
Comput Stat (2014) 29:1263–1277
DOI 10.1007/s00180-014-0490-5

ORIGINAL PAPER

Bootstrap prediction intervals in beta regressions

Patrícia L. Espinheira · Silvia L. P. Ferrari ·
Francisco Cribari-Neto

Received: 21 September 2013 / Accepted: 18 March 2014 / Published online: 3 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We address the issue of constructing prediction intervals for responses that
assume values in the standard unit interval, (0, 1). The response is modeled using the
class of beta regression models and we introduce percentile and BCa (bias-corrected
and accelerated) bootstrap prediction intervals. We present Monte Carlo evidence on
the finite sample behavior of such intervals. An empirical application is presented and
discussed.

Keywords Beta distribution · Beta regression · Bootstrap · Prediction · Prediction
interval

1 Introduction

The beta distribution is commonly used to model random variables that assume values
in (0, 1), such as rates, percentages and proportions. The beta density can display quite
different shapes depending on the parameter values. Oftentimes the variable of inter-
est is related to a set of independent (explanatory) variables. Ferrari and Cribari-Neto
(2004) introduced a regression model in which the response is beta-distributed, its
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mean being related to a linear predictor through a link function. The linear predictor
includes independent variables and regression parameters. Their model also includes
a precision parameter whose reciprocal can be viewed as a dispersion measure. In the
standard formulation of the beta regression model it is assumed that the precision is
constant across observations. However, in many practical situations this assumption
does not hold. Smithson and Verkuilen (2005), among others, consider a beta regres-
sion specification in which dispersion is not constant, but is a function of covariates
and unknown parameters. Such models are known as varying dispersion beta regres-
sion models. Parameter estimation is carried out by maximum likelihood (ML) and
standard asymptotic hypothesis testing can be easily performed. Practitioners can use
the betareg package, which is available for the R statistical software (http://www.
r-project.org), for fiting beta regressions. Cribari-Neto and Zeileis (2010) provide an
overview of varying dispersion beta regression modeling using thebetareg package.

An empirical application we shall address in this paper relates to the distribution
of natural gas for home usage (e.g., in stoves, ovens and water heaters) in São Paulo,
Brazil. Such a distribution is based on a simultaneity factor that assumes values in
the standard unit interval, (0, 1). It relates to the nominal power and to the number
of appliances that use natural gas. Given these factors, the company that supplies
the gas tries to forecast the probability of simultaneous appliances usage in order to
decide how much gas to supply to a given residential unit. According to Zerbinatti
(2008), in 2005 the Instituto de Pesquisas Tecnológicas (IPT) e a Companhia de Gás de
São Paulo (COMGÁS) computed the simultaneity factor for a number of residences.
Zerbinatti (2008) modeled such data using different regression models and concluded
that the best performing model was the logit model that used the natural logarithm
of the computed power indicator as a covariate. It is noteworthy that one has to be
careful not to underestimate the simultaneity factor when making projections using
an estimated regression model since that could cause a shortage of natural gas supply.
The author shows that the beta regression model can underpredict the response; see
Zerbinatti (2008, Figure 4.11.b). It is thus important to have at disposal prediction
intervals that can be used with beta regressions. This is the motivation for our paper.

Our main goal is to propose and numerically evaluate bootstrap prediction inter-
vals that can be used with the beta regression model. That is, we construct intervals
for unobserved response values corresponding to a given set of covariate values. At
the outset, we consider the percentile method as described by Davison and Hink-
ley (1997) for generalized linear models. We also consider a more refined prediction
interval, namely: the BCa (bias-corrected accelerated). We obtain the BCa prediction
interval for new response values. (Notice that we construct prediction intervals, not
confidence intervals.) The finite sample performances of the bootstrap intervals are
evaluated using Monte Carlo simulations. Finally, the empirical application briefly
described above is addressed.

2 The bootstrap method

Let x = (x1, . . . , xn) be a random sample from the random variable X whose distrib-
ution function is F. Let θ = t (F) be the parameter that indexes the population and let
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̂θ = S(x) be an estimator of θ . In the bootstrap method, one obtains, from the original
sample x , a large number of pseudo-samples (bootstrap samples) x∗ = (x∗

1 , . . . , x∗
n ),

computes the quantity of interest for each pseudo sample (i.e., ̂θ ∗ = S(x∗)), and then
one uses the empirical distribution of ̂θ ∗ = S(x∗) as an estimate of the distribution of
̂θ . Bootstrap sampling can be performed from the empirical distribution function of
x , given by ̂F (ι) = #{xi ≤ ι}/n, ι ∈ R, or from F after replacing θ by ̂θ , a consistent
parameter estimator. The former is known as the nonparametric bootstrap whereas the
latter is known as the parametric bootstrap.

3 Beta regression prediction intervals

Let y1, . . . , yn be independent random variables such that each yt , for t = 1, . . . , n,
is beta distributed, i.e., each yt has density function given by

f (y;μ, φ) = �(φ)

�(μφ)�((1 − μ)φ)
yμφ−1(1 − y)(1−μ)φ−1, 0 < y < 1, (1)

where 0 < μ < 1 and φ > 0. Here, E(y) = μ and var(y) = V (μ)/(1 + φ), where
V (μ) = μ(1−μ). In the beta regression model introduced by Ferrari and Cribari-Neto
(2004) the mean of yt can be written as

g(μt ) = x�
t β = ηt . (2)

In addition to the relation given in (2), it is possible to assume that the precision
parameter is not constant and write

h(φt ) = z�t γ = ϑt . (3)

In (2) and (3), ηt and ϑt are linear predictors, β = (β1, . . . , βk)
� and γ =

(γ1, . . . , γq)
� are unknown parameter vectors (β ∈ R

k ; γ ∈ R
q ), xt1, . . . , xtk and

zt1, . . . , ztq are fixed covariates (k + q < n) and g(·) and h(·) are link functions,
which are strictly increasing and twice-differentiable.

Fitted regression models are oftentimes used to predict out-of-sample response
values. In the regression model described by (1)–(3), x�

t = (xt1, . . . , xtk) is a
set of observed covariate values and yt is the t th observed response. Let x�+ =
(x+1, . . . , x+k) denote a new set of covariate values and let y+ be the corresponding
unobserved response value. The latter can be predicted by μ̂+ = g−1(

∑k
i=1 x+i β̂i ),

where β̂i is the maximum likelihood estimate of βi computed using the original sam-
ple. It is useful to obtain a prediction interval, which is given by lower and upper limits
that are statistics associated with a given desired coverage level. In what follows, we
shall construct such an interval using estimates of the prediction error distribution.

3.1 Percentile prediction intervals for beta regressions

Let R(y, μ) denote a monotonic function of y that has constant variance for all obser-
vations. Assume that the mean μ+ and the distribution of R(y, μ) are known, and
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denote the αth quantile of such a distribution by δα (0 < α < 1/2). The limits of the
1 − α prediction interval has lower and upper limits given by y+,α/2 and y+,1−α/2,
respectively, which satisfy R(y+,α/2, μ+) = δα/2 and R(y+,1−α/2, μ+) = δ(1−α/2),
where R(y, μ+) is the prediction error. If μ̂, the estimate of μ, is computed indepen-
dently from y+ and the quantiles of R(y+, μ̂) are known, the prediction interval can
be easily computed. The distribution of R(y+, μ̂), however, is typically unknown. In
what follows, we shall use data resampling to estimate it and then obtain the desired
quantiles from such an estimated distribution, which are used to construct the pre-
diction interval. In the data resampling mechanism we shall work with a normalized
version of R(y, μ̂) whose distribution has constant variance.

For the beta regression model, we consider

R(y, μ) = y∗
t − μ∗

t√
vt

, (4)

where E(y∗
t ) = μ∗

t and var(y∗
t ) = vt , with vt = ψ ′(μtφt )+ ψ ′((1 − μt )φt ). Here,

y∗
t = log{yt/(1 − yt )} and μ∗

t = ψ(μtφt )− ψ((1 − μt )φt ). (5)

Hence, R(y, μ) is a monotonic function of y with zero mean and unit variance [see
Ferrari et al. 2008, Eq. (8)]. In the data resampling mechanism we shall use the stan-
dardized version of R(y, μ̂) given by

rt = y∗
t − μ̂∗

t
√

v̂t (1 − h∗
t t )
, (6)

which was proposed in Espinheira et al. (2011) and is known as standardized weighted
residual 2. It is a standardized residual obtained using Fisher’s scoring iterative algo-
rithm for β under varying dispersion. Here, h∗

t t is the t th diagonal element of

H∗ = (̂ŴV)1/2 X (X�
̂V ̂W X)−1 X�(̂V ̂W )1/2,

where X is the n × k matrix of covariates (k < n), W = diag{w1, . . . , wn} with
wt = φtvt/{g′(μt )}2 and

V = diag{φ1, . . . , φn}. (7)

Using the approach outlined by Davison and Hinkley (1997, p. 340) for generalized
linear models we can construct the 1 − α percentile prediction interval using the α/2
and 1 − α/2 quantiles of ̂G, the bootstrap approximation to R(y+, μ̂).

It is well known that percentile confidence interval for θ , the parameter that indexes a
given population, can display poor behavior in small samples when based on a highly
biased estimator of that parameter (DiCiccio and Tibshirani 1987). A more refined
approach is known as BCa (bias-corrected and accelerated). It accounts for bias and
for the fact that the estimator standard error may vary with θ .

123



Bootstrap prediction intervals 1267

3.2 BCa confidence intervals

Assume that there exists a function h(θ) = ρ, which is monotic decreasing, and
constants a and v0 such that ρ̂−ρ ∼ N (−v0(1+aρ), (1+aρ)2). The exact upper limit
of the 1 − α confidence interval for ρ is ρ[α] = ρ̂ + seρ̂{v0 + zα}/{1 − a(v0 + zα)},
where zα is the α standard normal quantile. Let P denote the distribution function of
̂θ . Using the inverse transformation h−1(·), we obtain an estimate of α:

α̃ = �

(

v̂0 + v̂0 + zα
1 − â(̂v0 + zα)

)

, (8)

where � is the standard normal distribution function. The 1 − α BCa confidence
interval is given by the α̃/2 and 1 − α̃/2 quantiles of ̂G when zα in (8) is replaced by
zα/2 and z1−α/2, respectively.

The constant v0 accounts for any bias of the plug-in estimator. According to Efron
(1987) it can be estimated as

v̂0 = �−1
(

#̂θb < ̂θ

B

)

, (9)

wherêθb is the bth bootstrap estimate of θ and B is the number of bootstrap replications.
Roughly speaking, v̂0 measures the discrepancy between the median of ̂θ∗ and ̂θ , in
normal units. If v̂0 = 0, then ̂θ = median(̂θ∗) and the bias correction is not needed.

The acceleration constant a accounts for the rate of change in the standard error
of ̂θ with respect to θ . According to Efron (1987), in one parameter models a good
approximation to a is

a ≈ 1

6
skewθ=̂θ (�̇ θ ), (10)

where �̇θ = �̇ = d log f (y; θ)/dθ . Note that the skewness of �̇ , E[(�̇ −
E[�̇ ])3]/{E[(�̇ − E[�̇ ])2]}3/2, is evaluated at ̂θ . According to Davison and Hinkley
(1997) the expression in (10) is equivalent to

a ≈ 1

6

E[�̇ (̂θ)3]
var[�̇ (̂θ)]3/2

, (11)

which can be estimated using data resampling.

3.3 BCa prediction intervals for the realization of a random variable

Our goal in this paper, however, is not to construct confidence intervals for a parame-
ter, but to construct prediction intervals for the realization of a random variable. In
that sense, we shall now consider the proposal made in Mojirsheibani and Tibshirani
(1996). The authors develop prediction intervals for ̂θ+, an efficient estimator of a
scalar parameter θ , based on a new sample of size n+.
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Based on expressions (8)–(10), the authors suggest the following choice of value
for v0:

v̂0 = �−1
(

#̂θ+,b < ̂θn

B

)

, (12)

where ̂θn and ̂θ+ are the MLEs of θ obtained using yn and y+, respectively, yn =
(y1, . . . , yn)

� being the original sample and y+ = (y1+ , . . . , yn+)� being the new
sample values. Additionally, they suggest using

a = 1

6
skewθ=̂θn

(�̇ θ (̂θ+)) (13)

with a multiplicative correction of (n/n+)−1/2.

3.4 BCa prediction intervals for new and unobserved response values

The BCa scheme presented Sect. 3.3 can be used to construct prediction intervals
for ̂θ+ under new response values. Our goal, nonetheless, is to construct prediction
intervals for new, unobserved response values given a set of covariates values. The
BCa method we propose is a modification of the existing BCa methods (Sects. 3.2
and 3.3). In particular, we obtain expressions for a and v0 when the interest lies in
predicting a given observation. This is the main difference between our result and the
existing results and is also our main contribution to the literature.

Based on (10), we propose using

a = 1

6
skewθ=̂θn

(�̇ (μ̂+)) ≈ 1

6

E[�̇ 3
+]

var[�̇+]3/2
, (14)

which is to be corrected by the multiplicative factor given by (n/n+)−1/2. It can be
shown that, in the class of beta regressions, �̇t = d log f (y;μ, φ)/dμ = φt (y∗

t −μ∗
t ).

Thus, �̇+ = φ+(y∗+−μ∗+), which becomes �̇+ = φ(y∗+−μ∗+)under constant dispersion.
Estimation of a can be performed using data resampling, e.g., bootstrap. We used

that approach in a numerical experiment, i.e., we used the bootstrap to obtain estimates

of E[�̇ 3
t ] and var[�̇ t ], which in turn allowed us to obtain an estimate for a. Our

numerical results showed, however, that this approach did not display good small
sample performance. A better performing approach proved to be the one in which a
is calculated analytically. For the varying dispersion beta regression model we obtain,

after some algebra, E[�̇ 3
t ] = ϕt = φ3

t {ψ ′′(μtφt ) − ψ ′′((1 −μt )φt )} and var[�̇ t ] =
vt = φ2

t {ψ ′(μtφt )+ψ ′((1 −μt )φt )}. It then follows that E[�̇ 3
+] = ϕ+, var[�̇+] = v+

and â = (1/6)ϕ̂+/̂v3/2
+ , with ϕ̂+ = ̂φ3+{ψ ′′(μ̂+̂φ+) − ψ ′′((1 − μ̂+)̂φ+)} and v̂+ =

̂φ2+{ψ ′(μ̂+̂φ+)+ ψ ′((1 − μ̂+)̂φ+)}. Here,

̂φ+ = h−1

⎛

⎝

q
∑

j=1

z+, j γ̂ j

⎞

⎠ . (15)
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In (15), γ̂ j is the MLE of γ j and z+, j is the j th component of z�+ = (z+1, . . . , z+q),
i.e., it is the j th component of the set of dispersion regressors associated with the
unobserved response y+.

Next, we shall propose an estimator for v0. Since our interest lies in the estimation of
the distribution of R(y+, μ̂)we shall use an estimate which is based on such quantity.
Our proposal is to use

v̂0 = �−1
(

#Ra+,b < Rm

B

)

, (16)

where Rm is the median of R1, . . . ,Rn , which is computed using the original data
and (4), and Ra+,b is defined in algorithm given below; see Eq. (17).

3.5 Algorithm

Our algorithm can be outlined as follows. It is intended for n1 predictions and uses B
bootstrap replications. The bootstrap replications are indexed as b = 1, . . . , B.

1. For t = 1, . . . , n, randomly draw rt,b from r1, . . . , rn (with replacement).
2. Construct a bootstrap sample (yb, X, Z), where yb = (y1,b, . . . , yn,b)

�, such that

yt,b = exp(μ̂∗
t + rt,b

√
v̂t )

1 + exp(μ̂∗
t + rt,b

√
v̂t )

is obtained as the solution to R(yt , μ̂t ) = rt,b.
3. Using (yb, X, Z) compute ̂βb and γ̂b, the bootstrap estimates of β and γ , respec-

tively. Here, Z is the n × q matrix of covariates used in the dispersion submodel.
Using the matrices of new observations on the regressors, X+ (n1 × k) and Z+
(n1 × q), together with ̂βb and γ̂b, obtain μ̂+,b, ̂φ+,b, μ̂∗+,b v̂+,b, which are n1-
vectors.

4. For each new observation a+ = 1, . . . , n1:

(a) Randomly draw ra+,b from r1, . . . , rn .
(b) Compute

ya+,b = exp(μ̂∗
a+,b + ra+,b

√

v̂a+,b)

1 + exp(μ̂∗
a+,b + ra+,b

√

v̂a+,b)
.

(c) Compute the prediction error

Ra+,b(ya+,b, μ̂
∗
a+,b) = y∗

a+,b − μ̂∗
a+,b

√

v̂a+,b
, (17)

where y∗
a+,b = log

{

ya+,b/(1 − ya+,b)
}

. For each new observation, sort the B
values Ra+ , such that Ra+ (1) ≤ · · · ≤ Ra+ (B). Compute the percentile quantiles
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δ�
P

a+
a (α/2)

= Ra+ (B(α/2)) and δ�
P

a+
a (1−α/2) = Ra+ (B(1−α/2)),

and the BCa quantiles

δ�
BC

a+
a (α/2)

= Ra+ (B( α̃/2)) and δ�
BC

a+
a (1−α/2) = Ra+ (B(1− α̃/2)),

with α̃/2 given in (8). Finally, obtain the prediction interval limits, percentile
(δ�a+ = δ�

P
a+
a

) or BCa (δ�a+ = δ�
BC

a+
a

), using

ya+,I =
exp(μ̂∗

a+ + δ�a+ (α/2)
√

v̂a+)

1 + exp(μ̂∗
a+ + δ�a+ (α/2)

√

v̂a+)

ya+,S =
exp(μ̂∗

a+ + δ�a+ (1−α/2)
√

v̂a+)

1 + exp(μ̂∗
a+ + δ�a+ (1−α/2)

√

v̂a+)
.

Here, μ̂∗
a+ and v̂a+ are the quantities μ∗ and v evaluated at μ̂a+ = g−1(x�

a+
̂β)

and ̂φa+ = h−1(z�
a+ γ̂ ), x�

a+ and z�
a+ being the a+-th rows of X+ and Z+ relative

to the new observations, respectively, a+ = 1, . . . , n1. The values ya+,I and
ya+,S are obtained, respectively, as the solutions to R(ya+ , μ̂a+) = δ�a+ (α/2) and

R(ya+ , μ̂a+) = δ�a+ (1−α/2).

4 Simulation results

The simulation results presented in this section were obtained using both fixed and
varying dispersion beta regressions as data generating processes. Table 1 contains
numerical results for the fixed dispersion beta regression model given by

log

(

μt

1 − μt

)

= β1 + β2xt2.

The sample sizes are n = 40, 80, 120 and the precisions are φ = 50, 150, 400.
There are five different scenarios. In the first three scenarios, μ ∈ (0.15, 0.80),
μ ∈ (0.95, 0.98) and μ ∈ (0.02, 0.07); the covariate values were generated from
the standard normal distribution. In the remaining two scenarios we generated the
covariate values from the t3 and unit mean exponential distributions in order to
introduce leverage points in the data. The number of Monte Carlo replications is
5,000 and for each replication we perform B = 500 bootstrap replications. The
nominal coverage of all intervals is 95 %. The figures in Table 1 are empirical
coverages (%).

The numerical results presented in Table 1 show that the BCa and percentile intervals
perform similarly, the BCa outperforming the percentile method in some situations. For
instance, when μ ∈ (0.02, 0.07), φ = 50 and n = 40, the percentile coverage equals
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Table 1 Empirical coverages (%). The model is log(μt/(1 − μt )) = β1+β2xt2, B = 500 and the nominal
coverage is 95 %

μ μ ∈ (0.15, 0.80)

φ 50 150 400

n 40 80 120 40 80 120 40 80 120

Percentile 97.9 96.8 97.2 92.4 95.4 94.7 94.8 96.3 94.7

BCa 98.0 96.1 97.3 93.8 95.6 97.1 94.8 96.3 94.7

μ μ ∈ (0.95, 0.98)

φ 50 150 400

n 40 80 120 40 80 120 40 80 120

Percentile 96.0 90.9 96.5 92.0 97.0 95.5 97.9 94.7 97.3

BCa 95.8 90.5 95.9 91.2 94.4 95.5 95.5 94.7 96.9

μ μ ∈ (0.02, 0.07)

φ 50 150 400

n 40 80 120 40 80 120 40 80 120

Percentile 87.3 96.5 96.9 90.3 90.5 90.3 89.6 92.6 94.7

BCa 97.5 98.8 99.6 90.8 90.5 90.3 89.8 93.9 94.7

μ Covariate values generated from t3
φ 50 150 400

n 40 80 120 40 80 120 40 80 120

Percentile 98.8 96.3 93.2 94.6 93.2 94.5 93.5 96.5 96.6

BCa 98.1 95.9 92.3 94.6 90.9 97.0 92.8 96.1 96.7

μ Covariate values generated from exp(1)

φ 50 150 400

n 40 80 120 40 80 120 40 80 120

Percentile 97.2 90.1 94.8 95.8 91.7 95.0 94.7 96.2 92.2

BCa3 99.5 96.3 95.9 95.8 95.1 95.1 97.5 96.2 92.2

87.3 % whereas the BCa coverage is 97.5 %. We also note that when the covariate
values are generated from the exponential distribution, the BCa is consistently superior
to the percentile method. For example, when φ = 50 and n = 80, the BCa and
percentile coverages are 96.3 and 90.1 %, respectively. There are some situations,
however, in which the percentile outperforms the BCa , such as when φ = 150 and
n = 80; their respective coverages are 93 and 90 %. It is also noteworthy that the
finite sample performances of both interval estimators improve when the sample size
increases and also when the value of the precision parameter increases.

We have also carried out Monte Carlo simulations using a varying dispersion beta
regression model. The data generating process is

log

(

μt

1 − μt

)

= β1 + β2xt2 and log(φt ) = γ1 + γ2xt2.

We measure the intensity of nonconstant dispersion as λ = φmax/φmin and report
results for λ = 20, 50, 100. The empirical coverages are given in Table 2. The results
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Table 2 Empirical coverages (%)

μ μ ∈ (0.15, 0.80)

λ 20 50 100

n 40 80 120 40 80 120 40 80 120

Percentile 90.8 97.1 96.4 95.3 93.9 94.8 92.3 96.1 94.9

BCa 90.8 97.1 97.1 92.6 93.9 94.8 92.3 96.1 95.5

μ μ ∈ (0.95, 0.98)

λ 20 50 100

n 40 80 120 40 80 120 40 80 120

Percentile 98.3 93.8 92.3 97.7 95.4 95.2 92.1 96.1 95.3

BCa 94.8 93.8 90.7 97.0 95.4 95.1 92.1 96.1 94.8

μ μ ∈ (0.02, 0.08)

λ 20 50 100

n 40 80 120 40 80 120 40 80 120

Percentile 90.7 94.1 94.3 89.9 90.7 91.5 92.1 96.1 95.3

BCa 90.7 94.2 95.3 91.3 94.8 93.4 92.1 96.1 94.8

μ Covariate values generated from t3
λ 20 50 100

n 40 80 120 40 80 120 40 80 120

Percentile 94.2 95.4 96.6 93.6 95.5 94.9 93.4 95.9 93.9

BCa 91.6 95.4 96.6 91.7 95.6 94.9 93.4 94.4 92.1

The model is log(μt/(1 − μt )) = β1 + β2xt2 and log(φt ) = γ1 + γ2xt2, B = 500 and the nominal
coverage is 95 %

show that the empirical coverages are sensitive to the intensity of nonconstant disper-
sion. Overall, the two methods are competitive. The percentile method outperforms
the BCa when the data include leverage points (covariate values obtained as random
draws from the t3 distribution). For instance, when λ = 20 and n = 40, their cover-
ages are 94.2 and 91.6 %, respectively. On the other hand, the BCa outperforms the
percentile method when μ ∈ (0.02, 0.07). For example, when λ = 50 and n = 80,
the respective coverages are 94.8 and 90.7 %.

We performed additional simulations in which we increased the number of covari-
ates, used different covariates in the mean and precision submodels and incorrectly
estimated a fixed dispersion beta regression when the true data generating process had
varying dispersion. The new numerical results are presented in Tables 3, 4 and 5. We
considered the following beta regression model:

log

(

μt

1 − μt

)

= β1 + β2xt2 + β3xt3 + β4xt4 + β5xt5, (18)

log(φt ) = γ1 + γ2zt2 + γ3zt3 + γ4zt4 + γ5zt5. (19)

The covariate values in the mean submodel were obtained as random draws from the
standard uniform distribution whereas those in the precision submodel were obtained
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Table 3 Empirical coverages (%)

β β1 = 1.7, β2 = −2, 5β3 = 2.0, β4 = 0.0, β5 = 0.0 μ ∈ (0.20, 0.90)

φ 50 150 400

n 40 80 120 40 80 120 40 80 120

Percentile 91.6 97.5 97.3 93.5 92.9 92.5 94.0 94.9 94.2

BCa 98.6 97.6 97.3 93.5 92.9 92.8 94.0 94.6 94.72

β β1 = 2.0, β2 = −1.0, β3 = 3.0, β4 = −2.0, β5 = 0.0 μ ∈ (0.18, 0.90)

φ 50 150 400

n 40 80 120 40 80 120 40 80 120

Percentile 93.6 97.9 92.1 91.6 97.6 96.0 92.7 94.3 94.8

BCa 97.5 99.3 97.9 91.6 97.6 96.0 92.9 94.3 94.8

β β1 = 2.0, β2 = −1.0, β3 = 3.0, β4 = −2.0, β5 = 1.0 μ ∈ (0.17, 0.91)

φ 50 150 400

n 40 80 120 40 80 120 40 80 120

Percentile 91.5 95.7 91.2 92.7 96.2 95.7 93.7 94.5 95.1

BCa 97.6 95.7 95.0 92.7 96.2 95.7 93.70 95.5 95.1

The model is log(μt/(1 − μt )) = β1 +β2xt2 +β3xt3 +β4xt4 +β5xt5, B = 500 and the nominal coverage
is 95 %

as random draws from the U(−0.5, 0.5) distribution. Thus, the covariate values in
the two submodels are not the same. The results in Table 3 were obtained using
log(φt ) = γ1 (constant dispersion). The results in Table 4 were obtained using dif-
ferent values for the β’s and γ ’s which lead to models with different number of
covariates. Additionally, λ = 20, 50, 100. Finally, we considered the case in which
the true data generating process has varying dispersion but a fixed dispersion beta
regression is estimated; see Table 5. The results in Table 3 show that the intervals
do not become considerably less accurate when the number of covariates increases,
especially when the precision parameter equals 150 or 400. When φ = 50 and
n = 40 the percentile interval displays smaller coverage. The BCa finite sample
performance is not altered. The average interval lengths are also not substantially
affected. The simultaneous increase in the number of covariates in the two sub-
models also does not noticeably affect the intervals finite sample performances; see
Table 4.

The intervals finite sample behavior slightly change when the true data generating
process has varying dispersion, but a fixed dispersion beta regression model is esti-
mated. The results are presented in Table 5. The most extreme change takes place when
λ = 50 and n = 40. For the correctly specified one-covariate model the percentile and
BCa coverage rates (average lengths) are 95.3 and 92.6 % (0.16 e 0.15), respectively.
When the fixed dispersion model is estimated, these coverage rates (average lengths)
become 100.0 % and 100.0 % (0.36 e 0.20). Overall, the BCa average lengths are
smaller than the percentile average lengths. Here, the coverage rates tend to decrease
when the number of covariates increases. For instance, when there are three covari-
ates, λ = 20 and n = 80 the percentile coverage (average length) becomes 88.4%
(0.33).
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Table 4 Empirical coverages (%)

β β1 = 2.0, β2 = −1.0, β3 = 3.0, β4 = 0.0, β5 = 0.0 μ ∈ (0.50, 0.96)

γ γ1 = 5.5, γ2 = 2.5, γ1 = 6.0, γ2 = 3.7, γ1 = 4.0, γ3 = 4.5,

γ3 = −2.0, γ4 = 0.0, γ3 = −2.0, γ4 = 0.0, γ3 = 1.0, γ4 = 0.0,

γ5 = 0.0 γ5 = 0.0 γ5 = 0.0

λ 20 50 100

n 40 80 120 40 80 120 40 80 120

Percentile 96.0 98.7 99.1 95.4 93.0 95.5 92.4 98.2 98.9

BCa 95.5 98.7 99.1 95.4 93.0 93.7 92.4 98.2 98.9

β β1 = 2.0, β2 = −1.0, β3 = 3.0, β4 = −2.0, β5 = 0.0 μ ∈ (0.19, 0.90)

γ γ1 = 2.0, γ2 = 2.0, γ1 = 3.0, γ2 = 2.0, γ1 = 4.0, γ2 = 2.7,

γ3 = 2.0, γ4 = 1.0, γ3 = 3.0, γ4 = 1.0, γ3 = 2.7, γ4 = 2.0,

γ5 = 0.0 γ5 = 0.0 γ5 = 0.0

λ 20 50 100

n 40 80 120 40 80 120 40 80 120

Percentile 97.1 96.2 97.9 99.7 92.3 96.6 92.4 95.3 96.8

BCa 97.1 96.2 98.3 99.7 92.3 96.6 92.4 94.0 98.2

β β1 = 2.0, β2 = −1.0, β3 = 3.0, β4 = −2.0, β5 = 1.5 μ ∈ (0.16, 0.92)

γ γ1 = 3.0, γ2 = 1.5 γ1 = 4.0, γ2 = 2.5, γ1 = 4.0, γ2 = 3.5,

γ3 = −1.0, γ4 = 1.0, γ3 = 3.0, γ4 = 1.0, γ3 = −1.0, γ4 = 1.0,

γ5 = 2.0 γ5 = 2.2 γ5 = 2.2

λ 20 50 100

n 40 80 120 40 80 120 40 80 120

Percentile 93.1 92.9 91.2 92.0 93.3 96.5 97.3 97.4 97.6

BCa 93.1 92.9 91.2 92.0 93.5 96.5 97.3 97.5 97.5

The model is log(μt/(1 − μt )) = β1 + β2xt2 + β3xt3 + β4xt4 + β5xt5 and log(φt ) = γ1 + γ2zt2 +
γ3zt3 + γ4zt4 + γ5zt5, B = 500 and the nominal coverage is 95 %

5 Empirical application

We shall now return to the application briefly described in the Introduction. Recall
that it relates to the distribution of natural gas for home usage in São Paulo, Brazil.
The distribution of natural gas is based on a simultaneity factor that assumes values
in the standard unit interval, (0, 1).

Using the simultaneity factor one obtains the release indicator, i.e., an indicator of
gas release in a given tubulation section: Q p = F × Qmax , where Q p is the release,
F is the simultaneity factor and Qmax is the maximum possible release. F assumes
values in (0, 1), and can be interpreted as the ratio between effective and maximal
intensities. We note that overpredictions of the simultaneity factor leads to excess
supply of gas and, as consequence, inefficient allocation and higher costs.

According to Zerbinatti (2008), the Instituto de Pesquisas Tecnológicas (IPT) and
the Companhia de Gás de São Paulo (COMGÁS) performed an extensive study in
which data were collected in order to build a database on simultaneity factors and
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Table 5 Empirical coverages (%)

β β1 = 2.0, β2 = −1.0, β1 = 2.0, β2 = −1.0, β1 = 2.0, β2 = −1.0,

β3 = 0.0, β4 = 0.0 β3 = 3.0, β4 = 0.0 β3 = 3.0, β4 = −2.0

μ ∈ (0.66, 0.89) μ ∈ (0.50, 0.96) μ ∈ (0.19, 0.90)

λ 20

γ γ1 = 3.0, γ2 = 3.0, γ1 = 3.0, γ2 = 3.0, γ1 = 3.0, γ2 = 2.0,

γ3 = 0.0, γ4 = 0.0 γ3 = 1.0, γ4 = 0.0 γ3 = −1.5, γ4 = 1.0

n 40 80 120 40 80 120 40 80 120

Percentile 100.0 100.0 100.0 100.0 100.0 100.0 97.4 88.4 96.0

BCa 99.1 98.2 99.5 99.9 99.9 100.0 97.4 96.3 97.0

λ 50

γ γ1 = 3.0, γ2 = 4.0, γ1 = 3.0, γ2 = 3.0, γ1 = 3.0, γ2 = 3.0,

γ3 = 0.0, γ4 = 0.0 γ3 = 2.0, γ4 = 0.0 γ3 = 2.0, γ4 = −1.0

n 40 80 120 40 80 120 40 80 120

Percentile 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BCa 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

λ 100

γ γ1 = 3.0, γ2 = 5.0, γ1 = 3.0, γ2 = 4.8, γ1 = 3.0, γ2 = 3.0,

γ3 = 0.0, γ4 = 0.0 γ3 = −1.0, γ4 = 0.0 γ3 = 2.0, γ4 = −2.0

n 40 80 120 40 80 120 40 80 120

Percentile 100.0 100.0 100.0 100 100.0 100.0 92.3 96.1 94.9

BCa 100.0 100.0 100.0 100 99.8 100.0 92.3 96.1 95.5

The true model is log(μt/(1 − μt )) = β1+β2xt2+β3xt3+β4xt4 and log(φt ) = γ1+γ2zt2+γ3zt3+γ4zt4,
but the postulated model is log(φt ) = γ1, B = 500 and the nominal coverage is 95 %

the corresponding maximal releases (computed power). The sampled households
were visited in the second semester of 2004. They all had stoves and gas-based
water heating. One hundred visits were made and they yielded 42 valid measure-
ments. The response values range from 0.02 to 0.46, its median being 0.07. The
data can be found in Zerbinatti (2008, p. 67). At the outset, we shall select the beta
regression model that yields the best fit. The response is the simultaneity factor and
the covariate is the release. We considered different link functions for the two sub-
models (mean and precision). Model selection was based on the PRESS (prediction
sum of squares) criterion; see Allen (1974). For each estimated model we computed
P RE SS = ∑42

t=1(yt − ŷ(t))2/42, where ŷ(t) denotes the estimate of yt obtained after
excluding such an observation from the data. The best model is the one that minimizes
the criterion. The following constant dispersion model was selected: logit link and
log of release used as covariate. The maximum likelihood parameter estimates are
̂β1 = −1.76, ̂β2 = −0.76 and ̂φ = 88.79.

5.1 Bootstrap inference

In what follows we shall build and evaluate bootstrap-based prediction intervals for the
response. To that end, we shall use the selected model, build each interval and compute
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Fig. 1 Dispersion plots and prediction intervals; BCa (a) and percentile (b)

its coverage rate using 42 different samples. Each sample is obtained by removing an
observation from the data, which is done sequentially. For each sample, we construct
the prediction interval and determine whether it contains the omitted response. The
coverage rate is computed as the ratio between the number of prediction intervals that
covered (included) the omitted response and the total number os intervals. The num-
ber of bootstrap replications was B = 500 and all intervals correspond to the 95 %
nominal level.

The empirical coverage of the percentile prediction interval was 90.4 %. The inter-
vals did not include observations 11, 16, 33 and 35. The BCa intervals covered all
omitted responses but those corresponding to observations 16 and 35, its coverage rate
being 95.2 %. For instance, y41 = 0.041 and the 95 % BCa interval is (0.036, 0.180).
The prediction interval thus covers the response. That does not hold true for the per-
centile interval, which is (0.042, 0.177). Additionally, y33 = 0.147 and the BCa and
percentiles intervals are (0.023, 0.152) and (0.026, 0.147), respectively. Again, unlike
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the percentile interval, the BCa covers the omitted response. We note that the empir-
ical coverage rates remained constant when we increased the number of bootstrap
replications to B = 2000. The intervals lengths slightly decreased.

In Fig. 1 we plot the data (simultaneity factor vs. computed power) together with
the curves created connecting the upper limits of all prediction intervals and also their
lower limits. The upper panel, (a), corresponds to the BCa interval whereas the lower
panel, (b), is for percentile intervals. Figure 1 shows that the percentile prediction
interval fails when it comes to observation 16; the upper interval limit bends below the
observed value. The same behavior takes place when the focus lies in the prediction
of y33 (observation 33). We also note that both intervals have similar lengths.
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