02 1.00

ε = 0.1, ρ = 0.1, p = 3

EM 1.44 0.16 2.47 0.74

ES 0.06 0.15 1.43 0.81

t-EM 0.13 0.16 2.07 0.77

ε = 0.1, ρ = 0.1, p = 8

EM 2.58 0.15 4.69 0.81

ES 0.06 0.15 3.89 0.81

t-EM 0.19 0.15 4.42 0.80

ε = 0.1, ρ = 0.5, p = 3

EM 1.67 0.17 2.40 0.73

ES 0.06 0.15 1.61 0.80

t-EM 0.12 0.16 2.09 0.75

ε = 0.1, ρ = 0.5, p = 8

EM 2.46 0.15 4.71 0.80

ES 0.06 0.15 4.15 0.81

t-EM 0.12 0.15 4.39 0.79

Accuracy of EM, ES and t-EM estimates based on 1000 Monte Carlo trials for p = 3, 8, ρ = 0.1, 0.5,
ε = 0, 0.10, n = 50

Peru and United States, the daily closing price from July 4, 1994, to September 27,
2007, has been drawn from the Datastream database. All series are denominated in
US dollars, and for each of them we model the daily rates of returns

yt = log(Pt/Pt−1), t = 1, . . . , 3454,
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Table 2 HMM example

||μ̂ − μ0|| ||Π̂ − Π0|| − log cond(�−1
0 �̂) Rand inx.

ε = 0, ρ = 0.1, p = 3

EM 0.01 0.13 0.55 1.00

ES 0.01 0.13 0.62 1.00

t-EM 0.01 0.13 0.54 1.00

ε = 0, ρ = 0.1, p = 8

EM 0.01 0.13 1.38 1.00

ES 0.01 0.13 1.42 1.00

t-EM 0.01 0.14 1.37 1.00

ε = 0, ρ = 0.5, p = 3

EM 0.01 0.14 0.64 1.00

ES 0.01 0.14 0.72 1.00

t-EM 0.01 0.14 0.63 1.00

ε = 0, ρ = 0.5, p = 8

EM 0.01 0.14 1.63 1.00

ES 0.01 0.14 1.68 1.00

t-EM 0.01 0.14 1.64 1.00

ε = 0.1, ρ = 0.1, p = 3

EM 0.96 0.14 1.56 0.75

ES 0.01 0.14 0.61 0.81

t-EM 0.02 0.14 1.18 0.79

ε = 0.1, ρ = 0.1, p = 8

EM 1.74 0.14 2.44 0.79

ES 0.01 0.14 1.37 0.81

t-EM 0.03 0.14 2.14 0.79

ε = 0.1, ρ = 0.5, p = 3

EM 1.03 0.14 1.31 0.75

ES 0.01 0.14 0.73 0.80

t-EM 0.01 0.14 1.05 0.78

ε = 0.1, ρ = 0.5, p = 8

EM 2.09 0.14 2.24 0.78

ES 0.01 0.14 1.65 0.80

t-EM 0.02 0.14 1.93 0.79

Accuracy of EM, ES and t-EM estimates based on 1000 Monte Carlo trials for p = 3, 8, ρ = 0.1, 0.5,
ε = 0, 0.10, n = 300

where Pt denotes the closing price on day t . Slightly less than 2 % of the observations
are not avaiable (due to e.g. to public holidays). We simply set yt = 0 for those, but
any other strategy would give substantially equivalent results.

Hence, we have p = 7 and repeatedly fit the HMM model for different values of k
both with the standard and our robust algorithms. The log-likelihood and BIC obtained
by each algorithm are given in Table 5.
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Table 3 HMM example

||μ̂ − μ0|| ||Π̂ − Π0|| − log cond(�−1
0 �̂) Rand inx.

ν = 5, ρ = 0.1, p = 3

EM 0.10 0.15 1.67 0.98

ES 0.07 0.15 1.68 0.97

t-EM 0.09 0.15 1.66 0.97

ν = 5, ρ = 0.1, p = 8

EM 0.10 0.15 4.14 0.99

ES 0.06 0.15 3.91 0.99

t-EM 0.09 0.15 4.04 0.99

ν = 5, ρ = 0.5, p = 3

EM 0.12 0.15 1.89 0.92

ES 0.07 0.15 1.82 0.93

t-EM 0.10 0.15 1.92 0.90

ν = 5, ρ = 0.5, p = 8

EM 0.10 0.15 4.52 0.95

ES 0.06 0.15 4.38 0.94

t-EM 0.09 0.14 4.54 0.92

ν = 10, ρ = 0.1, p = 3

EM 0.08 0.15 1.53 0.99

ES 0.07 0.15 1.63 0.99

t-EM 0.07 0.15 1.54 0.99

ν = 10, ρ = 0.1, p = 8

EM 0.08 0.15 3.94 1.00

ES 0.06 0.15 3.91 1.00

t-EM 0.07 0.15 3.92 1.00

ν = 10, ρ = 0.5, p = 3

EM 0.08 0.15 1.73 0.96

ES 0.07 0.15 1.79 0.97

t-EM 0.08 0.15 1.76 0.95

ν = 10, ρ = 0.5, p = 8

EM 0.08 0.15 4.28 0.98

ES 0.06 0.15 4.29 0.97

t-EM 0.08 0.15 4.30 0.97

Accuracy of EM, ES and t-EM estimates based on 1000 Monte Carlo trials for p = 3, 8, ρ = 0.1, 0.5,
ν = 5, 10, n = 50 under the Student distribution

We note that the non-robust algorithm leads the BIC criterion to choose k = 6. On
the other hand, our robust algorithm leads to favor a simpler model, with k = 5 latent
states. It is worth noting that the sequence of log-likelihood values obtained in the ES
appears reasonable as they decrease with increasing number of assumed latent states
and are always smaller than the global maximum reached by the proper EM algorithm.
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Table 4 HMM example

||μ̂ − μ0|| ||Π̂ − Π0|| − log cond(�−1
0 �̂) Rand inx.

ν = 5, ρ = 0.1, p = 3

EM 0.02 0.14 0.75 0.98

ES 0.01 0.14 0.67 0.98

t-EM 0.01 0.14 0.62 0.97

ν = 5, ρ = 0.1, p = 8

EM 0.02 0.13 1.81 0.99

ES 0.01 0.13 1.56 0.99

t-EM 0.01 0.13 1.47 0.99

ν = 5, ρ = 0.5, p = 3

EM 0.02 0.13 0.91 0.94

ES 0.01 0.13 0.76 0.94

t-EM 0.01 0.13 0.75 0.94

ν = 5, ρ = 0.5, p = 8

EM 0.02 0.13 2.11 0.95

ES 0.01 0.13 1.83 0.95

t-EM 0.01 0.14 1.79 0.94

ν = 10, ρ = 0.1, p = 3

EM 0.01 0.13 0.61 0.99

ES 0.01 0.13 0.64 0.99

t-EM 0.01 0.14 0.58 0.99

ν = 10, ρ = 0.1, p = 8

EM 0.01 0.14 1.53 1.00

ES 0.01 0.14 1.49 1.00

t-EM 0.01 0.14 1..44 1.00

ν = 10, ρ = 0.5, p = 3

EM 0.01 0.14 0.72 0.97

ES 0.01 0.14 0.75 0.97

t-EM 0.01 0.14 0.69 0.97

ν = 10, ρ = 0.5, p = 8

EM 0.01 0.13 1.82 0.98

ES 0.01 0.13 1.76 0.98

t-EM 0.01 0.13 1.73 0.98

Accuracy of EM, ES and t-EM estimates based on 1000 Monte Carlo trials for p = 3, 8, ρ = 0.1, 0.5,
ν = 5, 10, n = 300 under the Student distribution

The robust procedure reveals the occurrence of a larger rate of outliers than the
EM and the employment of robust distances highlights some anomalous outcomes
otherwise masked, as illustrated in Fig. 1, which displays the distances resulting from
the selected HMMk models by the ES and the EM, respectively. The distances are
evaluated for each point with respect to the estimated mean vector and scatter matrix
of the group to which the point has been classified.
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Table 5 S&P data

k EM ES

loglik BIC loglik BIC

2 −28289.66 57108.89 −29987.12 60503.81

3 −27807.11 56404.51 −28647.10 57724.48

4 −27520.83 56107.51 −27934.12 56935.53

5 −27269.64 55899.88 −27762.59 56885.79

6 −27034.91 55740.01 −27697.31 57064.81

7 −26898.23 55792.55 −27620.51 57237.11

8 −26794.70 55927.67 −27545.78 57429.83

Log-likelihood and BIC from fitting the HMMk model to the time series of the daily rates of return of
Argentina, Brazil, Canada, Chile, Mexico, Peru and United States referred to the period from July 4, 1994,
to September 27, 2007
Bold values indicate the minimum value for the BIC

A very large Mahalanobis distance around the 2000th log-return, corresponding to
the crash of the market after September, 11, 2001, can be clearly seen in both panels,
but it is much more evident in the first panel corresponding to the ES estimates, as
well as other anomalous values.

In conclusion, models chosen with non-robust approaches may be less parsimonious
than needed only because of the presence of outliers and not because of a true under-
lying complex population distribution, even if, as in this example, standard diagnostic
tools are able to flag gross outliers.

For the HMM5 model chosen by the robust procedure, Table 6 gives the estimated
mean vectors for the five Gaussian components. For sake of comparison, the MLEs
are also given for the case k = 5.

It can be noted that there are slight but important differences. The smallest negative
classical EM based estimates are more extreme for what concerns the Brazilian and
Mexican stock markets, and almost equal for the other markets. On the other hand, the
largest positive classical estimates are less extreme for all markets, particularly for the
small Peruvian and Chilean markets. The EM estimation leads to a more pessimistic
view of the stock markets, likely due to the fact that important decreases in values
of the returns happen during very few days, while important increases are more slow
after onset. Consequently, predictions based on classical estimates may not be able
to catch medium-term rises of the stock market, and would probably over-estimate
the importance of short-term falls. As noted by the referee, robust estimation methods
should also yield more persistent latent states. This is indeed true. The estimated
relative risks of persisting in state j , for j = 1, . . . , 5, range from 1.41 to 1.94 when
comparing the robust with the non-robust estimates. Further, after use of the Viterbi
algorithm, 58 transitions are estimated robustly, while 216 if parameters are obtained
based on the classical EM algorithm.

It is also interesting to note the difference in estimates of the correlation matrix
for the first component. The estimates are reported in Table 7. It can be noted that
when k = 5 the robust estimates of the correlations between the US log-returns and
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Fig. 1 S&P data. Top robust (left) and classical (right) Mahalanobis distances. Bottom χ2
7 Q-Q plot of

robust (left) and classical (right) squared Mahalanobis distances
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Table 6 S&P data

AR BR CN CL MX PE US

E S (k = 5)

1 (22 %) −0.12 −0.19 −0.12 −0.18 −0.11 −0.18 −0.03

2 (28 %) 0.08 0.10 0.10 0.02 0.05 0.04 0.06

3 (16 %) −0.04 −0.03 −0.03 −0.10 −0.07 −0.10 −0.11

4 (17 %) 0.10 0.12 0.09 0.27 0.11 0.21 0.07

5 (17 %) −0.03 0.01 −0.01 0.05 0.03 0.05 −0.05

E M (k = 5)

1 (13 %) −0.09 −0.31 −0.15 −0.18 −0.14 −0.19 −0.01

2 (23 %) −0.05 −0.04 −0.04 −0.08 −0.05 −0.10 −0.08

3 (12 %) −0.05 0.04 −0.01 0.03 0.00 0.04 −0.05

4 (22 %) 0.03 0.08 0.05 0.03 0.05 0.07 0.09

5 (30 %) 0.07 0.09 0.06 0.11 0.07 0.09 0.02

E M (k = 6)

1 (8 %) −0.10 −0.37 −0.14 −0.22 −0.23 −0.23 0.01

2 (18 %) −0.11 −0.13 −0.13 −0.11 −0.11 −0.16 −0.11

3 (12 %) −0.06 0.00 0.00 0.00 0.01 0.02 −0.07

4 (20 %) 0.04 0.02 0.05 −0.09 −0.01 −0.05 0.04

5 (28 %) 0.07 0.08 0.06 0.10 0.07 0.08 0.02

6 (14 %) 0.05 0.17 0.06 0.18 0.13 0.21 0.09

ES (upper panel) and EM (lower panels) estimated mean parameter vectors for the Gaussian components.
In parentheses, the posterior estimates for the percentage of days spent in each state

the same for all other markets are slightly larger (with maybe the exception of MX,
which is almost equal). This happens likely because of the fact that the relationship
between the other markets and the US market is masked by short-term falls of the
smaller markets due to local reasons. After down-weighting of extremal situations,
the strong relationship between US and other markets is underlined better. The EM is
able to catch a similar behavior only by adding a further component to the mixture.

6 Conclusions

A simple and effective algorithm for robust fitting of dynamic mixtures in the form
of HMMs has been proposed. The algorithm has been focused on Gaussian mixtures
but it can be generalized to other assumptions. The key point is that the M-step in the
EM algorithm can be replaced by robust estimation, as long as the robust approach
leads to an increase in the likelihood. In this paper, we have shown this happens when
using S-estimators, which have also exhibited good properties both theoretically and
empirically in the brief simulation study. Moreover, in our example we have argued
that outliers can lead to select an overly complex model when they are not properly
taken into account.

We strongly believe that robust methods should be more frequently used in the
practice of data analysis. On this point we refer to the discussion in Farcomeni and
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Table 7 S&P data

AR BR CN CL MX PE US

E S (k = 5)

AR 1.00 0.68 0.44 0.47 0.62 0.44 0.52

BR 0.68 1.00 0.42 0.50 0.61 0.47 0.53

CN 0.44 0.42 1.00 0.43 0.44 0.36 0.67

CL 0.47 0.50 0.43 1.00 0.50 0.38 0.41

MX 0.62 0.61 0.44 0.50 1.00 0.42 0.53

PE 0.44 0.47 0.36 0.38 0.42 1.00 0.27

US 0.52 0.53 0.67 0.41 0.53 0.27 1.00

E M (k = 5)

AR 1.00 0.51 0.24 0.47 0.46 0.37 0.28

BR 0.51 1.00 0.35 0.68 0.64 0.49 0.38

CN 0.24 0.35 1.00 0.36 0.40 0.33 0.69

CL 0.47 0.68 0.36 1.00 0.58 0.54 0.42

MX 0.46 0.64 0.40 0.58 1.00 0.50 0.48

PE 0.37 0.49 0.33 0.54 0.50 1.00 0.25

US 0.28 0.38 0.69 0.42 0.48 0.25 1.00

E M (k = 6)

AR 1.00 0.77 0.44 0.69 0.69 0.51 0.51

BR 0.77 1.00 0.41 0.67 0.65 0.51 0.43

CN 0.44 0.41 1.00 0.49 0.47 0.42 0.71

CL 0.69 0.67 0.49 1.00 0.57 0.53 0.47

MX 0.69 0.65 0.47 0.57 1.00 0.51 0.51

PE 0.51 0.51 0.42 0.53 0.51 1.00 0.31

US 0.51 0.43 0.71 0.47 0.51 0.31 1.00

ES (upper panel) and EM (lower panels) estimated correlation matrix for the extremal Gaussian component

Ventura (2012), and to the excellent book Heritier et al. (2009). The proposed algorithm
may be used in practically any situation in which continuous outcomes are repeatedly
measured over time. The focus may be on prediction, estimation of the parameters
of the manifest distribution, latent state estimation. In all these cases, contamination
may lead to bias; and we therefore believe that robust estimation procedures shall
be routinely used when modeling by means of dynamic mixtures. There are many
applications of HMM with continuous outcomes in econometrics and finance. Other
areas include monitoring of gene expression over time (e.g., Schliep et al. (2003);
Farcomeni and Arima (2012)), modeling of ion channels (Michalek et al. 2001), and
much more.

There are different possibilities for further work, three of which are worth men-
tioning. First of all, our approach should be extended to large dimensions. This can
be done for instance constraining the covariance matrices of the components (e.g.,
that they are all equal, that all off-diagonal elements are equal, and so on), but at the
price in general of more complex estimation strategies. Secondly, robust model selec-

123



76 A. Farcomeni, L. Greco

tion strategies could be better explored and employed and the properties of available
strategies after robust estimation could be investigated. Finally, note that there are no
robustness issues at the E step, given that it substantially is a maximization with respect
to a bounded parameter space. In this sense, mi j and mi j1 j2 can not break down. A
more general definition of breakdown can be found in Genton and Lucas (2003), and
modification of the E step in this light is also grounds for further work.

Acknowledgments The authors are grateful to an anonymous referee for kind suggestions. The second
author was supported by MIUR research grant PRIN 2008AHWTJ4 “New robust methods for the analysis
of complex data”.

Appendix 1: Multivariate M-estimators

Put V = �−1. Recall that, for a matrix A and a vector b

∂|A|
∂ A

= |A|A−1

∂bT Ab

∂b
= (A + AT )b

∂bT Ab

∂ A
= bbT .

By taking the derivatives of (2) with respect to μ and V therefore one obtains

∂�(θ)

∂μ
=

n∑
i=1

∂ρ(di )

∂di

∂di

∂μ
=

n∑
i=1

∂ρ(di )

∂di

V (yi − μ)

di

∂�(θ)

∂V
=

n∑
i=1

∂ρ(di )

∂di

∂di

∂V
= n

2
V −1 −

n∑
i=1

∂ρ(di )

∂di

(yi − μ)(yi − μ)T

2di
.

Put wi = w(di ) = ∂ρ(di )
∂di

1
di

, and (3) follows.

Appendix 2: S-estimators

Set V = �−1 and let λ denote a Lagrangian multiplier. Besides the constraint in (4),
(μ̂S, V̂S, λ̂) satisfies

∂Ln

∂μ
= −V λ

n∑
i=1

(yi − μ)wi = 0 (19)

∂Ln

∂V
= −1

2

n∑
i=1

[
V −1 + λ(yi − μ)(yi − μT

) wi

]
= 0
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where Ln is the Lagrangian

Ln(μ,�, λ) = log |�| − λ

{
1

n

n∑
i=1

ρ (di ) − δ

}
.

On simplification of the second (matrix) equation, we have that

n∑
i=1

[
Ip + λV (yi − μ)(yi − μ)T wi

]
= 0

and by taking the trace

n∑
i=1

[
p + λd2

i wi

]
= 0 ,

from which one obtains the expression for the Lagrangian multiplier

λ = − p∑n
i=1 vi

. (20)

Substitute (20) into (19) and obtain (6) for Σ = V −1.

7 Appendix 3: S-estimation of location and scatter in HMM

Let us consider the partial derivatives of L
n(s)

j
. Put Vj = Σ−1

j and make use of the

results in “Appendix 1”. Besides the constraints in (14), (μ̂ j , V̂ j , λ̂ j ) satisfies

∂L
n(s)

j

∂μ j
= −Vjλ j

n∑
i=1

(yi − μ j )w
(s)
i j m(s)

i j = 0

∂L
n(s)

j

∂Vj
= −1

2

n∑
i=1

m(s)
i j

[
V −1

j + λ j (yi − μ j )(yi − μ j )
T w

(s)
i j

]
= 0. (21)

On simplification of the second (matrix) equation, we have that

n∑
i=1

m(s)
i j

[
Ip + λ j V j (yi − μ j )(yi − μ j )

T w
(s)
i j

]
= 0,

and by taking the trace

n∑
i=1

m(s)
i j

[
p + λ j d

2
i jw

(s)
i j

]
= 0 ,
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one obtains the expression for the j-th Lagrangian multiplier

λ j = − p
∑n

i=1 m(s)
i j∑n

i=1 m(s)
i j v

(s)
i j

. (22)

If we substitute (22) into (21) then (16) follows for Σ j = V −1
j .

8 Appendix 4: Monotonicity

In order to prove (18), first consider that the matrices |Σ(s+1)
j | are the solutions to

the constrained minimization problems P j
n , hence at the sth S-step |Σ(s+1)

j | ≤ |Σ(s)
j |,

where equality holds at convergence. Therefore, it is possible to show that the quantity

n∑
i=1

k∑
j=1

m(s)
i j

[
ρ

(
d(s)

i j

)
− ρ

(
d(s+1)

i j

)]
, (23)

is not smaller than zero.
Let us recall that ρ(·) = − log h(·), where h(·) is a positive function. This yields

that (23) is not smaller than

n∑
i=1

k∑
j=1

m(s)
i j w

(s)
i j

[
d2,(s)

i j − d2,(s+1)
i j

]
, (24)

with equality in the Gaussian case for which ρ(d) = d2 [see Maronna et al. (2006, Ch.
9), for further details]. By using the fact that μ(s+1)

j minimizes
∑n

i=1(yi j −μ)T V (yi j −
μ) for any positive definite matrix V and therefore

∑n
i=1 d2,(s)

i j ≥ ∑n
i=1 d̃2,(s)

i j , with

d̃(s)
i j = d(yi ;μ

(s+1)
j ,Σ

(s)
j ), one can establish that (24) is not smaller than

n∑
i=1

k∑
j=1

m(s)
i j w

(s)
i j

[
d̃2,(s)

i j − d2,(s+1)
i j

]
=

n∑
i=1

k∑
j=1

uT
i j

(
Σ

(s)
j

)−1
ui j

−
n∑

i=1

k∑
j=1

uT
i j

(
Σ

(s+1)
j

)−1
ui j , (25)

where ui j =
√

w
(s)
i j m(s)

i j

(
yi − μ

(s+1)
j

)
. Since Σ

(s+1)
j is the sample covariance matrix

of the ui j ’s, it minimizes the sum of squared Mahalanobis distances for each component

j , then (25) is not smaller than zero and equal to zero when Σ
(s+1)
j = Σ

(s)
j and (18)

follows.
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