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Abstract In this paper the problem of comparing k density functions from survival
data is considered. Two non-parametric tests based on (two different) generalizations
of the L1 measure are adapted to the censored context. The asymptotic distribution
of the test statistics is derived, and an approximation based on resampling methods
is proposed. The relative power of the tests is investigated through a Monte Carlo
simulation study. Results suggest that the tests exhibit good power when no one of the
survival functions dominates the others, especially when the censoring distribution is
the same along the k groups and the censoring percentage is small.

Keywords Kernel density estimator · Common area · L1 measure · Censored data ·
k-sample test

1 Introduction

Let X be a lifetime of interest with cumulative distribution function (CDF) F , and
probability density function (PDF) f , supported on the positive real line R

+. Let
Xn = {x1, . . . , xn} be a random sample of X . Let C be a censoring random variable,
independent of X with CDF G, on R

+ and let Cn = {c1, . . . , cn} be a random sample
from C . As always with censored data, we observe the pairs (zi , δi ), 1 ≤ i ≤ n,
where zi = min{xi , ci } and δi = I(−∞,ci ](xi ) (where IA(x) is the indicator function
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for the set A). The independence between the lifetime and the censoring time is a usual
assumption which guarantees the consistency of the commonly used estimators for
the CDF and the PDF. However, it is worth mentioning that this assumption may be
violated in some situations, for instance, in competing risks scenarios or for censoring
caused by voluntary patient withdrawal.

Without any additional condition on the function G, the maximum-likelihood esti-
mator of F is the product-limit estimator introduced by Kaplan and Meier (1958) in
one of the most cited statistical papers, whose consistency is independent with respect
to the censoring time distribution and which is defined by

F̂KM (t) = 1 −
n∏

i=1

[
1 − I(−∞,t](z(i))

n + 1 − i

]δ[i]
t ∈ R

+. (1)

Here, z( j) is the j th element in the ordered sample of the (zi , δi )’s, while δ[ j] stands
for the j th concomitant indicator. Denoting by ω j the jump of F̂KM at z( j), we have
for j = 2, . . . , n − 1 ω j = F̂KM (z( j))− F̂KM (z( j−1)) and ω1 = F̂KM (z(1)). Then, the
classical kernel estimator of f is given by

f̂KM ,h(t) =
∫

1

h
K

(
x − t

h

)
d F̂KM (x) = 1

h

n∑

i=1

ωi K

(
z(i) − t

h

)
, (2)

where K is the kernel function, usually chosen as a symmetrical density function with
zero mean and finite variance, and the bandwidth h = h(n) is a sequence of positive
real numbers that plays an important role in the final estimator. The properties of
this estimator have been widely studied by Földes et al. (1981); Mielniczuk (1986)
or Zhang (1996) among others. An alternative kernel estimator has been introduced
by Blum and Susarla (1980) but it is known that the differences between them are
typically negligible.

On the other hand, a very important problem in clinical trials and other areas is to
check whether two or more censored samples come from the same probability law.
In this setup, the most commonly used k-sample nonparametric tests are probably the
linear rank (or weighted) rank tests (Harrington 2005). See also Martínez-Camblor
(2010a); Martínez-Camblor (2011) and references therein for other recent propos-
als. In an attempt to develop methods with improved power, several authors have
used kernel density estimation for testing whether k independently sampled popula-
tions have the same distribution. To this end, in the uncensored setting, Cao and Van
Keilegom (2006) proposed a test based on the likelihood ratio of the kernel density
estimators. Martínez-Camblor et al. (2008) studied a k-sample test based on the com-
mon area (AC) among the respective kernel density estimators, and Martínez-Camblor
and de Uña-Álvarez (2009a) introduced three new tests for comparing densities from
independent samples. These papers show that tests based on PDFs are more powerful
than tests based on the comparison of CDFs when there exist differences other than
location among the underlying probability laws.

In the present paper, we investigate the performance of the tests based on kernel
density estimators under random censorship. With this goal, we adapt two tests based
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on generalizations of the L1 measure and the kernel density estimator. In particular,
the AC(h) and Lk,1(h) tests are adapted to the censored data setting. We study the
asymptotic distribution of the test statistics and, as usual, the bootstrap method is also
considered as a device to approximate it in practice (Sect. 2). A simulation study to
investigate the power of the tests is reported in Sect. 3. In addition, two real data sets
are analyzed for illustration proposes (Sect. 4). Section 5 reports our main conclusions.
All the proofs are deferred to the Appendix.

2 k-sample tests

Let Z j = {(zi j , δi j )}1≤i≤n j with 1 ≤ j ≤ k be k independent random samples of

censored survival times. If for 1 ≤ j ≤ k, f̂KM ,h j (with h j = h(n j )) and f̂KM ,hn (with

hn = h(n) and n = ∑k
j=1 n j ) denote the kernel density estimators pertaining to the

j th and the pooled sample, respectively, the direct generalizations of the AC and Lk,1
statistics to the censored scenario are

AC(h) =
∫

min
{

f̂KM ,h1(t), . . . , f̂KM ,hk (t)
}

dt (3)

and

Lk,1(h) = 1

n

k∑

j=1

n j

∫ ∣∣∣ f̂KM ,h j (t) − f̂KM ,hn (t)
∣∣∣ dt, (4)

respectively. Under quite general (and mild) assumptions, the asymptotic distribution
of these statistics can be derived by arguments similar to those in Martínez-Camblor
and de Uña-Álvarez (2009a). Theorem 1 guarantees the asymptotic normality for the
more general statistic

Lk,p(h) = 1

n

k∑

j=1

n j

∫ ∣∣∣ f̂KM ,h j (t) − f̂KM ,hn (t)
∣∣∣

p
dλ(t) 1 ≤ p < ∞, (5)

where λ denotes the usual Lebesgue measure. The proof is deferred to the Appendix.
The asymptotic distribution for AC is derived inmediately from the case p = 1.

Theorem 1 Assume that the k populations of lifetimes have a common PDF f which
is bounded and continuous. Under the following assumptions:

C1. K is a density function of bounded variation, symmetric about zero, with finite
variance and compact support.

C2. There exists a sequence of compact intervals, {Cn}n∈N, such that λ(Cn) =
O(log n) and, if C̄n is the complementary set of Cn, then

∫
C̄n

f (t)dλ(t) =
O(n−1) and

∫
C̄n

f (t)pdλ(t) = o
(
(nhn)−p/2h1/2

n

)
.

C3. There exists α > 0 such that hn = O(n−α), nhn →n ∞ and nh5
n →n c0 < ∞.
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C4. There exist real numbers, c1, . . . , ck , such that nhn/n j h j →n c j (1 ≤ j ≤ k).

Then, for each p ≥ 1 we have

1√
hnσk,p(n)

{
(nhn)p/2 Lk,p(h) − ek,p

} L−→n N (0, 1),

where σk,p(n)2 = n ph p−1
n V[Lk,p(n)] (V[u] = E[u2] − E[u]2) and ek,p =

E[(nhn)
p/2 Lk,p(h)]. �	

Some of the above assumptions (specifically, the convergence rates which appear in
C2 and C3) can be relaxed with an extra theoretical effort. However, these hypothesis
are satisfied in most practical situations.

Explicit expressions for the mean and the variance of the statistic in Theorem 1 are
not available and, in general, it is complex to obtain good estimators for these param-
eters. Therefore, this result (only) allows to guarantee the consistency of the proposed
test statistics but not to obtain a final P-value. Hence, we propose to approximate (as
usual) their distributions from a suitable resampling plan. In particular, since we are
assuming that the lifetime distribution, F , and the k involved censoring time distri-
butions, Gi (1 ≤ i ≤ k), are absolutely continuous, we apply the smoothed-censored
(SC) resampling plan introduced by Gonzalez-Manteiga et al. (1996) whose algorithm
is:

A. First, draw bootstrap resamples Xb
i = {xb

i,1, . . . , xb
i,ni

} (1 ≤ i ≤ k) from the

(common) smoothed estimator of F , F̃h X (h X denotes the bandwidth).
B. For each 1 ≤ i ≤ k draw independent bootstrap resamples Cb

i = {cb
i,1, . . . , cb

i,ni
}

from the smoothed estimator of the censoring time CDFs G̃hCi
(hCi denotes the

bandwidth for the ith censoring time distribution). At this point we recall that we
do not assume the equality among the different censoring time distributions.

C. Finally, for 1 ≤ i ≤ k, construct Zb
i = {(zb

i, j , δ
b
i, j )}1≤ j≤ni where zb

i, j =
min{xb

i, j , cb
i, j } and δb

i, j = I {zb
i, j = xb

i, j }.
In order to avoid the well-known problems that occur with the Kaplan-Meier estimator
when the largest observation is right-censored, we put the missing probability mass just
to the rigth of that observation. This resampling procedure, described by Efron (1981),
obtains (by simulation studies) more accurate non-parametric confidence bands than
the ones based on the asymptotic distribution (Efron 1982).

On the other hand, Beran (1982) proved that, under the usual regularity conditions,
the bootstrap estimate of the distribution of a statistic is asymptotically minimax among
all possible estimates.

2.1 Bandwidth selection

One of the main issues in the application of smoothing techniques is the selection of
the smoothed parameter or bandwidth. It is known that the bandwidth choice may
be crucial when taking the final decision (to reject or to accept the null hypothesis).
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Martínez-Camblor and de Uña-Álvarez (2009b) studied and compared different meth-
ods for the automatic bandwidth selection in k-sample smooth test for complete data.

In a general smooth testing problem, one considers a test statistic Th which depends
on the bandwidth h (h > 0). Then, the goal is to select the parameter h in order to
get a powerful test. Without loss of generality, we assume that the null hypothesis
is rejected for large values of Th. We denote by T0,h and T1,h independent random
variables with the null and the alternative distributions of Th, respectively. Note that

π(h) = P{T0,h > T1,h}
= E[I {T0,h > T1,h}] = E[E[I {T0,h > T1,h}|T1,h]] = E[πv(T1,h)],

where I {A} stands for the indicator function of the event A and πv(t) is the P-value
of t , that is, the probability under the null that the realization of the test statistic is
larger than t . Note that π(h) averages the P-values with respect to the alternative
distribution of Th. Hence, it makes sense to choose the bandwidth which minimizes
π(h); this bandwidth should lead to a powerful test, since small P-values correspond
to a greatly significant realization of the test statistic. We denote this bandwidth by
h P . Obviously, since h P minimizes π(h), it can be interpreted as the bandwidth for
which the null and the alternative hypothesis are separated at the most by Th.

In Martínez-Camblor and de Uña-Álvarez (2009b) the BM bandwidth is introduced
as

hB M = E[argmin{h>0}πv(T1,h)],

which can be regarded as an approximation for h P iff

E[argmin{h>0}πv(T1,h)] ≈ argmin{h>0}E[πv(T1,h)] = argmin{h>0}π(h) = h P .

(6)

In practice, the involved minimization is performed on a given grid of (possible)
bandwidths. Its explicit algorithm is (Martínez-Camblor and de Uña-Álvarez 2009b):

B1. Let hi = hσ̂i n
−1/5
i (1 ≤ i ≤ k) be the used bandwidths and let H =

{h(1), . . . , h(T )} be a grid of h-values among which the optimal one is to be
selected. Here, σ̂i denotes the standard deviation in the i th sample.

B2. By using the above bootstrap resampling plan (steps A, B and C), for 1 ≤ t ≤ T ,
estimate the distribution under the null hypothesis for Th(t) , F̂0

B,t .

B3. For each b ∈ {1, . . . , B}, generate a resample X∗
b,1, . . . , X∗

b,ni
from f̂KM ,gi (sur-

vival times) and C∗
b,1, . . . , C∗

b,ni
from G̃hCi

(censoring times) and build Z∗
i (1 ≤

i ≤ k). Estimate the significance level for the test for each h(t), P∗
b,t by using

F̂0
B,t for 1 ≤ t ≤ T .

B4. Choose the h∗
b which minimizes the previous sequence of P-values, i.e., h∗

b =
argmin{P∗

b,1, . . . , P∗
b,T } (1 ≤ b ≤ B). We obtain the values HB = {h∗

1, . . . , h∗
B}.
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B5. The final value for h is

hB M = 1

B

B∑

b=1

h∗
b.

The computation of the B M-bandwidth as described along steps B2 − B4 implies
B + B0 evaluations of the test statistic (B0 is the number of bootstrap resamples under
the null used in B2) multiplied by the number of bandwidths in the grid, T . Besides, in
order to approximate the final P-value, one needs perform B ′

0 extra evaluations of the
statistic under the null which leads to a total number of evaluations of T (B + B0)+ B ′

0.
A decision on the null and alternative hypothesis is reached after the following step:

B6. Draw independent B ′
0 bootstrap resamples under the null (steps A, B and C). Let

T b
0,h0

be the statistic Th based on the bth null bootstrap resample (1 ≤ b ≤ B ′
0)

and the bandwidth h0 (derived from h = hB M ). Then, reject the null hypothesis
if and only if

1

B ′
0

B′
0∑

b=1

I
{
T b

0,h0
> Th0

}
< α,

where Th0 is the actual value of the test statistic (when based on h0) and α is the
significance level of the test.

We propose the following new algorithm (labelled as MS, Minimum Significance) in
order to estimate, directly, the bandwidth h P :

P1. Let hi = hσ̂i n
−1/5
i (1 ≤ i ≤ k) be the used bandwidths and let H =

{h(1), . . . , h(T )} be a grid of h-values among which the optimal one is to be
selected.

P2. By using the above bootstrap resampling plan (steps A, B and C), draw B0 boot-
strap resamples under the null. Let T b

0,h(t)
(1 ≤ t ≤ T ) be the statistic Th(t) based

on the bth resample (1 ≤ b ≤ B0) and on h(t), and let F̂0
B,t be the corresponding

bootstrap distribution.
P3. For each b ∈ {1, . . . , B}, draw independently resamples under the alternative for

both the survival and the censoring times. Let T b
1,h(t)

(1 ≤ t ≤ T ) be the statistic
Th based on the bth alternative bootstrap resample (1 ≤ b ≤ B) and on h(t).

P4. Finally, compute

ĥ P = argmin{h∈H}

{
1

B B0

B∑

b=1

B0∑

b′=1

I
{
T b′

0,h > T b
1,h

}}
.

Obviously, ĥ P ∈ H and the final P-value can be estimated from the respective F̂0
B,t

(previously computed), therefore this algorithm implies T (B0 + B) evaluations of the
statistic.
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3 Statistical power comparison

In order to investigate the statistical power of the proposed tests (the considered nom-
inal level was α = 0.05), a Monte Carlo simulation study was conducted. We con-
sidered the grid H = {1/2, 1, 2, 3, 4} and apply the BM and the MS algorithms when
different bandwidths h for AC(h) and Lk,1(h) lead to different decisions (i.e., when
there exist P-values smaller and greater than the fixed significance level, α). Our
previous experience on the choice of h suggests that one should not dedicate too
much computational effort in the estimation of the h-values but the estimation of the
P-value is very important; therefore we have used B = 100 and B0 = 199. The
rejection probabilities were estimated from 1,000 Monte Carlo replications.

We considered the following five different density functions:

(i) f0(t) = (
√

2π)−1t1/2 exp{−t/2}I[0,∞)(t).
(ii) f1(t) = 0.25 f0(t) + 0.75(3

√
2π)−1t3/2 exp{−t/2}I[0,∞)(t).

(iii) f2(t) = 0.25 f0(t) + 0.75(
√

2π)−1exp{−0.50(t − 3)2}.
(iv) f3(t) = (0.75(1/3) exp{−t/3} + 0.25(1/10) exp{−t/10})I[0,∞)(t).
(v) f4(t) = 0.5 f0(t) + 0.5(2

√
2π)−1exp{−0.50((t − 4)/2)2}.

Taking f0 as reference, these functions represent four different situations: propor-
tional differences ( f1), non-uniform dominance ( f2), late differences ( f3) and early
differences ( f4). Figure 1 shows the respective survival curves.

Censoring times were drawn from an exponential distribution, Exp{1/β} (cases
β = 1.315, β = 3.375 and β = 9.625 were considered). Table 1 shows the expected
censorship percentages for the functions i − v.
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Fig. 1 Survival functions from the considered density functions
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Table 1 Expected censorship
percentages for the different
considered schemes

β Underlying density functions

f0(%) f1(%) f2(%) f3(%) f4(%)

9.625 25.0 34.8 25.5 43.9 28.8

3.375 50.0 63.8 55.3 68.2 57.3

1.315 75.0 86.2 83.4 83.9 81.5

The statistical power of the proposed test statistics were studied for the case
k = 3 and different sample sizes, and compared to the Fleming-Harrington lin-
ear rank tests corresponding to the weights ρ = 0, ρ = 0.5 and ρ = 1, these
are respectively the Mantel-Haenzel test (MH ), the Tarone-Ware test (TW ), and
the Peto-Peto (PP ). Specifically, in Figs. 2 and 3 we have considered the cases
→
n = (n1, n2, n3) = (15, 15, 15), (25, 25, 25), (25, 50, 75), (75, 75, 75), (75, 100,

125) and (125,125,125).

Example 1 The random samples, (X1, X2, X3), are generated from the functions,

MD 0-I. X1 ∼ f0, X2 ∼ f0, X3 ∼ f0. (Null hypothesis).
MD 1-I. X1 ∼ f0, X2 ∼ f0, X3 ∼ f1.
MD 2-I. X1 ∼ f0, X2 ∼ f0, X3 ∼ f2.
MD 3-I. X1 ∼ f0, X2 ∼ f0, X3 ∼ f3.
MD 4-I. X1 ∼ f0, X2 ∼ f0, X3 ∼ f4.

Table 2 shows the rejection proportions for the new proposed tests for five differ-
ent h′s, for two specific configurations of the sample sizes. Both the AC(h) and the
Lk,1(h) statistics are extremely conservative, particularly when the censorship per-
centage is large. In this case, the observed rejection proportion for the AC(h) statistic
never reaches the 1.5% when null hypothesis is true (model 0-I). Although the optimal
bandwidth changes with the statistic, the model, the sample size and the censorship
percentage, the value h = 1 is often the best one (21 times of 32). Similarly as in
Martínez-Camblor and de Uña-Álvarez (2009b), we find that the statistical power of
the AC(h) statistic is poorer for unequal sample sizes. Also, the influence of h in the
power is smaller for the Lk,1(h) test.

Table 3 shows the rejection proportions for the Fleming-Harrington tests and the
proposed ones when the algorithms BM and MS are applied on the grid H to select the
bandwidth. The rejection percentages for the proposed statistics under the null are still
very low, particularly for unequal sample sizes and large censorship percentages. Both
methods obtain similar results, being close to the optimal ones inside the considered
grid; moreover, in some situations we see that the results obtained by BM and MS are
better than the optimal one within the grid.

Figure 2 shows the observed statistical power for the AC(h) and Lk,1(h) statistics
by using the MS algorithm on the grid H and for the MH , TW and PP tests. The new
tests are clearly the worst when the differences among the curves are proportional
(model 1-I), but they are clearly the best when no curve dominates the other (model
2-I). In the other schemes all the tests behave similarly, although the new tests are
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Fig. 2 Observed rejection proportions for the considered models in Example 1 (N = n1 + n2 + n3)

slightly inferior for small sample sizes and large censorship percentage. In addition,
it is also observed that AC(h) performs poorly for unequal sample sizes; similar find-
ings in the uncensored situation were previously reported, see Martínez-Camblor et al.
(2008) and Martínez-Camblor and de Uña-Álvarez (2009a).
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Fig. 3 Observed rejection proportions for the considered models in Example 2 (N = n1 + n2 + n3)

Example 2 In this second example we considered the unbalanced censoring situa-
tion (i.e., distinct censoring time distributions). The censoring times are drawn from
exponential distributions with parameters β = 1.315 for the first sample, β = 3.375
for second sample and β = 9.625 for the third sample. The samples of lifetimes
(X1, X2, X3) are generated from the functions,

MD 0-II. X1 ∼ f0, X2 ∼ f0, X3 ∼ f0. (Null hypothesis).
MD 1-II. X1 ∼ f0, X2 ∼ f0, X3 ∼ f1.
MD 2-II. X1 ∼ f0, X2 ∼ f0, X3 ∼ f2.
MD 3-II. X1 ∼ f0, X2 ∼ f0, X3 ∼ f3.
MD 4-II. X1 ∼ f0, X2 ∼ f0, X3 ∼ f4.
MD 5-II. X1 ∼ f0, X2 ∼ f1, X3 ∼ f2.
MD 6-II. X1 ∼ f0, X2 ∼ f3, X3 ∼ f4.
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Table 2 Observed rejection probabilities for Lk,1(h) and AC(h) statistics in the proposed models for

bandwidth hσ̂i n−1/5
i where σ̂i is the sample standard deviation, ni (1 ≤ i ≤ 3) is the sample size and

h ∈ {1/2, 1, 2, 3, 4}

MD β
→
n = (25, 25, 25)

→
n = (25, 50, 75)

h h

1/2 1 2 3 4 1/2 1 2 3 4

0-I 9.625 Lk,1(h) 0.037 0.045 0.050 0.053 0.025 0.036 0.041 0.050 0.055 0.057

AC(h) 0.037 0.042 0.027 0.025 0.020 0.030 0.033 0.042 0.036 0.033

3.375 Lk,1(h) 0.017 0.023 0.021 0.022 0.023 0.020 0.018 0.020 0.019 0.020

AC(h) 0.008 0.007 0.007 0.009 0.010 0.014 0.011 0.011 0.011 0.012

1-I 9.625 Lk,1(h) 0.176 0.197 0.180 0.168 0.137 0.436 0.542 0.522 0.460 0.384

AC(h) 0.166 0.195 0.159 0.116 0.087 0.267 0.296 0.175 0.116 0.087

3.375 Lk,1(h) 0.088 0.099 0.093 0.072 0.060 0.132 0.199 0.227 0.202 0.160

AC(h) 0.062 0.057 0.045 0.041 0.041 0.066 0.065 0.048 0.041 0.041

2-I 9.625 Lk,1(h) 0.338 0.409 0.342 0.271 0.231 0.838 0.900 0.836 0.737 0.672

AC(h) 0.295 0.323 0.241 0.190 0.149 0.557 0.632 0.529 0.443 0.401

3.375 Lk,1(h) 0.127 0.146 0.088 0.046 0.027 0.425 0.543 0.473 0.353 0.236

AC(h) 0.116 0.085 0.035 0.025 0.020 0.212 0.235 0.169 0.115 0.092

3-I 9.625 Lk,1(h) 0.386 0.471 0.480 0.477 0.464 0.810 0.883 0.902 0.898 0.874

AC(h) 0.384 0.472 0.413 0.370 0.317 0.422 0.479 0.426 0.370 0.317

3.375 Lk,1(h) 0.080 0.097 0.104 0.104 0.107 0.188 0.253 0.275 0.286 0.276

AC(h) 0.084 0.129 0.133 0.146 0.146 0.085 0.130 0.133 0.144 0.141

4-I 9.625 Lk,1(h) 0.112 0.125 0.100 0.093 0.077 0.247 0.316 0.265 0.189 0.152

AC(h) 0.084 0.105 0.073 0.055 0.042 0.122 0.140 0.105 0.069 0.059

3.375 Lk,1(h) 0.041 0.058 0.046 0.037 0.031 0.099 0.139 0.130 0.096 0.077

AC(h) 0.036 0.028 0.009 0.008 0.011 0.030 0.038 0.035 0.030 0.025

Table 4 shows the rejection proportions for the new proposed tests for different h′s.
While the AC(h) statistic is extremely conservative for all considered h′s (the observed
rejection probabilities under the null are never larger than 0.026), the Lk,1(h) test is
anticonservative for the largest h-values. In this scheme the optimal bandwidth also
changes with the test statistic and the model. There is not a particular bandwidth value
which deserves a special mention. It can also be observed that the AC criteria does
not obtain good result for unequal censoring time distributions.

Table 5 shows the rejection proportions for the Fleming-Harrington tests and for
the proposed tests when the algorithms BM and MS are applied over the grid H in
the case of unequal censoring time distributions (Example 2). The first method (BM)
always obtains a slightly smaller power than the second one (MS), although it is still
larger than the optimal power obtained by the bandwidths within the considered grid.
It is observed that the MS algorithm often obtains rejection levels above the largest
one within the grid also under the null, thus indicating that the reported significance

levels are too large, particularly for
→
n = (25, 50, 75).
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Table 3 Observed rejection probabilities for the reference statistics (MH , TW and PP ) and the new
proposed ones (Lk,1(h) and AC(h)) when the bandwidth are selected from the BM (h B M ) and the MS

(ĥ P ) algorithms on the grid H

MD β MH TW PP Lk,1(h) AC(h)

h B M ĥ P h B M ĥ P

→
n = (25, 25, 25)

0-I 9.625 0.087 0.078 0.077 0.052 0.070 0.030 0.022

3.375 0.058 0.050 0.046 0.028 0.034 0.009 0.019

1-I 9.625 0.402 0.427 0.434 0.183 0.182 0.215 0.217

3.375 0.343 0.347 0.349 0.114 0.134 0.067 0.095

2-I 9.625 0.069 0.107 0.147 0.371 0.337 0.350 0.376

3.375 0.096 0.128 0.167 0.147 0.173 0.117 0.128

3-I 9.625 0.675 0.564 0.444 0.459 0.479 0.486 0.478

3.375 0.359 0.312 0.247 0.114 0.156 0.152 0.193

4-I 9.625 0.139 0.165 0.166 0.118 0.113 0.113 0.120

3.375 0.139 0.135 0.139 0.059 0.067 0.036 0.045
→
n = (25, 50, 75)

0-I 9.625 0.066 0.050 0.050 0.054 0.060 0.044 0.038

3.375 0.055 0.061 0.061 0.025 0.038 0.017 0.023

1-I 9.625 0.779 0.810 0.826 0.547 0.539 0.297 0.316

3.375 0.663 0.697 0.710 0.228 0.241 0.073 0.096

2-I 9.625 0.090 0.174 0.312 0.900 0.889 0.661 0.668

3.375 0.161 0.269 0.384 0.537 0.552 0.248 0.272

3-I 9.625 0.971 0.929 0.848 0.903 0.887 0.472 0.485

3.375 0.737 0.647 0.561 0.302 0.325 0.153 0.192

4-I 9.625 0.261 0.316 0.333 0.301 0.297 0.148 0.153

3.375 0.246 0.268 0.273 0.153 0.171 0.040 0.056

Figure 3 is analogous to Fig. 2 for the models in Example 2. While the AC criteria
does not work for unequal censoring time distributions, the Lk,1(h) test improves its
behavior relative to the Fleming-Harrington family. It is still the best one for model
2-II and obtains very competitive results for models 3-II, 4-II, 5-II and 6-II.

4 Real data analysis

In order to illustrate the proposed methods in a practical setup, in this section we
consider two different data sets from real medical studies.

Example 1.
We consider data collected in a clinical trial to compare the efficacy and safety

of two antiretroviral drugs in treating patients who had failed or were intolerant of
zidovudine (AZT) therapy. Our objective are the 422 men HIV-infected who met entry
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Table 4 Observed rejection probabilities for Lk,1(h) and AC(h) statistics in the proposed models for

bandwidth hσ̂i n−1/5
i where σ̂i is the sample standard deviation, ni (1 ≤ i ≤ 3) is the sample size and

h ∈ {1/2, 1, 2, 3, 4} for non-uniform censoring time distributions

MD
→
n = (25, 25, 25)

→
n = (25, 50, 75)

h h

1/2 1 2 3 4 1/2 1 2 3 4

0-II Lk,1(h) 0.023 0.032 0.048 0.062 0.067 0.035 0.034 0.052 0.063 0.074

AC(h) 0.013 0.017 0.024 0.025 0.026 0.019 0.014 0.017 0.021 0.022

1-II Lk,1(h) 0.134 0.173 0.217 0.226 0.200 0.281 0.390 0.460 0.470 0.441

AC(h) 0.022 0.018 0.013 0.014 0.014 0.023 0.019 0.012 0.019 0.016

2-II Lk,1(h) 0.168 0.208 0.132 0.079 0.055 0.538 0.656 0.465 0.260 0.145

AC(h) 0.047 0.031 0.016 0.011 0.080 0.066 0.060 0.041 0.035 0.081

3-II Lk,1(h) 0.217 0.344 0.478 0.519 0.499 0.575 0.767 0.877 0.879 0.885

AC(h) 0.016 0.029 0.028 0.032 0.037 0.015 0.017 0.027 0.032 0.032

4-II Lk,1(h) 0.073 0.106 0.126 0.117 0.122 0.145 0.214 0.238 0.214 0.181

AC(h) 0.018 0.007 0.008 0.010 0.011 0.018 0.015 0.021 0.024 0.027

5-II Lk,1(h) 0.208 0.241 0.175 0.116 0.083 0.545 0.660 0.588 0.459 0.360

AC(h) 0.039 0.041 0.025 0.022 0.020 0.039 0.053 0.055 0.049 0.046

6-II Lk,1(h) 0.105 0.140 0.153 0.143 0.140 0.227 0.351 0.380 0.317 0.268

AC(h) 0.022 0.029 0.054 0.058 0.061 0.022 0.032 0.054 0.055 0.063

conditions (either an AIDS diagnosis or two CD4 counts of 300 or fewer, and fulfilling
specific criteria for AZT intolerance or failure) and who were enrolled and randomly
assigned to receive either didanosine (ddI) or zalcitabine (ddC). For full details on the
trial the reader is referred to Abrams et al. (1994). We want to compare the survival
curves for these two groups. The observed censorship percentages were 63.1% (135
of 214) for the ddC therapy group and 56.7% (118 of 208) for the ddI therapy group.
In Fig. 4 we depict the respective survival curves.

The main difference between the curves is found at the end of the follow up (late
differences). At the usual significance levels, the linear rank tests do not detect dif-
ferences between both curves (the P-values for the Mantel-Haezel, Tarone-Ware,
and Peto-Peto statistics were respectively: MH = 0.181, TW = 0.178 and PP =
0.176). Figure 5 provides the P-values for the smooth tests Lk,1(h) and AC(h) along
the grid H1 = {1/4, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4} estimated through 1,000 bootstrap
resamples.

Both statistics report non significant P-values along the range of values of h,
although for h = 1 the P-values are close to 0.05 (usual nominal significance level).
In order to make a decision about the suitable level of smoothness in the test statistic,
we applied the BM and the MS methods (as described in Sect. 2) for two different
grids: H1 (see above) and H2 = {1/2, 1, 2, 3}. The numbers of bootstrap replicates
were B0 = B ′

0 = 1,000 and B1 = 500. The P-values obtained by the BM method for
AC(h) were 0.080 (H1) and 0.065 (H2), with bandwidths h = 0.594 and h = 0.711,
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Table 5 Observed rejection probabilities for the reference statistics (MH , TW and PP ) and the new pro-
posed ones (Lk,1(h) and AC(h)) when the bandwidth are selected from the BM (h B M ) and the MS (ĥ P )

algorithms on the grid H for non-uniform censoring time distributions

MD MH TW PP Lk,1(h) AC(h)

h B M ĥ P h B M ĥ P

→
n = (25, 25, 25)

0-II 0.087 0.078 0.077 0.052 0.070 0.030 0.022

1-II 0.393 0.391 0.387 0.237 0.263 0.024 0.034

2-II 0.152 0.181 0.217 0.206 0.230 0.043 0.056

3-II 0.389 0.321 0.262 0.469 0.522 0.039 0.047

4-II 0.161 0.152 0.152 0.138 0.177 0.017 0.027

5-II 0.419 0.378 0.344 0.254 0.272 0.045 0.059

6-II 0.303 0.240 0.183 0.185 0.223 0.051 0.073
→
n = (25, 50, 75)

0-II 0.057 0.061 0.053 0.067 0.097 0.017 0.025

1-II 0.692 0.727 0.722 0.482 0.515 0.023 0.031

2-II 0.190 0.286 0.408 0.642 0.646 0.062 0.082

3-II 0.761 0.683 0.603 0.866 0.888 0.039 0.047

4-II 0.256 0.263 0.266 0.244 0.292 0.023 0.029

5-II 0.701 0.612 0.526 0.666 0.681 0.055 0.075

6-II 0.525 0.381 0.287 0.396 0.438 0.044 0.064
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Fig. 4 Survival curves for ddI and ddC groups in the AIDS data

respectively; and 0.083 (H1) and 0.090 (H2) for Lk,1(h), with bandwidths h = 0.921
and h = 0.985, respectively. The MS method, when applied to the AC(h) test, gave
P-values of 0.094 and a bandwidth of h = 0.5 for both grids, and when applied to the
Lk,1(h) test gave P-values of 0.089 and a bandwidth of h = 1.0 also for both grids.
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Fig. 5 P-values for the new proposed statistics for different h′s estimated by 1,000 bootstrap iterations.
AIDS data

Table 6 Percentages of the hormone receptor status (HRS) and stage status and mean and standard deviation
(SD) for diagnostic age (Age) for each group of hormonal treatment (HT)

HT HRS (%) Stage (%) Age

Positive Negative I II III IV Mean SD

Yes 64.5 31.3 16.2 50.3 18.3 9.3 66.8 12.6

No 41.4 28.7 45.3 28.1 4.7 19.5 57.3 14.3

Total 57.8 30.6 25.1 43.5 14.1 12.4 63.9 13.8

Hence, the new proposed statistics do not reject the null hypothesis (at level 0.05) but
suggest possible significant differences if the sample is increased.

Example 2.
We apply the proposed statistics on a real data set previously considered by

Martínez-Camblor et al. (2009a). The data come from a breast cancer study. In par-
ticular, and ignoring the possible effects of the covariates, we want to determine the
effect of the hormonal treatment on the time to death in women with breast cancer.
A total number of 418 women diagnosed with the disease between 1990 and 1995
in Gipuzkoa (north of Spain) region were considered. A follow up of 10 years was
made. Table 6 shows some data details. The survival curves for each group (290 with
and 128 without treatment) are showed in Fig. 6. The observed censoring percentages
were 54.8% (159 women) in treatment group and 65.6% (84 women) in non-treatment
group.

Note that none of the survival curves uniformly dominates the other, and that late
differences can be observed. Hence, the situation under study can be seen as a mixed
situation between models MD 2-I and MD 3-I. On the other hand, the censoring
time distributions are known, both in the treatment and in the control groups follow a
degenerate distribution at point ten (years). The traditional tests do not reveal statistical
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Fig. 6 Survival curves for Treatment group (with hormonal therapy) and for the Control group. Breast
cancer data
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Fig. 7 P-values for the new proposed statistics for different h′s estimated by 1,000 bootstrap iterations.
Breast cancer data

significant differences: 0.114 (MH ), 0.188 (TW ) and 0.295 (PP ). Figure 7 provides
the P-values for the smooth tests Lk,1(h) and AC(h) along the grid H1 (see above)
estimated through 1,000 bootstrap resamples.

The AC(h) statistic exhibits a remarkable power in this case, leading to a highly
significative P-value (with independence of the used h) which provokes rejection even
for α = 0.01 (both the BM and the MS algorithms return P-values of 0.005 on the grid
H1). Despite none of the survival curves is better than the other one, we can conclude
(by using the AC(h) statistic) without choosing a particular bandwidth that the hor-
monal therapy influences the survival prognosis, and that this effect is varying along
the follow up. On the contrary, the Lk,1(h) test does not reject the null hypothesis for
any of the considered h values.
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5 Main conclusions

In this paper we explore the performance of the kernel density estimator when com-
paring k independent random samples which are observed under censoring. In partic-
ular, generalizations of the AC and Lk,1 tests (Martínez-Camblor and de Uña-Álvarez
2009a) are considered. In the Monte Carlo simulation study, the proposed tests obtain,
in general, poor results, although (as occurs in the uncensored setting), they are still
the best ones in the scenario of non-uniform dominance. The proposed procedures
require the estimation of both the k lifetime density functions and the k censoring time
distributions, and they perform better for large sample sizes and low censorship per-
centages. In addition, we point out that the Lk,1 statistic performs better than the AC
in most of the simulated cases. In particular, for unbalanced censoring times, while
Lk,1 performs well, the AC just does not work. Moreover, the statistical power of
AC is really poor for unequal sample sizes. The situation seems to be the opposite in
the breast cancer data example, where (unlike Lk,1) the AC statistic is able to reject
the null; note, however, that this example has a very special (degenerated) censoring
pattern and that, basically, a comparison between two uncensored samples is per-
formed on the interval (0, 10) (years). Therefore, between the two proposed statistics,
the use of Lk,1 may be clearly advisable.

The bandwidth selection problem is a crucial point in the construction of a smooth
test. We address this issue from the significance level approach. Two different
methods are considered. The BM-algorithm (introduced by Martínez-Camblor and
de Uña-Álvarez 2009b) usually obtains results close to the best ones within the con-
sidered grid; this method has been considered in the context of paired design too,
obtaining also good results (Martínez-Camblor 2010b). However, approximation (6)
may fail in some practical scenarios, so the BM algorithm may be inappropriate. The
proposed MS algorithm is a modification of BM which overcomes assumption (6). It
also performs well although its rejection level is larger than within the considered grid
of bandwidths even under the null, leading to an anticonservative test.

In the Example 1 of Sect. 4 it is observed that the grid of bandwidths could have
some influence on the final decision reached by the BM method. Indeed, in this case
a small difference in the h value may lead to an important change in the associated
P-value (see Fig. 5). However, in most practical applications this sensitivity should be
small. A possible improvement of B M could be reached through the implementation
of an iterative procedure to find the ‘optimal’ grid (with an extra computational effort),
and this is an interesting field for future research.

As in previous papers of the authors (Martínez-Camblor and de Uña-Álvarez
2009b), the bandwidth for the smooth tests is obtained through formula hσ̂i n−1/5,
where a suitable h must be chosen. The convergence rate n−1/5 is the optimal for
kernel density estimation, including right censored data (Marron and Padgett 1987).
Obviously, the optimal rate for testing proposes may be different to that of estimation;
moreover, this optimal rate may not exist for the k-sample problem. The theoreti-
cal study of the optimal bandwidth for the k-sample problem is beyond the scope of
this work and this point (even for complete information) must be the goal for future
research.
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Appendix: Proof of Theorem 1

For each 1 ≤ p < ∞ and from Horváth (1991) it is easy to check that, for each n ∈ N,
the centralization parameters in Theorem 1 satisfy ek,p < ∞ and 0 < σk,p(n)2 < ∞
almost surely.

Now, for n ∈ N, ek,p < ∞, we define

Pek,p(t) = E

⎡

⎣n(p−2)/2 h p/2
n

k∑

j=1

n j

∣∣∣ f̂KM ,h j (t) − f̂KM ,hn (t)
∣∣∣

p

⎤

⎦ , (7)

[Pσk,p(n)]2 = n p−2h p−1
n V

⎡

⎢⎣
k∑

j=1

n j

∫

Cn

∣∣∣ f̂KM ,h j (t) − f̂KM ,hn (t)
∣∣∣

p
dλ(t)

⎤

⎥⎦ (8)

and the continuous, zero mean, stochastic process

Xn(t) = 1√
hnPσk,p(n)

⎧
⎨

⎩
(nhn)p/2

n

k∑

j=1

n j

∣∣∣ f̂KM ,h j (t) − f̂KM ,hn (t)
∣∣∣

p − Pek,p(t)

⎫
⎬

⎭ .

(9)

Therefore, under condition C2, similarly as in Martínez-Camblor and de Uña-Álvarez
(2009a), if Xn(·) satisfies the assumptions

H1. sup(t,s)∈Cn×Cn
|E [Xn(t)Xn(s)]| < ∞ ∀n ∈ N

H2. There exist positive real constants C, α such that E [Xn(t)Xn(s)] = 0 whenever
|t − s| > Cn−α

we get:

∫

Cn

Xn(t)dλ(t)
L−→n N (0, 1) . (10)

On one hand, both the kernel and the density functions are bounded which implies H1.
On the other hand, the kernel function has compact support and it is symmetrical about
zero, then, there exists a positive real constant C such that K (u) = 0 ∀u �∈ (−C, C).
This, together with C3, ensures H2.

From C2 it is easy to check that

[Pσk,p(n)]2 − σk,p(n)2 = oP (1)
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and
∫

Cn

Pek,p(t)dλ(t) − ek,p = oP (1)

and then
∫

Cn

Xn(t)dλ(t) − 1√
hnσk,p(n)

{
(nhn)p/2 Lk,p(h) − ek,p

}
P−→n 0. (11)

From (10), (11) and the Slutsky Lemma the proof is complete. �	
The AC(h) statistic satisfies the same assumptions as Lk,1(h), therefore in order

to derive the asymptotic normality for it, we can apply similar arguments. Obviously,
both the mean and variance are different than the ones obtained for Lk,1(h).
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