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Abstract The paper presents smooth estimation of densities utilizing penalized
splines. The idea is to represent the unknown density by a convex mixture of basis
densities, where the weights are estimated in a penalized form. The proposed method
extends the work of Komárek and Lesaffre (Comput Stat Data Anal 52(7):3441–3458,
2008) and allows for general density estimation. Simulations show a convincing per-
formance in comparison to existing density estimation routines. The idea is extended
to allow the density to depend on some (factorial) covariate. Assuming a binary group
indicator, for instance, we can test on equality of the densities in the groups. This
provides a smooth alternative to the classical Kolmogorov-Smirnov test or an Analysis
of Variance and it shows stable and powerful behaviour.

Keywords Density estimation · Mixture density estimation · Penalized
spline smoothing · ANOVA

1 Introduction

Density estimation has a long standing tradition in statistics and the different
routines can be roughly categorized in four partly overlapping approaches. (a) First
and most prominent there is kernel density estimation which traces back to ideas
of Nadaraya (1964) and Watson (1964), see also Nadaraya (1974). The method
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is well established and extensively discussed in e.g. Wand and Jones (1995) or
Simonoff (1996). (b) A second approach results by writing the unknown density
as

f̂ (y) = exp {η(y)} /

∫
exp {η(z)} dz (1)

with η(·) unknown but smooth function which is estimated using spline technology.
This approach traces back to Good and Gaskins (1971), see also Silverman (1982)
and the idea has been further developed by Gu (1993) or Dias (1998), see also Gu
and Wang (2003). (c) A third approach results by extending and smoothing the clas-
sical histogram as originally suggested by Boneva et al. (1971). Following this idea
(Lindsey 1974a,b) suggests density estimation by transferring the density estimation
problem to a regression estimation scenario, with the number of observations per bin
in the histogram as Poisson count, see also Efron and Tibshirani (1996). Eilers and
Marx (1996) make use of the idea using penalized spline smoothing, see also Ruppert
et al. (2003). The spline approach and the Poisson approach (c) are thereby closely
related which results by approximating the integral in (1) with a rectangular method.
(d) A fourth line of density estimation has been suggested by using a mixture approach.
In this case, the unknown density results by finite mixture of densities components.
These mixture components are usually built from known distributions (e.g. normal)
with unknown parameters. This yields the classical mixture models discussed exten-
sively in McLachlan and Peel (2000), see also Young et al. (2009), Li and Barron
(1999) or Fraley and Raftery (2002). (e) Another approach to estimate the unknown
density is the log-spline approach (see Koo et al. 1999), modelling the log-density
function by (almost cubic) splines using maximum likelihood estimation and Newton-
Raphson method to compute optimal coefficients. (f) A sixth idea to estimate densities
is tackled using wavelets, expanding the unknown density in terms of a wavelet expan-
sion (see e.g. Hall and Patil 1995, Nason and Silverman 1999 or Nason 2008). Our
approach (g) presented in this paper distinguishes from the classical mixture model in
two ways. First, we take completely specified mixture components, that is not only the
distribution type, but also the parameters are fixed. Secondly, the number of mixture
components is chosen in a lavish way and we impose a penalty to achieve smooth
density fits. Ghidey et al. (2004) have proposed to use a finite but penalized mixture of
Gaussian densities for the estimation of a random effect distribution in a linear mixed
model. The idea has been extended and further developed in a number of papers which
include Komárek et al. (2005), Komárek (2006) and Komárek and Lesaffre (2008).
The idea of Komárek (2006) shows also similarities to the approach of Babu et al.
(2002), who approximate the density with a mixture of Bernstein polynomials. In this
paper we generalize the original idea of Komárek and Lesaffre (2008) to univariate
density estimation. Extending the mixture to a continuous mixture has recently been
proposed by Liu et al. (2009).

In this paper we follow (g) using finite mixture densities for the smooth estima-
tion of an unknown density. The collection of the densities used in the mixture in
fact plays the role of a basis and the weights correspond to basis coefficients. The
weights itself can be fitted with penalized techniques to obtain a smooth density fit.
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In principle, any type of mixture density can be used and there is no requirement for
Gaussian mixtures. In this paper we make use of a mixture of B-spline basis func-
tions normed to be densities. This allows to theoretically investigate the properties of
the fit and also guarantees stable numerical performance. To achieve smoothness we
make use of penalized spline smoothing in the style of Ruppert et al. (2003), see also
O’Sullivan (1986) and Eilers and Marx (1996). With the link between penalized spline
smoothing and mixed models (see Wand 2003) the method shows its full flexibility and
versatility as demonstrated in the commendable survey recently composed by Ruppert
et al. (2009).

A general question in penalized spline smoothing concerns the number of splines
used for fitting. A rule of thumb has been suggested in Ruppert (2002) who
shows that the number of splines does not affect the fit once sufficient splines
have been chosen, which is usually a small number compared to the sample
size regardless of the form of the function to be fitted. The same conclusion is
drawn in Kauermann and Opsomer (2011) who make use of the link between
mixed models and penalized spline smoothing. Allowing the spline dimension to
depend on the sample size provides an asymptotic framework which has been
investigated in Li and Ruppert (2008), Kauermann et al. (2009) and Claeskens
et al. (2009). Though these results shed some light on the theoretical proper-
ties of penalized spline estimation, there is hardly any practical impact and the
rule of thumb for choosing the spline dimension (see Ruppert 2002) is still
recommendable.

We also extend the classical density estimation problem by allowing the density to
depend on some covariates x , say. That is to say we let the mixture weight depend
on exogenous quantities. We restrict this modelling exercise to factorial quantities x ,
which allows us to compare densities in two (or more) groups. As example we look
at the return of stocks of different companies and different years. The idea may be
seen as nonparametric Analysis of Variance (ANOVA) and follows closely the testing
framework for the Kolmogorov-Smirnov test.

The scientific contributions of the paper are twofold. First, we show how a den-
sity can be estimated with a penalized mixture of basis densities. The novel rou-
tine is contrasted in simulations to the various competitors described above, that is
(a) kernel density estimation, (b) spline based density estimation, (c) Poisson approx-
imated density estimation and (d) classical mixture density estimation, (e) log-spline
density estimation and (f) wavelet density estimation. As will be seen, the performance
of the available routines is quite diverse and the penalized mixture approach per-
forms promising. The second contribution of the paper is to explore penalized mixture
density estimation in testing scenarios when comparing distributions in two (or more)
groups.

This paper is organized as follows. In Sect. 2 we introduce the idea of density
estimation with penalized splines. Section 3 demonstrates the fitting in simulations
and an example. In Sect. 4 we extend the idea by allowing the density to depend on
covariate x , which is demonstrated in a simulation and an example in Sect. 5. Section 6
concludes the paper.
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2 Penalized density

2.1 Mixture modelling and penalized estimation

We are interested in nonparametric estimation of the density of the univariate random
variable y. We therefore approximate the density of y as a mixture of densities

fK (y) =
K∑

k=−K

ckφk(y), (2)

where φk(y) are subsequently called basis densities. The weights ck in (2) are
parameterized as

ck(β) = exp(βk)∑K
k=−K exp(βk)

(3)

with β0 ≡ 0 for identifiability and β = (β−K , . . . , β−1, β1, . . . , βK ) so that∫
fK (y)dy = 1. The basis densities are thereby known and fixed density functions

with specified parameters. We assume that φk(y) is continuous on its support and
converges to zero at the boundary of the support. A possible choice for the basis den-
sities is to take φk(y) as Gaussian density with fixed mean μk and variance σ 2

k , where
the mean values μk may be called the knots of the basis. Numerically more stable
and theoretically more appealing are B-spline densities which are standard B-splines
(see de Boor 1978) normed to be densities. We will subsequently notate the knots at
which the basis densities are located as μk with k running from −K to K for con-
venience. We assume, that the knots μk cover the range of observed values of y and
their location is fixed. A typical and simple setting is to have equidistant knots which
will be assumed subsequently. Apparently, the number of knots plays an important
role in terms of bias and variance and a small number K will lead to biased estimates
while for large values of K the estimates will be wiggled. We will therefore utilize the
idea of penalized spline smoothing by choosing the number of knots K in a lavish and
generous way and impose a penalty to achieve smoothness. The penalty is put on the
basis coefficients βk by penalizing the variation of ck over k. Assuming independent
observations yi , i = 1, ..., n , the log likelihood takes the form

l(β) =
n∑

i=1

[
log

K∑
k=−K

ck(β)φk(yi )

]
. (4)

The log likelihood is now supplemented by adding a quadratic penalty term to the
likelihood which yields the penalized log likelihood

l p(β, λ) = l(β) − 1

2
λβT Dmβ (5)

where the penalty matrix Dm induces smoothness and λ is the penalty parameter. With
respect to the choice of Dm we follow the idea of penalized splines (see Eilers and
Marx 1996) and we want the variation of weights ck to be penalized. This holds if βk
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does not differ abruptly from βk−1 or βk+1, respectively. We therefore penalize m-th
order differences. Let L̃m denote the (m + 1)-th order difference matrix, where e.g.
L̃1 is

L̃1 =

⎛
⎜⎜⎜⎜⎝

1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎠ .

Note that L̃m is (K̃ − m) × K̃ dimensional with K̃ = 2K + 1. Since β0 ≡ 0
by definition, we can omit the linear combination with β0. Let therefore Lm =
L̃m[, {−K , . . . ,−1, 1, . . . , K }] denote the matrix by omitting the redundant middle
column in Lm corresponding to β0, where the notation [, A] refers to extracting the
columns given by the index set A. The penalty Dm now results as LT

m Lm .
Finally we sketch how to maximize (5) with respect to β using a Newton-Raphson

approach. Denote with C(β) the (2K + 1) × (2K ) matrix with elements

∂ck(β)

∂β j
, k = −K , ..., K , j = −K , . . . ,−1, 1, . . . , K

which results as

C(β) = (
diag(c̃) − c̃c̃T )[, {−K , ...,−1, 1, ..., K }] ,

where c̃ = (c−K (β), . . . , c0(β), . . . , cK (β))T . The derivative of (5) with respect to
β now equals

sp(β; λ) = ∂l(β)

∂β
− λDmβ =

n∑
i=1

CT (β)φ̃i

f (yi )
− λDmβ (6)

with φ̃i = (φ−K (yi ), . . . , φ0(yi ), . . . , φK (yi ))
T and f (y) as defined in (2). The

negative second order derivative of (5) with respect to β may be approximated by

Jp(β; λ) = −∂2l(β)

∂β ∂β
+ λDm ≈

n∑
i=1

CT (β)φ̃i φ̃
T
i C(β)

f (yi )
2 + λDm . (7)

Newton-scoring is done for estimating β, using a fixed λ.

2.2 Selecting the penalty parameter

The penalty parameter λ steers the amount of smoothness of the fitted density and it
needs to be selected data driven. A straight forward approach is the Akaike Information
Criterion (AIC) (see Akaike 1974) selecting λ by minimizing
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AI C(λ) = −l(β̂) + d f (λ) (8)

where

d f (λ) = tr
(

J−1
p (β̂; λ) Jp(β̂; λ = 0)

)
(9)

approximate the degree of the fit. Note that d f (λ = 0) = 2K is giving the number of
parameters. Alternatively one may apply Generalized Cross Validation (GCV). Appar-
ently, selecting λ by minimizing (8) requires a grid search and fitting the density for
a set of λ values, which is usually quite time consuming. Alternatively, in penalized
spline smoothing it has been shown useful to make use of the link to mixed models
[see Wand (2003), Kauermann (2005) or recent work by Reiss and Ogden (2009) and
Wood (2011)]. To do so, we adopt a Bayesian viewpoint and comprehend the penalty
as a priori distribution in the sense that the coefficient vector is assumed to be random
with

β ∼ N (0, λ−1 D−
m ) (10)

where D−
m denotes the generalized inverse of Dm . The prior (10) is degenerated, which

needs to be corrected as follows. We decompose β into the two components β∼ and
β⊥, respectively, such that β∼ is a normally distributed random vector with non degen-
erated variance and β⊥ are the remaining components treated as parameters, see also
Wand and Ormerod (2008). In fact based on a singular value decomposition we have

Dm = U∼�∼U∼T

with �∼ as diagonal matrix with positive eigenvalues and U∼ ∈ R
p×h with corre-

sponding eigenvectors where p = 2K is the number of elements in β and h = p − m
is the rank of Dm with m as degree of the difference matrix L̃m . Extending U∼ to
an orthogonal basis by U⊥ gives β∼ = U∼T β with the a priori assumption β∼ ∼
N (0, λ−1�∼−1) and with U = (U∼, U⊥) as orthogonal basis, we get β⊥ = U⊥T

β.
Conditioning on β∼, we have y being distributed according to (2) and with (10) we
get the mixed model log likelihood

lm(λ,β⊥) = log
∫

|λ�∼| 1
2 exp

{
l p(β, λ)

}
dβ∼. (11)

The integral can be approximated by a Laplace approximation (see also Rue et al.
2009)

lm(λ, β̂
⊥
) ≈ 1

2
log |λ�∼| + l p(β̂, λ) − 1

2
log |U∼T Jp(β̂; λ)U∼|. (12)

where β̂ denotes the penalized maximum likelihood estimate. We can now differentiate
(12) with respect to λ which gives
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∂lm(λ, β̂⊥)

∂λ
= −1

2
β̂

T
Dm β̂ (13)

+ 1

2λ
tr

{
(U∼T Jp(β̂; λ)U∼ + λ�∼)−1U∼T Jp(β̂; λ = 0)U∼}

For practical implementation we approximate the trace component in (13) by d f (λ)−
(m − 1) with d f (λ) as in (9). In fact with this simplification, we can construct an
estimating equation from (13) via

λ̂−1 = β̂
T

Dm β̂

d f (λ̂) − (m − 1)
. (14)

Apparently, both sides of Eq. (14) depend on λ. An iterative solution is possible by
fixing λ on the right hand side in (14), update λ on the left hand side and iterate this step
by updating the right hand side of (14). This estimation scheme has been suggested
in generalized linear mixed models by Schall (1991), see also Searle et al. (1992).
For penalized spline smoothing Wood (2011) shows that the selection of smoothing
parameter λ based in the mixed model approach behaves superior compared to AIC
selected values, see also Reiss and Ogden (2009).

We can also use the marginal likelihood (12) to check or select the number of

knots used in the basis. In fact the maximized lm(λ, β̂
⊥
) depends on K which may be

denoted as lm(λ, β̂
⊥; K ). Considering K itself as a parameter we can maximize the

marginal likelihood. In simulations we well see later that the actual choice of K has
little influence on the performance which exactly mirror Ruppert (2002)’s findings in
standard smooth regression models.

We show further theoretical properties, (i) that the estimated density has mini-
mal Kullback-Leibler distance to the unknown true density and (ii) the asymptotic
normality of the estimated coefficients β in the Appendix, Section B. Moreover, we
present results about bias and variance of the estimation in the Appendix, Section B.

2.3 Practical settings, numerical implementation and extensions

The fitting requires a number of practical settings which are implemented in the
R package pendensity (see Schellhase 2010). First, we need to allocate the basis
density given a set of observations y1, . . . , yn . We suggest to use B-splines allocated
at equidistant knots μk with the most left knot μL , fulfilling μL ≤ min(yi ) and the
most right knot μR ≥ max(yi ). The performance of the estimations can be improved
using additional equidistant knots beyond [μL , μR]. Therefore, the used penalization
of neighbouring weights ck in interaction with additional knots can achieve a better fit
of the densities at the boundaries. In our simulations (see Sect. 3) we run estimations
with one additional knot placed with the same distance used for the knots in the support
at each end of [μL , μR] and observe an improved result for several distributions.

As starting value we found that assuming a uniform distribution is useful, i.e. we
set βk = 0 to start the Newton procedure. We also experimented with different starting

123



764 C. Schellhase, G. Kauermann

values but observed that the uniform start is preferable in terms of iteration steps to
reach the maximum of the penalized likelihood. To avoid terminating the algorithm
in a local instead of global maximum, it is advisable to fit the density for a number of
different starting values and take the fit with the maximum value of the likelihood. It
should be noted, however, that the problem of local maxima occurs if the penalty is
not strong enough, since the penalty in (5) works towards the concavity of the penal-
ized likelihood. It is therefore recommendable to start the Newton procedure with a
large λ. Finally, the number of knots, i.e. the dimension of the density basis needs to
be selected. Generally, we suggest to use a large K , where we have decided upon the
default setting K = 20, which corresponds to a 41 dimensional basis. This mirrors
the rule of thumb suggested in Ruppert (2002). Increasing K 	 20 does not lead to
an improved performance of the fit. But K should not be selected too small, due to the
appearance of an approximation bias of not ignorable size (see Kauermann et al. 2009).
We show the influence of K on the fit in the next section and we confirm the impression
of Ruppert (2002) in that the actual choice of K has little influence on the fit.

Conceptually, the approach is easily extended to multivariate density estimation.
In this case we replace basis densities φk(·) in (2) by Tensor products of univariate
fixed basis densities. The index k is then running over a grid and the penalty should
be formulated in each direction of the grid, that is row- and columnwise for two
dimensions.

3 Simulations and examples

3.1 Simulations

Univariate Density Estimation
To demonstrate the performance of the penalized density estimate we run a

number of simulations. We use (i) a normal distribution F0(y) ∼ N (0, 1), a mix-
ture of normals (ii) F0(y) ∼ 1

2 N (− 1
2 , 1

4 ) + 1
2 N ( 1

2 , 1
4 ), two bimodal mixtures (iii) as

F0(y) ∼ 1
2 N (− 3

2 , 1) + 1
2 N ( 3

2 , 1) and (iv) with F0(y) = 3
4 N (− 3

2 , 1) + 1
4 N ( 3

2 , 1),
mixture of five normal densities (v) as F0(y) ∼ 13

20 N (−1, 1
2 ) + 2

20 N (− 1
2 , 1

2 ) +
1

20 N (0, 1)+ 3
20 N ( 1

2 , 1
2 )+ 1

20 N (1, 1
2 ), a normal variance mixture as (vi) with F0(y) ∼

1
2 N (0, 1) + 1

2 N (0, 10), (vii) a gamma distribution 	(3, 1) and (viii) a beta distribu-

tion Beta(10, 10). To compare our results labelled with f̂K (·) with alternative routines
we use, (a) classical kernel density estimates (see Wand and Jones 1995), (b) the
density estimation proposal of Gu and Wang (2003), (c) the approach of density esti-
mation of Eilers and Marx (1996), (d) a mixture density approach, (e) the log-spline
routine and (f) a wavelet approach, respectively. For the traditional kernel density esti-
mate (a) labelled as f̂kernel(·), we utilize two approaches for selecting the bandwidth.
First we use cross validation (bw=ucv) and secondly we choose the bandwidth by the
approach of Sheather and Jones (1991) (bw=SJ). Both kernel routines are implemented
in the density() routine in R. For (b) one estimates the unknown density f (·) by
the logistic density transform (1) with a roughness penalty imposed on η(y) which
penalizes integrated squared order derivatives. This routine is implemented in R in the
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gsspackage (see Gu 2009) and we label the resulting estimated density with f̂spline(·).
For the third approach (c) we divide the support of the data points in a large number of
bins. Following Ruppert et al. (2003) we use B = 200 equidistant subintervals (bins)
and notate with b j the number of observations in the j-th bin, j = 1, . . . , 200. With m j

as bin center and d j as bin width we fit the Poisson model b j ∼ Poisson( f (m j )nd j ).
One can now fit the density function f (·) using for instance the gam() procedure
in R, see Wood (2006). For the fourth approach (d) we make use of the R package
mixtools (see Young et al. 2009) and select the number of mixture components
using a Bayesian Information Criterion (BIC) and the entropy criterion suggested in
Celeux and Soromenho (1996). We thereby increased K successively starting from
K = 1 until the criterion reaches its optimum. The fifth approach, the log-spline
density estimation (e) is implemented in R package logspline (see Kooperberg
2009). Finally, the wavelet density estimation (f) is done with R package wave-
thresh (see Nason 2010), with finest resolution level equal to one and Daubechies
least asymmetric wavelets. For comparison with our penalized density estimate (g) we
use 2K + 1 bins with K = 20 and K = 30, respectively and label the resulting den-
sity estimate with f̂bin,K (·). We also select K data driven to maximize the likelihood
derived in Sect. 2.2.

To evaluate the performance of the fit we run N = 500 replicates of the simulation
for different sample sizes n and different K and calculate the integrated Mean Squared
Error. Therefore we first calculate the Mean Squared Error

MSE( f̂ (ỹk)) = 1

N

N∑
j=1

{
f̂( j)(ỹk) − f0(ỹk)

}2
,

where the calculated estimated densities f̂( j), j = 1, . . . , N and the true densities
f0 are evaluated at fixed and equidistant values ỹk, k = 1, . . . , 1000, say. The IMSE
results as follows

ÎMSE( f̂ (ỹ)) = 1

1000

1000∑
k=1

{
MSE( f̂ (ỹk))

}
.

Accordingly the results of the competing density estimations f̂K (·), f̂kernel(·),
f̂spline(·), f̂bin,K (·), f̂mi xture(·), f̂log(·) and f̂wave(·) are shown in Table 1. Note that
for simulation scenario (i) we used for the mixture (d) the true one component normal
distribution with fitted parameters which maybe considered as artificial benchmark in
this case. In general it appears that the approach with a penalized mixture performs
promisingly well in comparison with the four competitors, even though no method
is uniformly superior. In general, however, in scenarios where the penalized mixture
approach is not optimal its optimal IMSE is not more than 62% larger than the IMSE
of the best density estimate, while this number is larger for all other competitors.
For small n but even more for large n we observe the well established fact that the
quality of the fit remains the same and K does not influence the performance of the
fit. We notice an improved performance in some examples, if one adds one additional
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Fig. 1 Top penalized mixture density f̂ of the return of Deutsche Bank AG in 2006. Bottom difference in
density estimates of penalized mixture to alternative density estimation routines, a kernel density estimation,
b spline estimation, c binning estimation, d mixtures, e log-spline estimation and f wavelet estimation

knot at each end outside of the support. In Table 1, the results of the penalized mix-
ture approach are done with one additional knot at each end. Overall, the density
estimation with a penalized mixture appears as reasonable competitor for density
estimation.

3.2 Example: daily returns

We give a short example which will be picked up again in the next section. We look
at the return of the two Germans stocks Deutsche Bank AG and Allianz AG in 2006.
The corresponding density estimates of the penalized mixture approach are given in
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Fig. 2 Top penalized mixture density f̂ of the return of the Allianz AG in 2006. Bottom: difference in den-
sity estimates of penalized mixture to alternative density estimation routines, a kernel density estimation,
b spline estimation, c binning estimation, d mixtures, e log-spline estimation and f wavelet estimation

Figs. 1 and 2. We show the penalized mixture estimate and the difference in the den-
sity estimates to competitors (a) kernel density estimate, (b) spline based approach,
(c) the binning based approach, (d) the finite mixture estimation, (e) the log-spline
approach and (f) the wavelet estimate. Apparently, the kernel density estimate, the
Eilers & Marx estimate and as well as the mixture estimation show for the Deut-
sche Bank data some peak structure in the center and additional structure for val-
ues around −1, while the result of the spline approach is nearly similar to the
penalized mixture estimation. Again for the Allianz data, the kernel density esti-
mate and the mixture estimate show some peak structure in the center and addi-
tional structure for values around 2 and −2, while the result of the spline approach is
nearly similar to the penalized mixture estimation. Clearly, in both scenarios, the true

123



Density estimation and comparison 769

function is unknown, but in the simulations the penalized density estimate performs
comparable to the spline approach so that the structure shown by the other five
estimates might be spurious.

4 Nonparametric comparison of densities

4.1 Covariate dependent density

We can extend the above density estimation by allowing the density to depend on
some covariates x , say. We intend to estimate the conditional density f (y|x). Let
yi |xi denote a random sample (with xi either random or fixed) and xi = (xi1, . . . , xis)

is a vector of covariates. We now assume that the weights ck depend on x which is
modelled as

ck(x,β) = exp(Z(x)βk)∑K
j=−K exp(Z(x)β j )

(15)

where Z(x) is a design matrix, e.g. Z(xi ) = (1, xi1, . . . , xis). Let β = (βT−K , . . . ,

βT−1, β
T
1 , . . . , βT

K )T be the parameter vector and β0 ≡ 0 for identifiability reasons. The
approach can be compared to finite mixture models with mixture weights depending
on covariates, see e.g. Bishop (2006), Chapter 14.5 or Müller et al. (2009). In con-
trast to the finite mixture, however, we again assume that K is large and will impose
penalties on the weights. Let p be the dimension of Z(x), i.e. the number of columns.
In principle, we could have a different design for the different knots, but it is convenient
and practical to assume that Z(x) does not depend on k and let Z(x) = I2K ⊗ Z(x),
where I2K is the 2K -dimensional unit matrix and ⊗ denotes the tensor product. The
log likelihood then becomes

l(β) =
n∑

i=1

[
log{

K∑
k=−K

ck(xi ,β)φk(yi )}
]

(16)

with ck(x, β) as in (15). Similar to (5) we add a quadratic penalty term to (16) so that
the penalized likelihood results as follows. Looking for instance at first order differ-
ences, i.e. m = 1, we have αk(x)−αk−1(x) = Z(x)(βk −βk−1), k = −K +1, . . . , K .
Utilizing matrix notation we can write the m-th order difference as �mβ := (1K̃−m ⊗
Z(x))(L̃m ⊗ Ip)β with Ip as p dimensional identity matrix. This yields the penalty as
squared m-th order difference through βT �T

m�mβ. Note that the penalty depends on
the particular values of the covariates x . Taking the average over the observed values
we obtain the final penalty βT Dmβ where

Dm = (LT
m ⊗ I T

p )

(
IK̃−m ⊗ Z T Z

n

)
(Lm ⊗ Ip)

with Z = (Z T (x1), . . . , Z T (xn))T ∈ R
n×p. The penalized likelihood results now

as l p(β, λ) = l(β) − 1
2λβT Dmβ. Based on (6) the penalized first derivative equals

sp(β; λ) = ∂l(β)/∂β = ∑n
i=1 si (β; λ) where
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770 C. Schellhase, G. Kauermann

si (β; λ) = ZT (xi )CT (xi ,β)
φ̃i

f̂ (yi |xi )
− λDmβ

with obvious definition for C(xi , β). Analogously to (7) we approximate the negative
penalized second order derivative through

J p(β; λ) = −∂2l p(β, λ)

∂β ∂βT
≈

n∑
i=1

si (β; λ)si
T (β; λ) + λDm .

Estimation can now be carried out in the same way as done in the previous
sections. This also applies to the estimation of the penalty parameter λ. Assuming
the prior distribution (10) allows with the same arguments used in Sect. (2.2) to cal-
culate the penalty parameter from the mixed model resulting as

λ̂−1 = β̂
T

Dm β̂

d f (λ̂) − p(m − 1)
.

Moreover, all other results concerning the asymptotic distribution of the estimate
extend from the previous section so that we do not explicitly list them here for the
sake of space.

4.2 Testing densities on equality

We can employ the idea above now to test the hypotheses on equality of densities. We
formulate this by testing

H0 : f (y|x(1)) = f (y|x(0)), y ∈ R (17)

for two specific values of x(1) = (x(1)1, . . . , x(1)s) and x(0) = (x(0)1, . . . , x(0)s). For
instance, if s = 1 and xi1 ∈ {0, 1} indicates two groups, we may test with (17) whether
the distribution of yi is the same in the two groups instead of comparing densities. We
look at differences in the distribution functions and define the test statistics

Tmax = max{|T (τk)| , k = −K , . . . , K }

with

T (y) = F̂(y|x1) − F̂(y|x0) =
K∑

k=−K

(ck(x1, β̂) − ck(x0, β̂))
k(y),

and τ−K , . . . , τ0, . . . , τK are denoting the knots of the basis functions and 
k(y)

are distribution functions to basis densities φk(y). Under H0 we have E {T (y)} =
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0 for all y and based on the asymptotic arguments used before we can show that
T̃ = (T (τ−K ), . . . , T (τ0), . . . , T (τK ))T follows the asymptotic distribution

T̃
a∼ N (0, W) (18)

with

W = 
̃[C1 − C0]V (β(0), λ)[C1 − C0]T 
̃T

where C j = C(x j , β̂)Z(x j ) for j = 0, 1 and 
̃ ∈ R
(2K+1)×(2K+1) as matrix with

entries 
k(τl) where (row) index k and (column) index l with l, k = −K , . . . , K .
Finally matrix V (β(0), λ) is the variance matrix (23) extended to the case of covariate
dependent densities. Note that matrix W is easily calculated which allows to simulate
the distribution of Tmax in a straight forward way by sampling T̃ from (18). This can be
done relatively fast after some spectral decomposition of W so that any approximate
calculation of the distribution of Tmax is numerically easy.

5 Simulation and example

5.1 Simulation

We run a small simulation to check the performance of the fit, particularly of the
testing idea based on Tmax . To do so we simulate n = 100 and n = 400 data points
from the following distributions. We assume a univariate covariate (group indicator)
with xi = 0 for n/2 and xi = 1 for the remaining n/2 observations. We simulate
y given x from the following scenarios. First, (i) we draw y from a standard normal
for both x = 0 and x = 1, i.e. y|x ∼ N (0, 1), (ii) we draw y|x = 0 ∼ N (0, 1)

and y|x = 1 ∼ N ( 1
5 , 1) that is we shift the mean by 1

5 for x = 1, and finally
(iii) y|x = 0 ∼ N (0, 1) and y|x = 1 ∼ 1

2 N (− 1
2 , 1

4 ) + 1
2 N ( 1

2 , 1
4 ). For all three

scenarios we calculate for each simulation the p-value resulting for Tmax . We repeat
the simulation 1000 times and give in Table 2 the number of p-values smaller than a
nominal level α. Bear in mind that for scenario (i) the null hypothesis is true so that
the p-value should be uniformly distributed on [0, 1]. As reference we also calculate
both, the p-value resulting for a Kolmogorov-Smirnov test based on comparing the
sample for x = 0 against x = 1 as well as the p-value resulting from the linear model
y = β0 + xβx and a t-test on H0 : βx = 0. As can be seen from the simulated numbers
the test on the equalities of densities works convincingly well which supports the idea
of density estimation with a penalized mixture.

5.2 Example

As example we look again at the daily returns for the two stocks considered in Sect. 3.2.
We look at data from 2006 and 2007, and our focus of interest is to test the hypothesis
that the distribution of the returns is the same in the 2 years. The corresponding plot is
shown in Fig. 3. Applying the test based on Tmax to this example yields the p-values
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772 C. Schellhase, G. Kauermann

Table 2 Proportion of p-values smaller than α, based on 1,000 simulations

Level Simulation Test on Tmax Kolmogorov-Smirnov Test on βx = 0 in linear
test model

α = 0.01 (i) n = 100 0.010 0.011 0.009

n = 400 0.009 0.011 0.007

(ii) n = 100 0.063 0.042 0.057

n = 400 0.288 0.182 0.288

(iii) n = 100 0.031 0.005 0.003

n = 400 0.377 0.080 0.003

α = 0.05 (i) n = 100 0.058 0.041 0.058

n = 400 0.052 0.049 0.053

(ii) n = 100 0.163 0.116 0.155

n = 400 0.504 0.397 0.526

(iii) n = 100 0.134 0.051 0.030

n = 400 0.735 0.313 0.036

Optimal performance is set in bold

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Deutsche Bank

daily return

de
ns

ity

−6 −4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Allianz

daily return

de
ns

ity

2006
2007

2006
2007

Fig. 3 Density of the return of Deutsche Bank AG and Allianz AG in 2006 and 2007

of 0.048 for Deutsche Bank AG and 0.019 for Allianz AG. Hence, there is indication
that the returns in the 2 years differ in distribution.

6 Conclusion

In this paper we tackled the classical problem of density estimation. Our approach
picked up the idea of Komárek and Lesaffre (2008) and extended this to regular
as well as covariate dependent density estimation. We examined density estimation
scheme based on penalized B-spline bases using the direct link from penalized smooth-
ing splines to mixed models. Simulations showed promising results when comparing
our density estimation to competitors. First, in simple density estimation it appears
that the penalized mixture approach proposed here behaves better or at least simi-
larly compared to the common alternatives (a) kernel density estimation, (b) spline
based density estimation (c) binning based estimation, (d) mixture densities, (e) log-
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spline density estimation and (f) wavelet density estimation. Moreover, our density
estimation approach performed almost as the best, regarding the MSE, while the
classical approach (c) binning did not operate optimally in any considered density
case. Secondly, extending the procedure towards covariate dependent density estima-
tion allows for testing on the equality of densities in different groups. The approach
showed superior behaviour in our simulations when compared to the classical Kol-
mogorov-Smirnov test. This test on equality of densities in different groups carries
some omnibus power, which is seen especially in cases, where the standard tests do
not announce inequality of the groups (see Table 2).

The approach is in principle easy to extend to multivariate density estimation.
In the multivariate case, though, the numerical requirements of the penalized mix-
ture approach do however exponentially increase due to the increasing number of
B-spline basis functions. Because of this curse of dimensionality multivariate density
estimation remains a difficult task.

Acknowledgments G. Kauermann & C. Schellhase acknowledge financial support provided by the
Deutsche Forschungsgesellschaft (DFG Project-Nr. KA 1188/5-1 and KA 1188/5-2).

A Asymptotic behaviour of B-spline densities

Let φk(y) = bq,k(y) be a normed B-spline basis of order q defined on the support
[μk, μk+q+1] such that

∫
bq,k(y)dy = 1. Let fK ,q(y,β) = ∑

k ck(β)bq,k(y) be the
mixture B-spline density and let rq(y) = rq(y,β) = f0(y)/ fK ,q(y,β) be the ratio of
the true and mixture density. Let μ−K , . . . , μ0, . . . , μK , . . . , μK+q+1 be the knots
located equidistantly with order μk − μk−1 = O(K −1). Note that our B-spline basis
is q times differentiable within each interval [μk, μk+1] and in particular, boundary
splines are continuous. With (20) we get

μk+q+1∫

μk

bq,k(y)rq(y)dy = 1 (19)

so that there exists a ξk ∈ (μk, μk+q+1) with rq(ξk) = 1 for k = −K , . . . , K . With
the recursive formula for derivatives of B-splines (see Butterfield 1976) we get for
q ≥ 2 with partial integration and making use of (19) for k = −K , . . . , K − 1

μk+q+2∫

μk

bq+1,k(y)r ′
q(y) dy = bq+1,k(y)rq(y)

∣∣∣μk

μk+q+2

+K

{ μk+q+1∫

μk

bq,k(y)rq(y) dy

−
μk+q+1∫

μk+1

bq,k+1(y)rq(y) dy

}
= 0

123



774 C. Schellhase, G. Kauermann

This in turn shows with the mean value theorem that there exists a ξ
(1)
k ∈

[μk, μk+q+2] with r ′
q(ξ

(1)
k ) = 0. Considering the derivative of rq(y) it is easily

derived that f ′
K ,q(ξ

(1)
k ) = f ′

0(ξ
(1)
k ) + O(K −1). With the same arguments as above

we can show that there exists ξ
(l)
k with 1 ≤ l ≤ q − 1 and k = −K , . . . , K − l

such that f (l)(ξ
(l)
k ) = f (l)

K ,q(ξ
(l)
k ) + O(K −1). This allows to conclude with iterative

arguments that for q ≥ 1 and for l ≤ q − 1

f (l)
K ,q(y) = f (l)(y) + O(K −q+l)

so that for l = 0 we get the approximation error

fK ,q(y) = f (y) + O(K −q).

B Properties of the estimate

Looking at theoretical properties of the estimation we focus on two questions.
First, how well can the mixture density (2) approximate an unknown true den-
sity and secondly, what are the estimation properties of the penalized estimate.

Let fK (y, β̂) denote the mixture density (2) with weights ck(β̂ ) defined through
(3). Moreover, let f0(y) denote the true continuous unknown density. We define
β(0) = (β

(0)
−K , . . . , β

(0)
K ) as the true parameter in the sense that fK (y,β(0)) and

f0(y) have minimal Kullback-Leibler distance based on the true density. So, we

intent to minimize E f0(y)

{
log

(
fK (y,β̂)

f0(y)

)}
with respect to β̂, which is equivalent to

0 = E f0(y)(
∂

∂β̂
log fK (y, β̂)). This means that β(0) is implicitly defined through

0 = E f0(y)

{
C(β(0))T φ̃(y)

fK (y,β(0))

}
(20)

where φ̃(y) = (
φ−K (y), . . . , φ0(y), . . . , φK (y)

)T . Note that β(0) depends on K , the
number of knots, which is suppressed in our notation for simplification. Let r(y,β) =
f0(y)/ fK (y,β) be the ratio of the true and approximate density and define Hk =
Hk(β) = ∫

φk(y) r(y,β) dy. Note that
∑K

k=−K ck(β
(0))Hk = 1. Based on (20) and

reflecting the definition of matrix C(β) we derive Hk = 1 for k = −K , . . . , K . This
allows with the well-known mean value theorem for integration to show the existence
of ξk ∈ [μk, μk+1] with f0(ξk) = fK (ξk,β

(0)) for k = −K , . . . , K − 1. It follows
with the mean value theorem for integration

∫
φk(y)r(y)dy = 1 = ∫

φk(y)dy r(ξk).
So, there exists ξk , such that r(ξk) = 1. Assuming now that the knots are placed
densely in the sense μk − μk+1 = O(K −1), k = −K , . . . , K − 1 we obtain for
δk(y) = f0(y) − fK (y,β(0)) with simple Taylor series expansion the order δk(y) =
O(K −1) for μ−K ≤ y ≤ μK . We will call δk(y) subsequently the approximation
bias. Using B-splines as basis densities allows us to obtain an even smaller asymp-
totic order for the approximation bias. In fact, if f0(y) is q-times differentiable and
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φk(y) is a B-spline density of degree q, we obtain for q ≥ 1 the order δ(y) =
O

(
K −q

)
. A proof is given in the Appendix, Section A. It is therefore practically as

well as theoretically advisable to set φk as B-splines. To this end we have derived
the approximation bias, so that we have answered the question how well the mix-
ture density (2) can approximate the true unknown density f0(y). The next step is
to investigate the properties of the penalized estimate of parameter β(0). In principle
this boils down to standard penalized likelihood estimation so that simple and stan-
dard expansions yield (see Kauermann et al. 2009) the necessary results. In fact we
obtain

β̂ − β(0) ≈ J−1
p (β(0); λ) sp(β

(0); λ)

which allows to formulate the asymptotic normality

β̂
a∼ N

(
β(0) + bias(β(0), λ), V (β(0), λ)

)
(21)

with

bias(β(0), λ) = −λI −1
p (β(0), λ)Dmβ(0) (22)

V (β(0), λ0) = I −1
p (β(0), λ)Ip(β

(0), λ = 0)I −1
p (β(0), λ) (23)

where Ip(β
(0), λ) = E f0(y)

{
Jp(β

(0); λ)
}
. In Sect. 2.3, we will use the above-

mentioned well known link between penalized spline smoothing and mixed mod-
els. In the context of mixed models (23) is justified by Kass and Steffey (1989)
and extended by Searle et al. (1992). The final step is now to transfer (21) to

properties of the density estimate fK (y, β̂) = ∑
ck(β̂) φk(y) = φ̃

T
(y) c̃(β̂). We

get

f0(y) − fK (y, β̂)
a∼ N

(
bias

(
fK (y, β̂)

)
, Var

(
fK (y, β̂)

))

with

bias
(

fK (y, β̂)
) = φ̃

T
(y) C(β(0)) bias(β(0), λ0)

Var
(

fK (y, β̂)
) = φ̃

T
(y) C(β(0)) V (β(0), λ0) CT (β(0))φ̃

T
(y)

Since the penalized Fisher information Ip(β
(0), λ) is difficult to calculate we replace

it by its observed version Jp(β
(0); λ) to calculate confidence intervals. Komárek et al.

(2005) argue, that there is no guarantee that the middle matrix of (23), Jp(β
(0); λ = 0)

is positive semidefinite. In this case one may use J−1
p (β(0); λ) instead of (23) for calcu-

lating confidence intervals. The latter can also be justified following the mixed model
framework discussed subsequently, as derived in Ruppert et al. (2003, p. 140).
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