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Abstract One way to tackle brain computer interfaces is to consider event related
potentials in electroencephalography, like the well established P300 phenomenon.
In this paper a multiple classifier approach to discover these events in the bioelec-
trical signal and with them whether or not a subject has recognized a particular
pattern, is employed. Dealing with noisy data as well as heavily imbalanced target
class distributions are among the difficulties encountered. Our approach utilizes par-
titions of electrodes to create robust and meaningful individual classifiers, which are
then subsequently combined using decision fusion. Furthermore, a classifier selection
approach using genetic algorithms is evaluated and used for optimization. The pro-
posed approach utilizing information fusion shows promising results (over 0.8 area
under the ROC curve).
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Fig. 1 Schematic presentation of the succession of bioelectrical artifacts after a stimulus. The letter denotes
the sign of the voltage whereas the following number indicates the approximate delay after the trigger (plot
adapted from Birbaumer and Schmidt 2006)

1 Introduction

In the past few years brain computer interfaces became part of the most prominent
applications in neuroscience (Chumerin et al. 2009). In the present study the goal is
to investigate the possibility to automatically determine whether a human subject has
just seen a target on a presented image by solely analyzing the event related potentials
(ERP), that are recorded using electroencephalography (EEG). ERP typically reflect
cognitive processes in the brain that follow a more or less strict timely pattern that
can be visualized by filtering and averaging ERP signal recordings (Gray et al. 2004).
A typical EEG progression can be seen in Fig. 1. Well established states that are
passed during this information process resembled in the signal are the P100, N200
and the well known P300, all named after their voltage and approximate delay of the
stimulus-response (Gray et al. 2004; Dujardin et al. 1993). Furthermore, actual ampli-
tudes and latencies in the typical ERP such as the N200 or the P300 are dependent
on factors such as the subjects attention, age, the stimulus modality (e.g., audio or
visual), and the frequency of the stimulus (Dujardin et al. 1993). Another source of
ERP are motor signals which correspond to a task related physical action of a sub-
ject like pressing a button. Such a potential may be even further delayed after the
stimulus and the aforementioned patterns. These bioelectrical phenomena are nor-
mally overlaid with heavy noise, that is caused inevitably even by subtle movements
of a test person (e.g. heartbeats). To make the actual ERP visible a denoising tech-
nique called ensemble averaging (Sörnmo and Laguna 2005) is applied in physiology:
for all sequences of a category, the subsequent samples after a stimulus are averaged.
In the present investigation visual stimuli were presented by following a typical oddball
paradigm: the non target (background) type stimuli were presented very frequently,
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On the discovery of events 7

whereas the targets were displayed very rarely. According to Dujardin et al. (1993) this
type of experimental setup should lead to a prominent P300 representation in the EEG.

Originating from these findings, it is compelling to design a machine classifier capa-
ble of detecting the subject’s recognition of a target stimulus by monitoring the bio-
electrical EEG stream. This particular setup imposes several challenges: the oddball
recording technique of the data requires a special treatment due to the skewed distri-
bution of classes. Heavily imbalanced datasets require special treatment in order to
mitigate the over-representation of a class. Popular techniques are under- and over-
sampling of the training set with respect to the categories or the usage of error functions
that account for skew distributions of classes (Japkowicz 2000; Zhou and Liu 2006).
Also, the noisy nature of the employed sensors can impair the recognition performance.
Methods designed to improve robustness in low signal to noise ratio conditions include
low pass filtering but also information or data fusion (Kuncheva 2002). In this par-
ticular domain of information fusion various possibilities to ensure robustness can be
applied. In our approach, we gain robustness by combining multiple feature channels
as well as by combining the outputs of several independent classifiers.

The remainder of this paper is organized as follows: in Sect. 2, the employed data
collection is described in greater detail. In Sect. 3 the main issues about constructing
the employed classifiers are explained together with classifier selection and classifier
fusion. The conducted experiments are described in Sect. 4, finally, Sect. 5 concludes.

2 Data collection and feature extraction

In this study, the dataset provided by the “Machine Learning for Signal Processing
2010 Competition: Mind Reading1” is utilized. The goal of the competition is the
classification of stimuli by analyzing EEG recordings. For these recordings, satellite
images were presented in a fast sequence to a test person, who was instructed to push
a button when a surface to air missile (SAM) site was shown. The images were shown
to the subject in a resolution of 500 × 500 pixels every 100 ms. The data is presented
in 75 blocks of 37 images leading to a total number of 2,775 images. Each block is
separated by a pause ended by the subject independently. However, only a marginal
fraction of the images are actual triggers (i.e. a SAM site is shown) such that the
task of identification can be seen as a typical oddball paradigm task (Segalowitz et al.
2001). Out of the 58 triggers only 48 triggers were identified by the subject within
a reasonable time window after the presentation of the satellite image containing an
actual missile site. For the testing and training only the EEG data recorded after these
48 correctly identified triggers are used in order to ensure that the subject has actually
found the target and therefore generating a meaningful EEG phenomenon.

The EEG data consists of 64 channels in total that are recorded with a sampling
rate of 256 Hz. The sensors are arranged as it is shown in the center of Fig. 3. Along
with the data from these 64 electrodes the onset time of the pressed space bar and the
type of displayed image (trigger or no trigger) are provided in the dataset.

In order to prepare the data for classification five different features were extracted
locally from every EEG channel. The samples of a time window of 0.5 second

1 http://www.bme.ogi.edu/~hildk/mlsp2010Competition.html.
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Fig. 2 Feature extraction procedure: the subsequent half of a second is processed in time and frequency
domain. Overall, 16 × 5 × 2 = 160 different features per partition (see Fig. 3) are passed to the classification
architecture

following each image trigger event were isolated for subsequent analysis. This could
also be conducted using unsupervised learning for sequential data like e.g. described
in Genolini and Falissard (2010). The frame length of 0.5 second was chosen in order
to capture fully the typical ERP (as depicted in Fig. 1). The features for the analysis
ERP were computed in both, the frequency and the time domain (Picton et al. 2000).
To obtain a first feature, the first two principal components upon this sequence of
samples were calculated using a PCA. Four more features were generated by applying
the fast Fourier transformation (FFT) on the aforementioned windows. The real and
imaginary part of the resulting frequency spectrum were utilized separately to form a
second and third feature. The amplitude and the phase shift of the particular frequen-
cies were computed to form a fourth and fifth characteristic features. All these values
were separately passed to a further principal component analysis, projecting the data
on the two components, having the highest variance. Figure 2 displays the basic steps
of this feature extraction procedure.

A comprehensive overview of the competition can be found in Hild et al. (2010).
Many different classifier approaches have been evaluated in this context with the sup-
port vector machine being the most frequent one. Also, the concept of bagging has
been widely used. Thus performances of up to 0.82 area under the ROC curve (AUC)
have been reached (for a description of the top-scoring approaches please refer to
Leiva and Martens 2010; Iscan 2010; Labbe et al. 2010).

3 Classification and classifier fusion

3.1 Support vector machines and imbalanced distribution of classes

Many real applications in pattern recognition need to deal with imbalanced train-
ing sets. Common techniques to mitigate this issue are over-sampling of the
underrepresented classes or under-sampling of the overrepresented classes (Japkowicz
2000; Zhou and Liu 2006). Another approach to imbalanced data sets is utilizing a
particular loss function in the chosen classifier design such as individual cost terms for
each class. Such a loss function penalizes misclassification of underrepresented clas-
ses more severely than others. In the following, such a loss term is incorporated into
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On the discovery of events 9

the common formulation of the support vector machine (Schölkopf and Smola 2001)
as e.g. proposed in Osuna et al. (1997). This concept has proven to be feasible under
different circumstances as fuzzy-input fuzzy-output support vector machine concept
as described by Thiel et al. (2007). A second concept, we exploit in this context is
the measurement of class confidence using the distance of a sample from the decision
boundary. We gain additional flexibility for the classifier fusion scheme by utilizing
these membership degrees instead of crisp labels.

In this section, we describe our modifications to the SVM concerning the proposed
loss term for imbalanced classification tasks. The class weights for every data sample
are given in two N -dimensional vectors m+ and m− which contain the relative propor-
tions of the two opposing classes in the training data and hence m++ m− = (1, . . . , 1).
The goal is then to maximize a soft-margin, stated as

argmin
w,b,ξ+,ξ−

1

2
||w||2 + C

N∑

n=1

(ξ+
n m+

n + ξ−
n m−

n ) (1)

where n = 1, . . . , N denotes the index of the training samples and ξ+ and ξ− are
linear slack variables penalizing a sample being misclassified. The parameter C con-
trols the penalty of incorrect class assignments. The minimization problem of Eq. (1)
is subjected to the constraints

wTφ(xn) + b ≥ 1 − ξ+
n (2)

wTφ(xn) + b ≥ −(1 − ξ−
n ) (3)

ξ+
n ≥ 0 (4)

ξ−
n ≥ 0 (5)

where w and b describe the orientation and the bias of the hyperplane, and φ(.) denotes
a transformation of xn ∈ R

n into a potentially higher dimensional Hilbert space H . The
corresponding Lagrangian of this optimization problem defined by (1)–(5) is given by:

L(w, b, ξ+, ξ−) = 1

2
||w||2 + C

N∑

n=1

(ξ+
n m+

n + ξ−
n m−

n )

−
N∑

n=1

α+
n ((wTφ(xn) + b) − 1 + ξ+

n )

+
N∑

n=1

α−
n ((wTφ(xn) + b) + 1 − ξ−

n )

−
N∑

n=1

β+
n ξ+

n

−
N∑

n=1

β−
n ξ−

n .
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Differentiating the Lagrangian with respect to the Lagrangian multipliers and w, b,
ξ+, ξ− and subsequently eliminating the parameters of the hyperplane and the slack
variables results in the dual Lagrangian:

L̃(α+, α−) =
N∑

n=1

α+
n +

N∑

n=1

α−
n − 1

2

N∑

n=1

N∑

m=1

(α+
n − α−

m )(α+
m − α−

n )k(xn, xm), (6)

where the kernel function is defined by k(xn, xm) = φ(xn)
Tφ(xm) and the maximi-

zation problem is now constrained to:

N∑

n=1

(α+
n − α−

n ) = 0, with

0 ≤ α+
n ≤ Cm+

n , and

0 ≤ α−
n ≤ Cm−

n . (7)

In order to satisfy the Karush–Kuhn–Tucker conditions, properties

α+
n ((wTφ(xn) + b) − (1 − ξ+

n )) = 0, (8)

α−
n ((wTφ(xn) + b) + (1 − ξ−

n )) = 0, (9)

β+
n ξ+

n = (Cm+
n − α+

n )ξ+
n = 0, (10)

β−
n ξ−

n = (Cm−
n − α−

n )ξ−
n = 0, (11)

∀n = 1, . . . , N ,

α+, α−, β+, β− ≥ 0

and properties (2)–(5) hold. A numerical solution can be computed using the sequential
minimal optimization (SMO) approach introduced by Platt (1999a).

Once the Lagrangian multipliers α+ and α− have been found, the parameters w
and b of the hyperplane are determined by:

w =
N∑

n=1

(α+
n − α−

n )φ(xn), and

b = 1

2NM+

∑

n∈M+

⎛

⎝1 −
∑

l∈S+
(α+

n − α−
n )k(xn, xm)

⎞

⎠

+ 1

2NM−

∑

n∈M−

⎛

⎝(−1) −
∑

l∈S−
(α+

n − α−
n )k(xn, xm)

⎞

⎠ , (12)

where S+(S−) is the set of support vectors α+
n > 0(α−

n > 0) and M+(M−) is the set
of unbounded support vectors with α+

n < Cm+
n (α−

n < Cm−
n ). According to Eqs. (10)

and (11) ξ+
n (ξ−

n ) = 0 if the sample n is in the set M+(M−). The bias parameter b is
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On the discovery of events 11

averaged by using Karush–Kuhn–Tucker conditions (8) and (9) to obtain a numerically
stable solution.

A class decision can then be obtained by y = sign(wTx + b). To extend the SVM
to a probabilistic output, the distance d(x) of the input x to the hyperplane is mapped
to ỹ(x) ∈ (0, 1) using a sigmoid function (Platt 1999b) with parameter a

ỹ(x) = (1 + exp(−a · d(x)))−1

can be minimized according to the mean square error on the training data. Since
m+

n = 1 − m−
n we only need to consider m+

n and optimize

E = 1

N

N∑

n

(ỹ(xn) − m+
n )2,

which can be accomplished by a linear regression technique.

3.2 Classifier fusion and classifier selection

Pattern recognition aims for high recognition rates. One popular way to manage this
is to develop and optimize a feature for the particular task and to train and optimize
matching classifiers. But typically it is not so clear which feature or classifier approach
are the most qualified ones. Therefore, another option is to create several classifiers
using different feature approaches and then combine the outputs of the individual clas-
sifiers in an appropriate way (Kuncheva et al. 2001; Kittler et al. 1998). A classifier
constructed under such paradigm is called multiple classifier system (MCS). In order
to benefit from classifier combination individual classifiers, but should be accurate
and diverse (Kuncheva and Whitaker 2003).

There are many different approaches to combine classifier outputs to improve
classification performances. The methodology of classifier fusion can be divided in
approaches implementing a fixed combination (Kittler et al. 1998) such as majority
voting or average fusion and approaches, that can be adapted to a specific classifier
combination and application (Kuncheva et al. 2001). Examples for trainable classifier
fusion schemes are decision templates (Kuncheva et al. 2001) or the mixture of experts
approach (Jordan and Jacobs 1994). For any of these MCS approaches, it is essential
to construct a classifier team, i.e. pool of classifiers, that incorporates both, individual
accuracy and diversity as a team. Suppose one has constructed a variety of individual
classifiers, now, it could be essential to select from these underlying classifiers a team
of classifiers that is optimal with respect to a particular application. This search process
in the space of possible classifier teams is called classifier selection (Kuncheva 2002;
Giacinto and Roli 1999) and uses similar techniques as feature selection. There are
many local search approaches, adapted from feature selection, to deal with this well
known issue like sequential forward selection (Guyon and Elisseeff 2003).

Another search strategy, that is applied in the literature to classifier selection is
the meta learning approach of genetic algorithms (Ruta and Gabrys 2005; Kuncheva
and Jain 2000). For genetic algorithms a pool of instances of possible solutions of a
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problem, often represented as a binary string, is kept. These instances are manipu-
lated in two different ways using mutation and recombination operations. Mutation is
realized by an independent bitwise flip with a predefined probability and the recombi-
nation step is realized using a crossover operation by selecting a random point on two
instances (i.e. parents) and exchanging parts mutually between them. The operations
generate new possible solutions that are pooled together with the initial population
(Bäck 1996). Thereafter, the pool of instances is evaluated regarding a predefined fit-
ness function and according to this function a number of individuals is selected to form
a new population. Such a strategy is called fitness based survivor selection. Using this
population the aforementioned steps are iteratively performed until a stopping condi-
tion is reached, e.g. maximum number of iterations or convergence. These iterations
of crossover, mutation and selection are called epochs in the following. This genetic
algorithm uses a combination of explorative and exploitative (recombination) search
steps (mutation).

To bring the concept of classifier selection to genetic algorithms, the representa-
tion of a classifier team and an appropriate fitness function have to be defined. There
is a natural representation of a population of classifier teams as a bit string indicat-
ing whether a classifier is a member of the particular team (“1”) or not (“0”). More
challenging is the question for a fitness function: there are attempts to rate classi-
fier teams concerning its diversity utilizing the κ diversity measure (Kuncheva and
Whitaker 2003) and the related κ-error diagrams, that may be utilized to construct
classifiers using AdaBoost (Margineantu and Dietterich 1997). Various other types of
diversity criteria can be used, e.g. measures derived from cluster analysis (Kraus et al.
2011) or the generalization error of a classifier team on a validation set as for example
implemented in Ruta and Gabrys (2005).

The general concept of multiple classifier systems has been previously applied to
the classification of EEG. In Zhang et al. (2007), the ensemble technique boosting
is used together with RBF networks and independent component analysis for feature
extraction. An ensemble of SVM is employed in Rakotomamonjy and Guigue (2005)
for a P300 speller. The SVM are combined using the average over the individual deci-
sions, but also an integration over time is conducted. In Xu et al. (2008), an ensemble
of SVM was used in a localized fashion, were the individual classifiers were con-
structed based on different partitions of the data that are determined using clustering.
For testing they choose the respective classifier by computing a k nearest neighbor
using th training data.

4 Experiments and results

Before passing the computed features to our machine learning approach, the EEG
channels were partitioned into nine overlapping areas containing up to 18 channels at
a time. Eight partitions are chosen as coherent slices and the ninth one is defined as
the horizontal and vertical cutoff of the EEG device’s layout (see Fig. 3 for an over-
view). These partitions were defined from a machine learning point of view rather than
from physiology: thus, one can provide more information for individual classifiers that
using only one electrode, but it is still possible to conduct decision fusion. For every
partition, the features extracted from the respective electrodes were concatenated to
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On the discovery of events 13

Fig. 3 Positions of the 64 electrodes on the scalp of the subject (Image adapted from http://www.biosemi.
com). The small images (1–9) surrounding the main layout illustrate the defined partitions of the 64 EEG
channels (gray regions), that will be the inputs to the classifiers of the multiple classifier system

form a new feature. Thus, a feature level fusion approach is realized and by doing so
the individual classifiers that are constructed based on this representation are supposed
to get informative input.

Subsequently, the resulting 45 sets of channels—due to the combination of the
five kinds of features with the nine partitions—were trained and classified separately.
Preliminary cross validation experiments for k-nearest neighbors, multi layer per-
ceptrons and various types of SVM showed, that weighted SVM—with Gaussian
kernel—outperforms the others by AUC. We chose to train the SVM for classification
using a Gaussian kernel. As described in Sect. 3.1, a loss term was integrated in this
SVM approach tackling the issue of the imbalanced training and test sets (48 positive
samples avs. 2,700 negative samples). The performance of the classifiers is determined
by the area under the ROC curve (AUC). The results of this first classification step are
ranging from a classification performance of 0.478 AUC, which is close to random, to
0.836 AUC. An overview of the performances of all constructed classifiers is depicted
in Table 1, showing the average of 15 sixfold cross-validation rounds.

It can be observed from Table 1 that the individual performance depends on the
chosen feature extraction approach. Especially the feature extracted from the real part
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Table 1 Performances of the constructed individual classifiers in terms of area under the ROC curve

Partition of Real part Imaginary part Amplitude Phase shift PCA over time
electrodes of FFT of FFT

1 0.622 (0.089) 0.733 (0.091) 0.669 (0.083) 0.480 (0.087) 0.714 (0.101)

2 0.744 (0.087) 0.774 (0.081) 0.593 (0.092) 0.586 (0.088) 0.836 (0.065)

3 0.758 (0.093) 0.723 (0.090) 0.573 (0.082) 0.497 (0.042) 0.794 (0.082)

4 0.795 (0.078) 0.711 (0.085) 0.610 (0.076) 0.481 (0.082) 0.811 (0.078)

5 0.689 (0.095) 0.698 (0.102) 0.602 (0.086) 0.502 (0.089) 0.659 (0.111)

6 0.677 (0.102) 0.764 (0.086) 0.577 (0.084) 0.478 (0.085) 0.750 (0.090)

7 0.654 (0.096) 0.722 (0.097) 0.493 (0.089) 0.481 (0.071) 0.784 (0.070)

8 0.630 (0.075) 0.755 (0.082) 0.682 (0.086) 0.468 (0.092) 0.796 (0.084)

9 0.661 (0.101) 0.714 (0.098) 0.650 (0.083) 0.522 (0.084) 0.737 (0.100)

The numbers refer to the partitions defined in Fig. 3. The classifiers group themselves regarding the per-
formance by feature types: on the one hand features from the real part of the FFT and PCA in time domain
perform well, on the other hand features from phase shift coefficients are only slightly better than random.
The SD of the conducted runs is given in in parentheses
The bold value indicates the most accurate individual classifier

of FFT and from time domain results in strong performances, while features from
phase shift reveal rather weak performances. On the other hand the actual partition
seem to be less important considering this measure: the variability in the columns is
relatively small compared to the previously mentioned findings.

In order to further enhance the performance of the proposed classifier, a decision
fusion step was implemented to combine the obtained outputs. We decided to use an
averaging classifier fusion approach because of stability reasons (Kittler et al. 1998).
In order to find a suitable combination of classifiers, a basic genetic search algorithm
approach was implemented as described in Sect. 3.2. The classifier selection was opti-
mized locally in every cross validation run: a validation set—i.e. the data of onefold
of the training data—is left beside in the training of the individual classifiers and
the fitness of the classifier ensembles is determined and optimized on this set. For
the subsequent experiments, the number of maintained individual solutions and the
maximum number of epochs were set to 10.

Results for this averaging classifier fusion approach are reported in Table 2 with
and without classifier selection procedure. Using classifier selection, combinations of
classifiers, which further increased the area under the performance were found: The
performance of the classifier selection process on the test set is 0.860 AUC while
the actual performance when skipping the selection process is marginally smaller
(0.853 AUC). Both approaches do actually outperform the optimal individual clas-
sifier showing the highest performance (see Table 1). These results reveal that the
classifier selection step does not yield benefits in this particular application.

The number of selections of the 45 individual classifiers in 4,050 classifier selec-
tion experiments is depicted in Fig. 4. Even though the discriminant message of this
figure may be subtle one could argue that the features computed from the amplitudes
computed by FFT (green) and maybe the analogical phase shift (cyan) or the real part
(blue) are selected more often than the others. Especially in case of Phase shift features
this is surprising, because these features show relatively poor performances in Table 1.
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Table 2 Results of the classifier fusion an classifier selection approaches in terms of area under ROC curve

Fusion procedure AuROC

Classifier fusion/selection with GA 0.860 (0.074)

Classifier fusion solely 0.853 (0.081)

Best individual classifier 0.836 (0.065)

Random forest with class weighting 0.789 (0.047)

The results including the classifier selection step are based on 76 search attempts. The results without
classifier selection are computed with 15 separate sixfold cross validations. The SD of the conducted runs
is given in in parentheses

Fig. 4 Number of appearances of a particular classifier being selected: the x axis depicts the different
partitions of the electrodes using digits 1–9 and for the 5 feature types (compare the braces on the upper
part of the figure). The y axis shows the number of selections

In order to compare the proposed approach to state of the art classification tech-
niques the experiment has also been conducted using Breiman’s random forest
(Breiman 2001) extended as proposed by Chen et al. (2004), which takes into account
the imbalanced class distribution by weighting with respect to the frequency of the
classes. These results are also listed in Table 2. It can be observed that this state of the
art approach is outperformed by the proposed SVM in this application.

5 Discussion and conclusion

An information fusion approach to discover ERP in EEG data recorded using an
oddball paradigm is described in this paper. Firstly 45 individual classifiers were
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16 M. Schels et al.

trained using various feature extraction strategies and a low level information fusion
technique defining partitions of EEG electrodes. Utilizing this first fusion step, the
individual classifiers could be constructed to reveal a good performance even though
the underlying data is noisy and the distribution of the isolated features of a channel
are heavily overlapping.

Further, we implemented a decision fusion procedure and compared a genetic algo-
rithm based classifier selection to a standard averaging fusion approach. Generally,
the combination of classifiers succeeded in improving the over-all performance. This
can be be interpreted as a indication for the beneficial diversity of these classifiers in
combination with others.

This evaluation showed that in this application the relatively computationally expen-
sive search procedure did not bring significant improvement. Nevertheless, there may
be an advantage in the selection process regarding the complexity of the classifier.
Discarding some of the available classifiers reduces the efforts that have to be spent
not only on the classifier fusion step, but also these classifiers obviously do not have
to be evaluated. This reduction comes with the drawback of a costly search proce-
dure which is, however, conducted off-line prior to testing. Furthermore, the fact that
there are no tremendous differences concerning the length of the bins in the histogram
might as well be an argument to explain, that skipping the classifier procedure does
not decrease the performance.

In the future, we hope to be able to incorporate the developed architecture into more
scenarios such as the recognition or detection of valanced events in cognitive technical
companion systems. Hereby the EEG can be integrated into a broader framework to
classify user states in human computer interaction together with other physiological
signals (Walter et al. 2011).
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