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Abstract Measurement error (errors-in-variables) models are frequently used in
various scientific fields, such as engineering, medicine, chemistry, etc. In this work, we
consider a new replicated structural measurement error model in which the replicated
observations jointly follow scale mixtures of normal (SMN) distributions. Maximum
likelihood estimates are computed via an EM type algorithm method. A closed expres-
sion is presented for the asymptotic covariance matrix of those estimators. The SMN
measurement error model provides an appealing robust alternative to the usual model
based on normal distributions. The results of simulation studies and a real data set
analysis confirm the robustness of SMN measurement error model.

Keywords EM algorithm · Measurement error · Replicated measurement ·
Scale mixtures of normal distribution

1 Introduction

It is often assumed in classical statistical regression models that the covariates
or explanatory variables are observed exactly. However, this assumption can be
challenged since observed values of variables can often be considered error-prone
measurements of the true covariates. Dramatically, ignoring such errors in covariates
usually results in biased estimates of the regression coefficients. As a more realistic
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representation of classical regression models, measurement error (errors-in-variables)
models assume that the independent variables are subject to error. A comprehensive
study in measurement error models (MEM) can be found in Fuller (1987), Cheng and
Van Ness (1999) and Carroll et al. (2006).

The linear MEM can be described as follows,

xt = ξt + δt , yt = ηt + εt , ηt = α + βξt , t = 1, . . . , n, (1)

where (xt , yt ) are observed values, which are equal to true (latent) unobserved vari-
ables (ξt , ηt ) plus the additive measurement errors (δt , εt ). The latent variables ξt can
be regarded as fixed unknown parameters (a functional model), or as independent, iden-
tically distributed random variables (a structural model). In this work, we only focus
on the structural type model. As Reiersol (1950) showed, when normality is assumed,
this model is not identifiable unless further information about the parameters can be
found. This occurs because one can not establish a single relationship between the
parameters of the distribution for (xt , yt ) and the parameters of the model. A common
solution of this problem is to assume some prior knowledge about the error variance
(Cheng and Van Ness 1999). However, the non-identifiability issue will not appear in
the replicated measurement error model (RMEM), in which the error variances can
be estimated through the replicated data. Maximum likelihood (ML) estimation of
the replicated structural model under normal distributions was solved by Chan and
Mak (1979) and Isogawa (1985). Recently, Lin et al. (2004) derived an iterative EM
algorithm to compute the ML estimators of the replicated model also under the normal
distribution. However, the normality assumption is doubtful and suffers from a lack of
robustness against outlying observations on the parameter estimates. Hence, it is very
important to develop more robust model to fit the replicated measurement error data.

In this paper, we will assume scale mixtures of normal (SMN) distributions
(Andrews and Mallows 1974) for the accommodation of extreme and outlying obser-
vations in RMEM. As the most important subclass of the elliptical symmetric distrib-
utions (Fang et al. 1990), the class of SMN distributions is a very flexible extension of
normal distribution. Models based on SMN distributions will present more appealing
robustness compared to the normal ones. Details about SMN distributions can be found
in Andrews and Mallows (1974), Fang et al. (1990) and Lange and Sinsheimer (1993).
Recently, SMN distributions have been applied to some special MEM. For example,
Osorio et al. (2009) studied estimation and influence diagnostics for the Grubbs’ model
under SMN distributions; same issues on non-replicated MEM model based on SMN
distributions are investigated by Lachos et al. (2011). Furthermore, scale mixtures of
the skew-normal distributions have also been applied to MEM by Lachos et al. (2010).
In this work, we discuss the ML estimation of RMEM, where the replicated observed
values jointly follow SMN distributions. The hierarchical representation proposed
by Pinheiro et al. (2001) is considered, which make it convenient to apply the EM
algorithm for parameter estimation.

The rest of this paper is organized as follows. A brief sketch of SMN distributions
is presented in Sect. 2. In Sect. 3, the replicated structural measurement error model
with scale mixtures of normal distributions (SMN-RMEM) is defined, and an EM-
type algorithm is applied to obtain the maximum likelihood estimates. A closed form

123



Estimation of ME models with replication under heavy-tailed distributions 811

expression is also obtained for the asymptotic covariance matrix of the ML estimators.
Results of simulation studies are reported in Sect. 4. In Sect. 5, the CSFII (Continuing
Survey of Food Intakes by Individuals) data (Thompson et al. 1992) is analyzed under
the proposed SMN-RMEM. Some concluding remarks are given in the last section.

2 SMN distributions

SMN distributions, which play very important roles in statistical modeling, can be
defined as the following m-dimensional random vector

Y = μ + κ1/2(V )W, (2)

where μ is an m-dimensional location vector, W is an m-dimensional normal random
vector with mean vector 0, and covariance matrix 	, and κ(·) is a strictly positive
weight function which is associated to the independent mixture variable V , a positive
random variable with cumulative distribution function H(v; ν). It is easy to see from
(2) that, the conditional distribution of Y given V is a multi-normal distribution, i.e.,
Y |V = v ∼ Nm(μ, κ(v)	). Therefore, the marginal density function of Y takes the
form as

f (y) = |2π	|−1/2

∞∫

0

{κ(v)}−m/2 exp{−κ−1(v)u/2}d H(v), (3)

where u = (y − μ)�	−1(y − μ) is the Mahalanobis distance. If Y has the form
as (2) or has the density as (3), we will denote Y ∼ SMNm(μ, 	; H). Owing to its
special structure, the class of SMN distributions has similar properties to the normal
distribution. With a suitable choice of κ(·) and the distribution function H(·; ν), many
heavy-tailed distributions can be generated, which are very useful for robust infer-
ence. Note that when κ(·) = 1, the distribution of Y is just the normal one (N-SMN).
Members of SMN distributions may be found, for instance, in Andrews and Mallows
(1974). Here, three important examples are listed and will be applied in our study. We
also compute the conditional expectation E[κ−1(V )|Y ] under the following distribu-
tions, which is helpful to carry out the EM algorithm.

(i) Multivariate Student-t distribution (T-SMN)
The multivariate Student-t distribution (Cornish 1954, Dunnett and Sobel 1954)

with ν degrees of freedom, tm(μ, 	; ν), can be derived from the mixture structure
(2), by taking κ(v) = 1/v and V ∼ Gamma(ν/2, ν/2). The Cauchy distribution is
obtained when ν = 1, and one also gets the normal distribution when ν → ∞. In this
case, the conditional expectation is

E[κ−1(V )|Y ] = ν + m

ν + u
,

where u is the Mahalanobis distance we mentioned above.
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(ii) Slash distribution (S-SMN)
To get the multivariate slash distribution (Rogers and Tukey 1972), denoted by

SLm(μ, 	; ν), one needs to take κ(v) = 1/v and V ∼ Beta(ν, 1), which has the
density function as

h(v; ν) = νvν−1, 0 < v � 1, ν > 0.

It follows that

E[κ−1(V )|Y ] =
(

2ν + m

u

)
P1(m/2 + ν + 1, u/2)

P1(m/2 + ν, u/2)
,

where Px (a, b) denotes the cumulative distribution function of the Gamma(a, b)

distribution, i.e.,

Px (a, b) = ba

�(a)

x∫

0

ta−1e−bt dt.

(iii) Contaminated normal distribution (C-SMN)
The multivariate contaminated normal distribution (Tukey 1960), CNm(μ, 	; ν, γ ),

can be obtained from (2) by taking κ(v) = 1/v, and supposing V follows a discrete
random probability function

h(v; ν, γ ) = νI(v = γ ) + (1 − ν)I(v = 1), 0 � ν � 1, 0 < γ � 1.

The density of Y has a mixture form as

f (y) = |2π	|−1/2[νγ m/2e−γ u/2 + (1 − ν)e−u/2],

and the conditional expectation is

E[κ−1(V )|Y ] = 1 − ν + νγ m/2+1e(1−γ )u/2

1 − ν + νγ m/2e(1−γ )u/2
.

3 Estimation of SMN-RMEM model

In this section, we will describe the SMN-RMEM model and investigate the EM
algorithm and asymptotic covariance for the parameter estimators.

3.1 The SMN-RMEM model

Consider a bivariate random variable (ξ, η) satisfying a linear relationship η = α+βξ ,
in which ξ and η cannot be observed directly and we observe the values of x = ξ + δ

and y = η + ε with measurement errors δ and ε. For each ξ and η, p and q repeated
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Estimation of ME models with replication under heavy-tailed distributions 813

observations x (i)
t , i = 1, . . . , p, y( j)

t , j = 1, . . . , q are obtained, respectively. Then
the SMN-RMEM model is given by

x (i)
t = ξt + δ

(i)
t , i = 1, . . . , p,

y( j)
t = ηt + ε

( j)
t , j = 1, . . . , q, (4)

ηt = α + βξt , t = 1, . . . , n,

where Zt = (x (1)
t , . . . , x (p)

t , y(1)
t , . . . , y(q)

t )� follows a SMN distribution, with the
hierarchical structure form, which based on the suggestion of Pinheiro et al. (2001),
as

Zt |ξt , vt
ind∼ Nm(a + bξt , κ(vt )D(φ)),

ξt |vt
ind∼ N(λ, κ(vt )φξ ), vt

i id∼ H(v; ν), t = 1, . . . , n, (5)

where m = p + q, a = (

p︷ ︸︸ ︷
0, . . . , 0, α1�

q )�, b = (1�
p , β1�

q )�, in which 1p and
1q are, respectively, p- and q-dimensional vector with all elements are equal to 1,
φ = (φδ1�

p , φε1�
q )�, and D(·) denotes the diagonal transformation which trans-

forms a vector to a diagonal matrix. In fact, it can be inferred from above that

Zt
iid∼ SMNm(μ, 	; H), where the location and scale parameter can be expressed

as μ = (λ1�
p , (α + βλ)1�

q )�, 	 = φξbb� + D(φ). Note that, model (4) is the same
as model (1) when p = q = 1.

3.2 EM algorithm

As a special case, Lin et al. (2004) obtained ML estimators through an EM iteration
for model (4) under normal distributions. Due to the hierarchical structure of (5),
it is natural to also use the EM algorithm (Dempster et al. 1977, McLachlan and
Krishnan 1997) to calculate the ML estimates of the parameters.

Let θ = (λ, α, β, φδ, φε, φξ )
� be the parameter vector of model (4), and θ (k)

denotes the estimates of θ at the k-th iteration. Let Zc = (Z , ξ , v) be the complete
data set of model (4), where Z = (Z�

1 , . . . , Z�
n )�, ξ = (ξ1, . . . , ξn)� and v =

(v1, . . . , vn)�. It follows from (5) that the complete log-likelihood function associated
with Zc has the form as

lc(θ |Zc) = −n

2
log

(|D(φ)|)− 1

2

n∑
t=1

κ−1(vt )(Zt − a−bξt )
�D−1(φ)(Zt − a−bξt )

−n

2
log(φξ ) − 1

2φξ

n∑
t=1

κ−1(vt )(ξt − λ)2 + C,

where log(|D(φ)|) = p log(φδ) + q log(φε), and C is a constant that is independent
of θ . The EM algorithm is listed as follows.
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E-step: Given the current estimate θ (k), the expected complete data log-likelihood
function E[lc(θ |Zc)|θ (k), Z ], also called the Q-function in Dempster et al. (1977),
may be expressed as

Q(θ |θ (k)) =−n

2
log

(|D(φ)|)− 1

2

n∑
t=1

κ
(k)
t (Zt − a − bξ

(k)
t )�D−1(φ)(Zt −a−bξ

(k)
t )

−1

2

n∑
t=1

τ (k)b�D−1(φ)b− n

2
log(φξ )− 1

2φξ

n∑
t=1

[
κ

(k)
t (ξ

(k)
t −λ)2 + τ (k)

]
.

where κ
(k)
t = E[κ−1(vt )|θ (k), Zt ], τ (k) = φ

(k)
ξ /S(k) with S(k) = 1 + φ

(k)
ξ b(k)�

D−1(φ(k))b(k), and ξ
(k)
t = λ(k) + τ (k)b(k)�D−1(φ(k))(Zt − a(k) − b(k)λ(k)).

M-step: Based on the Q-function, a new parameter estimate θ (k+1) can be obtained
by maximize Q(θ |θ (k)) with respect to θ . The details of these steps are described as
follows.

Firstly, the regression coefficients are updated by

α(k+1) = (b(k)
1 a(k)

22 − b(k)
2 a(k)

12 )
/
(a(k)

11 a(k)
22 − a2(k)

12 ),

β(k+1) = (b(k)
2 a(k)

11 − b(k)
1 a(k)

12 )
/
(a(k)

11 a(k)
22 − a2(k)

12 ),

where a(k)
11 = ∑n

t=1 κ
(k)
t , a(k)

22 = nτ (k) + ∑n
t=1 κ

(k)
t ξ

2(k)
t , a(k)

12 = ∑n
t=1 κ

(k)
t ξ

(k)
t ,

b(k)
1 = ∑n

t=1 κ
(k)
t yt , b(k)

2 = ∑n
t=1 κ

(k)
t ξ

(k)
t yt , and yt = ∑q

j=1 y( j)
t /q.

Then, other parameters can be updated by the following equations:

λ(k+1) = a(k)
12 /a(k)

11 , φ
(k+1)
ξ = τ (k) + 1

n

n∑
t=1

κ
(k)
t (ξ

(k)
t − λ(k+1))2,

φ(k+1)
ε = τ (k)(β(k+1))2 +

n∑
t=1

κ
(k)
t

⎡
⎣

q∑
j=1

(y( j)
t − α(k+1) − β(k+1)ξ

(k)
t )2

⎤
⎦ ,

φ
(k+1)
δ = τ (k) + 1

np

n∑
t=1

κ
(k)
t

[ p∑
i=1

(x (i)
t − ξ

(k)
t )2

]
.

Starting with a suitable initial vector value θ (0), the algorithm iterates between the
E- and M-steps until it reaches convergence. To ensure it is positive, the inverse of
matrix 	 used in each E-step is computed by a closed form (Harville 1997) as

	−1 = D−1(φ) − D−1(φ)bb�D−1(φ)/(φ−1
ξ + b�D−1(φ)b).

3.3 The expected information matrix

Since the SMN distributions belong to the elliptical distribution class (Fang et al.
1990), the replicated observations Zt of model (4) can also be regarded as following an
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elliptical distribution ELm(μ, 	, g), where μ and 	 are the same as those in Sect. 3.1,
and g(·) : R → [0,∞) is called the density generator such that

∫ ∞
0 g(u)du < ∞.

Hence, the density function of Zt takes the form

f (Zt ) = |	|−1/2g(ut ), t = 1, . . . , n,

where ut = (Zt − μ)�	−1(Zt − μ), and g(ut ) can be expressed as

g(ut ) = (2π)−m/2

∞∫

0

κ(v)−m/2 exp{−κ−1(v)ut/2}d H(v).

The log-likelihood function for model (4) is given by

l(θ) = −n

2
log(|	|) +

n∑
t=1

log{g(ut )}, (6)

By calculating the expectations of the second-order derivatives of (6), we obtain the
Fisher information matrix of θ as I(θ) = (Ii j )6×6, with

Ii j = 4n

m
dgμ̇

�
i 	−1μ̇ j , i � 3, j � 3, and (i, j) �= (3, 3);

Ii j = natr(	−1	̇i	
−1	̇ j ) + nbtr(	−1	̇i )tr(	

−1	̇ j ),

i � 3, j � 3, and (i, j) �= (3, 3);
I33 = 4n

m
dgμ̇

�
3 	−1μ̇3 + natr(	−1	̇3	

−1	̇3) + nbtr2(	−1	̇3);
Ii j = 0, for i � 2, j � 4 or i � 4, j � 2,

where a = 2 fg
m(m+2)

, b = fg
m(m+2)

− 1
4 , fg = E{W 2

g (u)u2}, dg = E{W 2
g (u)u}, in which

Wg(u) = ġ(u)
g(u)

with u = e�e and e ∼ ELm(0, Im), μ̇i = ∂μ/∂θi and 	̇i = ∂	/∂θi .
Due to the similarity between the inference for elliptical models and normal models,

it is reasonable to expect that under suitable regularity conditions, the approximate
distribution of the ML estimator θ̂ in large samples is N6(θ , I−1(θ)). Hence, the
variance-covariance matrix of θ̂ can be estimated by I−1(̂θ).

4 Simulation study

In this section, we perform Monte-Carlo simulations to compare the performance
of the ML estimators of RMEM under four different type SMN distributions: N-
SMN, T-SMN, S-SMN and C-SMN. Note that all of the other three distributions have
heavier tails than the normal one, which indicates that statistical models based on those
distributions are more robust to outliers. The degrees of freedom are set as follows:
ν = 4 (for T-SMN), ν = 3 (for S-SMN) and ν = 0.1, γ = 0.2 (for C-SMN). Other
parameters in model (4) are set as: λ = 3, α = 2, β = 1, φδ = 1 and φξ = 1.
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The values of φε has two values for comparison: 1 and 0.2, corresponding to the ratio
of the error variances φε/φδ of 1 and 0.2, respectively. The replicated numbers of the
observations are chosen as p = 3 and q = 2.

In order to maintain the general and consistent form of the estimators among dif-
ferent SMN distributions, the degrees of freedom for the SMN model will not be
estimated together with the interested parameters. In the simulation study, the main
motivation is to confirm the heavy-tailed model’s robustness and accuracy. Hence, we
selected some heavy-tailed distributions with fixed degrees of freedom. While in the
application, to find the best distribution for the data, we will choose the degrees of
freedom by some usual criterions.

4.1 The first simulation

It is well known that misspecification of model’s distribution will lead to the biases of
parameter estimates. In the first simulation, we want to show that the ML estimates
based on the heavy-tailed RMEMs will be more accurate than normal ones, when
the true distribution of the data is heavy-tailed. In this simulation, we independently
generate 2000 random samples with sample sizes n = 20, 50, and 100 from model (4)
under one of the four SMN distributions. Then, we compute the ML estimators of θ

through the EM algorithm under all the four SMN distributions, respectively. Tables
1, 2, 3 and 4 display both the simulated sample means and standard deviations (SD) of
interesting parameters λ, α and β, under simulated datasets generated by four different
SMN distributions, respectively.

Some valuable conclusions can be drawn from the simulation study. For each case,
the bias and the SD values are almost smallest when the true distribution is used. As
expected, the SD of all estimates become smaller as n increases and as the variance
radio φε/φδ decreases. The most important information of Tables 2, 3 and 4 is that,
when one of the three heavy-tailed distributions is assumed, the estimators under the
normal distribution are worst at all times, since their SD values are largest among all
estimators based on the four distributions. It is confirmed that RMEM under heavy-
tailed distributions are more effective than the normal one, even if the distribution we
used is not the true distribution.

4.2 The second simulation

In the second simulation, we will compare the performance of the estimators based
on different methods in the presence of outliers. Regression calibration (RC) is also
considered in the simulation. RC is an important estimation method for the MEM
which can correct biases of the naive estimators. Details of this method may be found,
for instance, in Carroll et al. (2006). Note that, we use analysis of variance formulae
to get the consistent estimates of λ and variance components φδ and φξ . Then, the RC
estimator is obtained based on the adjustment of regression on averages of the observed
variables, which is the same as the adjusting ordinary least squares mentioned in Lin
et al. (2004).
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We first generate 1,000 datasets with sample sizes n = 50 and 100 from model
(4) under normal distribution. Similar to Vanegas and Cysneiros (2010), we shift the
observed value x (i)

t to x (i)
t +λd, where t = n/2 and d = 0, 0.5, 1, . . . , 5 to guarantee

the presence of one outlier in the individuals. For each data set, we calculate all the five
estimators (ML estimators based on four type SMN-RMEMs, and the RC estimators)
of α, β and λ under the shifted and non-shifted data, respectively. Then, we compute
the relative changes of the estimates (i.e., |(Est(s) − Est)/Est |, where Est is the
estimate under non-shifted data, Est(s) is the estimate under shifted data).

Figures 1, 2 and 3, respectively display the average relative changes on the estimates
α̂, β̂ and λ̂ at different values of d under all the five estimation methods. In all situations,
the change ratios of RC and N-SMN estimates increase with d, which indicates that
the influence of the outlier become serious when d increases for the RC and N-SMN
estimates. On the contrary, the relative changes on the estimates based on T-SMN
and S-SMN models are almost not increasing with d. Though the change ratios on
the estimates based on C-SMN model show a slightly increasing trend with d, they
are still much smaller than those on the RC and N-SMN estimates. As the sample
size n increases, we find that the influences of the outlier on the estimates become
smaller for all the five estimates. However, the advantage of the robustness based on
heavy-tailed models is still obvious. Thus, we draw a conclusion from the simulations
that ML estimation method based on heavy-tailed SMSN-RMEM is more appealing
since it can present more robustness compared to the traditional normal ones and the
RC method.

5 Application

In this section, we consider the CSFII data (Thompson et al. 1992) as a numerical
example. This dataset has also been used by Carroll et al. (2006) as an additional
information to analyze the NHANES data (Jones et al. 1987). The CSFII data contains
the 24-h recall measures, as well as three additional 24-h recall phone interviews
of 1,722 women who were recorded about their diet habits. We consider the calorie
intake/5,000 as ξ , and the saturated fat intake/100 as η. Instead of ξ and η, the nutrition
variables x and y are computed by four 24-h recalls, which are supposed to follow
model (4) with p = q = 4.

Figure 4 displays the linear tendency between the average calories (x̄) and the
average saturated fat (ȳ). The QQ plot of the differences between replicates xt and
between replicates yt are given in Fig. 5a, b, respectively, which show that non-
normality is evident in the presence of heavier-than-normal tails. If the CSFII data we
used follows a normal RMEM, then it is true that {ut = (Zt −μ)�	−1(Zt −μ), t =
1, . . . , 1,722} are mutually independent and follow a chi-square distribution with 8
degrees of freedom. By applying the Wilson-Hilferty transformation (Johnson et al.
1994), we obtain a set of i id variables {rt = 3u1/3

t − 35/6, t = 1, . . . , 1,722} which
approximately follows the standard normal distribution. The QQ plot of {rt , t =
1, . . . , 1,722} is shown in Fig. 5c, which gives obvious evidence against the normal
assumption.
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Fig. 1 Average relative changes
of α̂ under five estimation
methods

(a) 

(b) 

(c)

(d)
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Fig. 2 Average relative changes
of β̂ under five estimation
methods

(b)

(a)

(c)

(d)
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Fig. 3 Average relative changes
of λ̂ under five estimation
methods

(a)

(b)

(c)

(d)
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Fig. 4 The linear tendency and four fitted lines between the average calories and the average saturated fat
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Fig. 5 QQ plots for the CSFII data: a differences between replicates of calorie intakes, b differences
between replicates of saturated fat intakes, and c transformation of the Mahalanobis distances

Now we consider the ML estimates for the CSFII data based on RMEM under
four proposed SMN distributions. The degrees of freedom for T-SMN, S-SMN, and
C-SMN distributions are selected by the Schwarz information criterion (Schwarz
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Table 5 Parameter estimators of the CSFII data under SMN-RMEM

Parameter N-SMN T-SMN S-SMN C-SMN
ν = 4.3 ν = 1.3 ν = 0.29, γ = 0.22

λ 0.2897 (0.0025) 0.2677 (0.0023) 0.2701 (0.0023) 0.2706 (0.0023)

α −0.0143 (0.0058) –0.0159 (0.0048) −0.0138 (0.0049) −0.0143 (0.0049)

β 0.8341 (0.0190) 0.8172 (0.0173) 0.8134 (0.0175) 0.8171 (0.0173)

φδ 0.0073 (0.0001) 0.0039 (0.0001) 0.0024 (0.0001) 0.0035 (0.0001)

φε 0.0137 (0.0002) 0.0076 (0.0002) 0.0046 (0.0001) 0.0067 (0.0001)

φξ 0.0089 (0.0004) 0.0066 (0.0003) 0.0039 (0.0002) 0.0055 (0.0002)

AIC −20,842 –23,182 −23,066 −22,954

BIC −20,809 –23,144 −23,028 −22,910

The T-SMN-RMEM has the smallest values of BIC and standard errors of location parameters which are
underlined in the table

1978). We plot the profile log-likelihood functions for the three models in Fig. 6.
By getting the largest values of the profile log-likelihood, the degrees of freedom are
found as ν =4.3 for T-SMN, ν =1.3 for S-SMN, and ν =0.29, γ =0.22 for C-SMN.

Table 5 gives the ML estimates of parameter θ with standard errors in parenthesis,
and also the AIC (Akaike 1974) and BIC (Schwarz 1978) values of the four SMN-
RMEMs. The estimates of the scale parameters are not comparable among different
distributions due to the different scales. Note that, the original AIC is used for model
selection since the four type distributions we discussed are all members of the SMN
distribution class. Compared with the conditional AIC (Vaida and Blanchard 2005),
we prefer original AIC in this situation. First, in the RMEM, the most interest is in
the population parameters α and β, and not in the individual clusters. Second, as
we mentioned, the SMN distributions belong to the elliptical distribution family. The
reason we use the SMN form to represent Student-t , slash and contaminated normal
distribution is its hierarchical structure makes the EM algorithm become feasible.
However, instead of the hierarchical form, the elliptical structure is still the major
form of the RMEM model when we do other statistical inference.

From Table 5, we find that the standard errors of λ, α and β, and the values of AIC
and BIC under the three heavy-tailed distributions are always smaller than those under
the normal one, which indicates that the heavy-than-normal RMEMs fit the data better
than N-SMN-RMEM. Moreover, it is suggested that T-SMN-RMEM is the best one
among the four models, since it has the smallest values of BIC and standard errors of
location parameters. It should be noted that the estimates of β under three heavy-tailed
models are all smaller than that under the normal one. This attenuation phenomenon
is displayed in Fig.4, in which four regression lines between the average calories and
the average saturated fat are plotted, based on the four models, respectively.

6 Conclusions

In this work, we have discussed the ML estimations of the proposed SMN-RMEM.
A major advantage of SMN model is its flexibility, due to it contains different types
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Fig. 6 Degrees of freedom
versus the profile log-likelihood
under three heavy-tailed
RMEMs, a T-SMN, b S-SMN,
c, d C-SMN

(a)

(b)

(c)

(d)
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828 J.-G. Lin, C. Cao

of distributions, which offers us the opportunity to compare with each other. Iterative
equations are obtained to estimate the parameters of the model by the EM algorithm
method. It is important to emphasize the capacity of this model to attenuate outlying
observations by using heavy-tailed SMN distributions. Monte Carlo simulations dis-
played the robustness of heavy-tailed SMN-RMEM. A real data analysis also confirms
some robustness aspects of our SMN-RMEM.
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