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Abstract A boxplot is a simple and flexible graphical tool which has been widely
used in exploratory data analysis. One of its main applications is to identify extreme
values and outliers in a univariate data set. While the boxplot is useful for a real line
data set, it is not suitable for a circular data set due to the fact that there is no natural
ordering of circular observations. In this paper, we propose a boxplot version for a
circular data set, called the circular boxplot. The problem of finding the appropri-
ate circular boxplot criterion of the form ν × C I Q R, where C I Q R is the circular
interquartile range and ν is the resistant constant, is investigated through a simulation
study. As might be expected, we find that the choice of ν depends on the value of
the concentration parameter κ . Another simulation study is done to investigate the
performance of the circular boxplot in detecting a single outlier. Our results show that
the circular boxplot performs better when both the value of κ and the sample size are
larger. We develop a visual display for the circular boxplot in S-Plus and illustrate its
application using two real circular data sets.

Keywords Circular boxplot · Boxplot · Resistant constant · Outlier · Overlapping

1 Introduction

A visual display is a useful and an informative technique for describing a data set.
It includes a histogram, a pie chart, a Q-Q plot and a boxplot. Tukey (1977) developed
the boxplot, a simple and flexible graphical tool in exploratory data analysis. It entails
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the measurements of the smallest value, the lower quartile Q1, the median φ, the upper
quartile Q3 and the largest value. One of its main applications is to identify extreme
values and outliers in a univariate data set.

Extensive research has been conducted on the use of the boxplot in the labelling of
outliers. To identify outliers in a real line data set, most studies use 1.5 as the value for
the resistant constant ν in the boxplot criterion ν × I Q R, where I Q R is the interquar-
tile range. In other words, any observations smaller than Q1 − 1.5 × I Q R or greater
than Q3 + 1.5 × I Q R are labelled as “outliers”. Hoaglin et al. (1986) investigated the
performance of the boxplot for outlier labelling by considering different values of ν.
The value ν = 1.5 is considered to be the best choice in avoiding masking problems
while ν = 3 is considered to be extremely conservative. On the other hand, Ingelfinger
et al. (1983) suggested the use of ν = 2 while Sim et al. (2005) demonstrated that
the choice of ν = 1.5 or ν = 3 was in general inappropriate for normal samples and
was completely inappropriate for skewed distributions. The discussion above signifies
the importance of choosing the most suitable value of ν for different data sets with
different underlying distributions.

Our focus here has directions in 2-dimensions. In many diverse applications, data
are measured in degrees or radians; for instance, wind directions and animal naviga-
tion. Such data are known as circular data. Fisher (1993) noted that circular plots have
existed since 1858, when Florence Nightingale drew the plot of mortality data in the
British Army during the Crimean War. Such a plot is also known as a rose diagram
or wind rose diagram. In addition, Graedel (1977) used the boxplot to describe wind
speed in different sectors of a wind rose diagram. However, in general, the boxplot is
not directly applicable to a circular data set. In the literature, no special boxplot frame-
work for a circular data set has been found. In this paper, we address the problem by
proposing a boxplot for a circular data set which we will call a circular boxplot. We
describe in detail the construction of this circular boxplot and develop subroutines in
an S-Plus environment to display it. The circular boxplot can be used to detect outliers
in circular samples. To date, there are several methods available to detect outliers in
circular data sets. Collett (1980) presented four different numerical tests of discor-
dance in circular data, namely the C, D and L statistics and an improved version of
the M statistic originally proposed by Mardia (1975). Recently, Abuzaid et al. (2009)
proposed the A statistic based on the summation of the circular distances from the
point of interest to all other points while Abuzaid et al. (2008) used numerical and
graphical tools to detect outliers in a circular regression model. However, the circu-
lar boxplot is simpler and more appealing compared to the other outlier detection
techniques described above.

This paper is organized as follows. The next section discusses the proposed con-
struction of the circular boxplot. Simulation and numerical studies are carried out in
Sect. 3 to estimate the appropriate values of ν. Then, in Sect. 4, we investigate the
power of performance of the circular boxplot for different values of ν and sample sizes.
Two numerical examples are discussed in Sect. 5. The first example gives an applica-
tion of the circular boxplot to the frogs’ directions data set as given in Ferguson et al.
(1967), whereas the second utilizes the plot to identify outliers in a circular regression
based on the resulting circular residuals discussed in Hussin et al. (2004).
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2 Summary statistics for constructing the circular boxplot

2.1 Median direction of circular data

Fisher (1993) defined the median direction of a circular data set as an axis which divides
the data into two equal groups. The median direction is taken as the observation φ

which minimizes the summation of circular distances

d(φ) = π −
n∑

i=1

|π − |θi − φ||,

where θi is the circular observation (i = 1, . . . , n). See also Jammalamadaka and
SenGupta (2003) for this particular measure of circular distance. It follows that for
any c, (θ1 + c, . . . , θn + c) has a median direction φ + c. Consequently, we show that

d(φ + c) = π −
n∑

i=1

|π − |θi + c − φ − c||

= π −
n∑

i=1

|π − |θi − φ|| = d(φ).

In other words, the median direction φ is rotationally equivariant. Mardia and Jupp
(2000) defined the median direction for a set of circular observations θ1, . . . , θn as any
point φ where half of the data lie in the arc [φ, φ + π) and the other points are nearer
to φ than to φ + π . In the case of prior knowledge about the circular distribution,
Mardia (1972) defined the median direction φ as the solution of

φ+π∫

φ

f (θ)dθ = 0.5,

where f (θ) is the probability density function of θ . Here, we employ the definition
proposed by Fisher (1993) to obtain the median direction.

2.2 Quartiles of circular variables

Mardia (1972) defined the first and third quartile directions Q1 and Q3 as any
solution of

φ∫

φ−Q1

f (θ)dθ = 0.25 and

φ+Q3∫

φ

f (θ)dθ = 0.25

respectively. In most cases, the circular distribution is unknown. To date, no published
literature has been found on nonparametric estimations of Q1 and Q3 for circular data.
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Fig. 1 The proposed structure of the circular boxplot

However, it seems sensible to estimate Q1 and Q3 by classifying the sample obser-
vations into two groups based on their locations with respect to the sample median
direction. Subsequently, Q1 can be considered as the median of the first group and Q3
as the median of the second.

If the value of Q1 is larger than that of Q3, we simply interchange their labels.
For simplicity and to avoid confusion caused by the localizations of Q1 and Q3, the
rotatable property of circular data is used to ensure that the mean is in the zero direc-
tion, that is, we subtract the estimated mean direction of the circular sample from each
observation in the sample. For a circular data set θ1, . . . , θn , the mean direction θ̄ can
be calculated using the following equations:

θ̄ =
⎧
⎨

⎩

tan−1(S/C) for S ≥ 0, C > 0,

tan−1(S/C) + π for C< 0,

tan−1(S/C) + 2π for S < 0, C ≥ 0,

where S = ∑n
i=1 sin θi and C = ∑n

i=1 cos θi .
The above rotation is helpful in identifying Q1 and Q3 in a more consistent way, that

is, we can now assume that Q1 − θ̄ ∈ [0, π ] and Q3 − θ̄ ∈ [π, 2π ]. The robustness of
the mean direction is a useful property which gives a fair assurance that the existence
of any possible outlier will not have much effect on the estimated mean direction (see
Wehrly and Shine (1981)). Figure 1a shows the quartiles for the simulated circular
data from the von Mises distribution with a mean direction of π/4 and a concentration
parameter of κ = 4. The first quartile Q1 = 33◦, the median direction φ = 50◦ and
the third quartile Q3 = 69◦.

2.3 Circular interquartile range and fences

Analogous to the interquartile range for the real line case, a circular interquartile range
(C I Q R) is required in order to construct the circular boxplot. After the rotation of
sample observations, the C I Q R can be obtained by the following formula;

C I Q R = 2π − Q3 + Q1.
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Consequently, the lower and upper fences, L F and UF respectively, can be iden-
tified using L F = Q1 + ν × C I Q R and UF = Q3 − ν × C I Q R. For a highly
concentrated data set, it is possible to have quartiles and mean directions at the same
point so that C I Q R = 0.

Figure 1b illustrates a particular example of the proposed circular boxplot for a
symmetric simulated circular data set. An example of a circular boxplot for asymmet-
ric data is given in Fig. 5. In the following section, numerical and simulation studies
are carried out in order to determine the appropriate values of ν.

3 Estimation of the resistant constant

3.1 Simulation and numerical studies

In the real line case, the 1.5× I Q R criterion is commonly used to construct a boxplot.
However, discussions on the appropriate values of the constant ν are still ongoing.
For recent examples, see the work of Hoaglin et al. (1986); Ingelfinger et al. (1983)
and Sim et al. (2005). In our case, it is not sensible to utilize the values of ν used for
the linear boxplot due to the bounded range of the circle. This property gives rise to a
high possibility of overlapping lower and upper fences for large values of ν and small
values of κ .

Hoaglin et al. (1986) used different measures to investigate the behaviour of box-
plots. In this paper, we employ one of their measurements to estimate the appropriate
value of the constant ν based on the statistic B(ν, n). The statistic gives the proba-
bility that a sample of size n does not contain any observations outside the interval
(L F , UF ). Sim et al. (2005) also used the same statistic in their work.

In order to investigate the behaviour of circular variables with respect to five differ-
ent summaries, namely, the median, Q1, Q3, L F and UF , a series of simulation studies
are carried out. For each combination of sample size n and concentration parameter
κ , 3,000 samples are generated from the von Mises distribution V M(μ, κ). The sam-
ple sizes are between 5 and 200 while the values of the concentration parameter κ

considered are 0.5, 1, 2, . . . , 10. Furthermore, various values of the resistant constant
ν = 1, 1.2, 1.4, . . . , 3 and 3.5 are utilized in order to obtain L F and UF . The outcomes
of the simulation studies are C I Q R, Q1, Q3, L F , UF and B(ν, n).

In the following subsections we investigate the properties of the C I Q R, the problem
of overlapping fences and the behaviour of the statistic B(ν, n).

3.2 Relationship between C I Q R and κ

The C I Q R can be estimated from the cumulative distribution function of any sta-
tistical distribution, and is defined as C I Q R = x75 − x25, where x25 and x75 are
the solutions of

∫ x25
0 f (x)dx = 0.25 and

∫ x75
0 f (x)dx = 0.75 respectively. Thus the

cumulative distribution function of any known distribution can be used to construct the
circular boxplot, whereas for an unknown distribution or during the data exploration
stage, nonparametric methods will be helpful in identifying the median direction and
the C I Q R. Fisher (1993) stated the fact that the measure of spread of any circular
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distribution cannot be rescaled to a unit spread. This causes difficulties as there is no
standard von Mises distribution analogous to a standard normal distribution. Conse-
quently, it is rather difficult to find a functional relationship for the C I Q R.

However, we attempt to find a relationship between the C I Q R and κ by utiliz-
ing the approximation theory of the von Misses distribution for large values of κ .
Jammalamadaka and SenGupta (2001) stated that, for large κ , a circular random var-
iable θ from VM(μ,κ) is approximated by a normal distribution with mean μ and
variance 1/κ . On the other hand, Fox (1997) stated that for a random sample from a
normal distribution with mean μ and variance σ 2, the interquartile range I Q R can be
estimated by 1.349σ . Hence, in our case, we may conclude that C I Q R = 1.349/

√
κ

for large κ .

3.3 The problem of overlapping lower and upper fences

The above problem is expected to occur for some values of ν because of the bounded
range of circular variables. This gives rise to a messy structure of the circular boxplot
and may lead to misidentification of outliers.

Result 1 For a large concentration parameter κ and sample size n ≥ 10, the upper
and lower fences of the circular boxplot are subject to overlapping if

ν > π
√

κ/1.349 − 0.5

where ν is the resistant constant.

Proof For a large concentration parameter κ and a large sample size n, an overlap-
ping problem arises if Q1 + ν × C I Q R > π . For symmetric samples with median
direction 0, Q1 = C I Q R/2. Therefore,

(0.5 + ν)C I Q R > π.

However, from Sect. 3.2, C I Q R = 1.349/
√

κ . Thus,

1.349(0.5 + ν)/
√

κ > π.

Hence, an overlapping problem occurs if ν > π
√

κ/1.349 − 0.5. ��
As an example, when κ = 4, an overlapping problem is expected to occur if ν is

larger than 4.2. The relationship between the outliers and the concentration parameter
is discussed in Sect. 4.

3.4 Description of B(ν, n)

Let B(ν, n) denote the probability of no observations outside the interval (L F , UF ) for
a von Mises sample of size n and resistant constant ν. When n = 50, the overlapping
problem affects the behaviour of B(ν, n) as shown in Fig. 2.
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Fig. 2 Behavior of B(ν, 50) for simulated data

It is noticed that B(ν, 50) is a nonmonotone function of ν for κ < 2, while it is an
increasing function of ν for κ ≥ 2. In addition, for κ > 3, B(ν, 50) is only slightly
affected by the increment of κ . Similar results are obtained for other values of n but
are not shown here.

Simulation results of B(ν, n) are used to determine the values of ν. It is more infor-
mative to interpret the results of the simulation studies according to the mod of sample
size n with respect to 4. Thus, the sample sizes can be clustered into one of 4 groups
according to whether n has the form 4 j, 4 j + 1, 4 j + 2 or 4 j + 3, where j ∈ N.

Figure 3 shows the values of ν for sample sizes n < 56 at 0.1, 0.05 and 0.01 sig-
nificance levels and a large value of κ (κ = 7). Results for n > 56 are consistently
similar to the results for 25 ≤ n ≤ 56 for all significance levels, but are not shown
here. It can be seen that the values of ν are a decreasing function of the significance
level α. At 0.05 significance level, the values of ν seem to be stationary for 5 < n < 56
with respect to the sample size n mod 4. The results suggest that it is appropriate to
have 2.1 < ν < 2.7. A similar behaviour can be observed for α = 0.1, provided
1.5 < ν < 2.2. The situation is different for α = 0.01, where ν stays at 3.5 for
5 < n < 25, and decreases to ν = 3 for a larger sample size n. On the other hand,
for κ ≤ 3, the simulation results show that the convenient values of ν should be less
than 2. In all cases, ν only increases slightly for a larger sample size. The results are
not shown here.

4 Power of performance

The performance of discordance tests can be examined by using several measures.
Barnett and Lewis (1978) stated that a good test should have (i) a high power, (ii) a
high probability of identifying a contaminating value as an outlier when it is in fact an
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Fig. 3 Percentile points of the resistant constant ν for different sample sizes n and κ = 7

extreme value and (iii) a low probability of wrongly identifying a good observation as
a discordant. David (1970) defined P1 as the power function, P3 as the probability
of the contaminant point which is an extreme point but identified as a discordant, and
P5 as the probability that the contaminant point is identified as a discordant given that
it is an extreme point. Hence, a good test is expected to have (i) high P1, (ii) high P5
and (iii) low P1 − P3.

In order to study the performance of the circular boxplot, 3,000 samples based on
different sample sizes n = 5, 10, 15, 20, 60 and 100, with concentration parameters
κ = 1, 5, 7 and 10 are considered. Samples are obtained in such a way that (n−1) obser-
vations are generated from V M(α, κ) and the remaining one from V M(α + λπ, κ),
where λ is the degree of contamination and 0 ≤ λ ≤ 1.

Based on the simulation studies in Sect. 2.3, small values of ν (1 ≤ ν ≤ 2)
are examined for a small concentration parameter (κ = 1), while larger values of
ν (2 ≤ ν ≤ 2.7) are considered when κ is large (κ = 5, 7 and 10). The results show
that P1, P3 and P5 are increasing functions of κ, n and λ.

Figure 4a gives the plot of P1 at n = 60 and ν = 2 for different concentration
levels. The power of performance of the circular boxplot is weaker for smaller values
of κ . In fact, it is close to zero when κ = 0.1 or 0.5. This behaviour may be due, firstly,
to the bounded range of the circle; and secondly, to the tendency of the observations
to distribute themselves uniformly around the circumference of the circle when κ is
small (see Fisher 1993). The tendency is stronger as κ gets closer to 0. This results in
a weaker power of performance of the circular boxplot for κ < 1. Collett (1980) had
similarly pointed out that it would be very difficult to identify an outlier in circular
data sets with a small value of κ .

Figure 4b gives the plot of P1 at κ = 10 and ν = 2 for different sample sizes. For
a small sample size n = 5, the power of the circular boxplot does not exceed 50% at
any κ or λ. It improves gradually as n increases.

123



Boxplot for circular variables 389

λ

0

20

40

60

80

100

k=1
k=5
k=7
k=10

P1
(a)

κ= 5
κ= 7
κ= 10

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

λ

0

20

40

60

80

100

n=5
n=10
n=15
n=20
n=60
n=100

P1
(b)

κ= 10,ν=2n= 60, ν=2

κ= 1

Fig. 4 Behaviour of the power of performance of the circular boxplot

Based on the discussions in the previous section, for a large κ , it is appropriate to use
different values of ν between 2.0 and 2.7. Our studies show that the highest possible
values of P1, P3 and P5 are obtained when 2.0 < ν < 2.7, which supports the results
in Sect. 3.4. For a small κ , it seems sensible to use small values of ν (1 < ν < 2).
Furthermore, it is found that P1 − P3 is always small and does not exceed 0.2% for
all cases. Extensive simulation results are available from the authors upon request. For
simplicity, we may fix ν = 1.5 for 2 ≤ κ ≤ 3, and ν = 2.5 for κ > 3. These choices
ensure that the problem of overlapping lower and upper fences of the circular boxplot
does not occur. However, for κ < 2, it is rather difficult to find a circular boxplot with
non-overlapping fences as the data are close to being uniform.

5 Numerical examples

Two examples are discussed in this section. The first is the frogs’ directions data set
by Collett (1980) and the second is the wind direction data set modelled by using a
simple regression model for circular variables in Abuzaid et al. (2008).

Example 1 (Frogs’ directions data) Ferguson et al. (1967) conducted an experiment
to investigate the homing ability of a species of frogs. A total of 14 frogs was collected
from the mud flats of an abandoned stream meandering near Indianola, Mississippi in
the United States. After 30 h, the frogs were released and the directions taken by the
frogs were recorded as follows:

104◦, 110◦, 117◦, 121◦, 127◦, 130◦, 136◦, 145◦, 152◦, 178◦, 184◦, 192◦, 200◦, 316◦.
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Table 1 Observations detected
using different values of ν for
the frogs’ data set

ν L F UF Number of outliers Outliers

1.0 50.0◦ 263.0◦ 1 316◦
1.2 35.8◦ 277.2◦ 1 316◦
1.5 14.5◦ 298.5◦ 1 316◦
1.7 0.3◦ 312.7◦ 1 316◦
2.0 339.0◦ 334.0◦ 0 –

2.2 317.7◦ 355.3◦ 0 –

2.5 303.5◦ 9.5◦ 0 –

2.7 289.3◦ 23.7◦ 0 –

3.0 268.0◦ 45.0◦ 0 –

3.5 232.5◦ 80.5◦ 0 –

Fig. 5 Circular boxplot of the
frogs’ directions for ν = 1.5

We find that the mean direction θ̄ = 145.97◦, the estimated concentration param-
eter κ̂ = 2.18, the median direction φ = 145◦, the first quartile Q1 = 121◦, the third
quartile Q3 = 192◦ and the C I Q R = 71◦. Collett (1980) showed that the observation
with value 316◦ was identified as an outlier by the D and M statistics, but not by the C
statistic. Abuzaid et al. (2009) had also obtained the same result using the A statistic.
For the construction of the circular boxplot, small values of ν should be considered
since κ̂ lies in the range [2,3].

Table 1 gives the observations detected as outliers in the frogs’ directions data set
for different values of ν. As expected, the value 316◦ is identified as an outlier when
small values of ν = 1, 1.2, 1.5 and 1.7 are used, whereas no outlier is identified for
larger values of ν. Figure 5 shows the circular boxplot for ν = 1.5, where the plot is
obtained by using a special subroutine developed in an S-Plus environment.

Example 2 (Wind direction data) Two different techniques were used to measure
wind directions along the Holderness coastline (the Humberside coast of the North
Sea, United Kingdom), namely by using an anchored buoy (y) and HF radar (x). Alto-
gether 129 observations were recorded in radians over 22.7 days. The data were fitted
by using a simple circular regression model proposed by Hussin et al. (2004). The
fitted model for the data is

ŷi = 0.165 + 0.973xi (mod 2π).
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Table 2 Observations detected using different values of ν for wind data set

ν L F UF Number of outliers Outliers

1.0 0.561 5.765 14 15,18,38,43,48,68,70,95,98,99,100,109,111,123

1.2 0.633 5.693 12 18,38,43,48,68,70,95,98,99,100,111,123

1.5 0.741 5.586 6 38,43,70,99,100,111

1.7 0.813 5.514 4 38,43,70,111

2.0 0.921 5.406 3 38,43,111

2.2 1.029 5.298 2 38,111

2.5 1.101 5.226 2 38,111

2.7 1.173 5.154 2 38,111

3.0 1.281 5.046 2 38,111

3.5 1.461 4.866 2 38,111

Fig. 6 Circular boxplot of
circular residuals of the wind
data set for ν = 2.5

The estimated circular residuals have θ̄ = 0.017, κ̂ = 7.34, φ = 0.0072,

Q1 = 0.202, Q3 = 6.125 and C I Q R = 0.360. By using numerical and graphi-
cal methods, Abuzaid et al. (2008) identified the numbers 38 and 111 as outliers. The
circular boxplot is used to identify possible outliers in a circular regression via the
circular residuals. Since κ̂ = 7.34 is considered large, we can use values of ν larger
than 2.

Table 2 gives the observations detected as outliers in the wind direction data set for
different values of ν. As expected, the numbers 38 and 111 are identified as outliers
for all values of ν. For smaller values of ν, many other observations are identified as
outliers as well. Figure 6 shows the circular boxplot of circular residuals for ν = 2.5.

6 Discussion

The boxplot has been used extensively in exploratory data analysis. In this paper, we
propose a structure of the boxplot for circular variables. We specify the formulae for
finding the median direction and the first and third quartiles, and overcome the prob-
lem of determining the lower and upper fences arising from the bounded range of the
circle. It is shown that the values of the concentration parameter plays a significant
role in the construction of the circular boxplot.
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Several interesting results are found from the simulation studies in Sect. 3. Firstly,
there exists a functional relationship between the C I Q R and a large κ . Secondly, we
identify a condition where the problem of overlapping lower and upper fences may
occur. Third, we are able to recommend that different values of ν be used to identify
possible outliers in the circular variable. For samples with κ > 3, it is appropriate to
use 2 < ν < 2.7, whereas for samples with 2 ≤ κ ≤ 3, ν should be between 1 and 2.
For simplicity, we fix ν = 1.5 for 2 ≤ κ ≤ 3 and ν = 2.5 for κ > 3 since the choices
ensure the nonoverlapping of the fences.

In the illustrations, we show that the circular boxplot is able to identify possible
outliers in the frogs’ directions data set and our result is similar to that of Collett
(1980). Furthermore, in the case of the circular regression model, the numbers 38 and
111 are identified as outliers by the circular boxplot, which is consistent with Abuzaid
et al. (2008).

The circular boxplot is therefore a useful graphical tool for an exploratory analysis
of circular data as well as an alternative technique for identifying outliers in univariate
circular samples.
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