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Abstract We study the finite sample performance of predictors in the functional
(Hilbertian) autoregressive model Xn+1 = Ψ(Xn)+εn . Our extensive empirical study
based on simulated and real data reveals that predictors of the form Ψ̂(Xn) are prac-
tically optimal in a sense that their prediction errors are comparable with those of
the infeasible perfect predictor Ψ(Xn). The predictions Ψ̂(Xn) cannot be improved by
an improved estimation of Ψ , nor by a more refined prediction approach which uses
predictive factors rather than the functional principal components. We also discuss
the practical limits of predictions that are feasible using the functional autoregressive
model. These findings have not been established by theoretical work currently avail-
able, and may serve as a practical reference to the properties of predictors of functional
data.

Keywords Autoregressive process · Functional data · Prediction

1 Introduction

Over the last two decades, functional data analysis (FDA) has grown into a substantial
field of statistical research, with new methodology, numerous useful applications and
interesting novel theoretical developments. In this brief note, we cannot even outline
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286 D. Didericksen et al.

the central ideas, as the field has become very broad, so we merely mention com-
prehensive introductory expositions of Ramsay and Silverman (2002), Ramsay and
Silverman (2005), and Ramsay et al (2009), and more theoretical works by Bosq
(2000), Ferraty and Vieu (2006), Bosq and Blanke (2007) and Ferraty and Romain
(2011).

The research summarized in this paper pertains to the functional autoregressive
(FAR) process studied theoretically by Bosq (2000), and extensively used in both
practical and theoretical studies since then, see Besse and Cardot (1996), Damon
and Guillas (2002), Antoniadis and Sapatinas (2003), Horváth et al (2010), Hörmann
and Kokoszka (2010), Gabrys et al (2010), among numerous other contributions. The
FAR(1) model is given by the equation

Xn+1 = Ψ(Xn)+ εn+1, (1)

in which the errors εn and the observations Xn are curves, and Ψ is a linear opera-
tor transforming a curve into another curve. Precise definitions and assumptions are
stated in Sects 2. Model (1) has been introduced to predict curve–valued time series. In
addition to Bosq (2000), an informative introduction and review of several prediction
methods is given by Besse et al (2000).

Recently Kargin and Onatski (2008) proposed a sophisticated method of one step
ahead prediction in model (1) based on predictive factors, and developed an advanced
theory that justifies the optimality of their method, we provide a description in Sect. 2.
The initial question that motivated this research was whether the method of Kargin
and Onatski (2008) is superior in finite samples to the standard method described in
Bosq (2000), which estimates of the operator Ψ and forecasts Xn+1 by Ψ̂(Xn). We
found that the predictive factors method never dominates the standard method, and
in some cases it performs poorly. We also found that the standard method is almost
perfect in a sense that its average prediction errors are typically, within a standard
error, the same as if we had perfect knowledge of the operator Ψ . Thus it cannot be
hoped that this method can be substantially improved. Surprisingly, this is the case
even though the estimates Ψ̂ of the operator Ψ are typically very poor. We found that
it is possible to improve these estimates, we developed a simple algorithm to do it,
but this improvement does not affect the quality of prediction. Finally, we realized
some natural limits of predictions that can be expected from model (1); predictions
with Ψ̂(Xn) are often not better than those with the mean function. We describe in
this paper how we arrived at all these conclusions. It is hoped that this contribution
will provide informative and useful insights into finite sample properties of estimators
and predictors in the FAR(1) model, whose theoretical properties have already been
studied in depth.

The paper is organized as follows. In Sect. 2, we describe the two prediction meth-
ods and state the assumptions for their validity. Before comparing them, we address
in Sect. 4 the question of the estimation of Ψ , and show how better estimates can be
constructed. Sects. 3 and 5 describe, respectively, the design of the simulation study
and its outcomes. We conclude with Sect. 6 which discusses general properties of
predictors derived from model (1).
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2 Prediction methods

The theory of autoregressive and more general linear processes in Banach spaces is
developed in the monograph of Bosq (2000), which also contains sufficient back-
ground. Hörmann and Kokoszka (2011) and Horváth and Kokoszka (2011+) also
contain a suitable introduction. Here we state only the minimum of facts required to
understand this paper. All functions are assumed to elements of the Hilbert space L2

of real square integrable functions on the interval [0,1], equipped with the usual inner
product 〈 f, g〉 = ∫

f (t)g(t)dt.The errors εn in (1) are iid mean zero random elements
of L2, which implies that the Xn also have mean zero. The operator Ψ acting on a
function X is defined as

Ψ(X)(t) =
∫
ψ(t, s)X(s)ds,

where ψ(t, s) is a bivariate kernel assumed to satisfy ||Ψ || < 1, where

||Ψ ||2 =
∫∫

ψ2(t, s)dtds. (2)

The condition ||Ψ || < 1 ensures the existence of a stationary causal solution to FAR(1)
equations.

Before describing the prediction methods, we note that prior to further analysis
all simulated curves are converted to functional objects in R using 99 Fourier basis
functions. We used the package fda, which also allows to compute the Functional
Principal components (FPC’s) of the observations Xn , see Ramsay et al (2009) for
the details. We now describe the two methods, which we call “estimated kernel” and
“predictive factors”, for ease of reference.

Estimated Kernel (EK). Denote by vk, k = 1, 2, . . . , the FPC’s of the Xn , and by
v̂k, k = 1, 2, . . . , p, the estimated (or empirical) FPC’s (EFPC’s). The number p of
EFPC’s to be used is typically determined by the cumulative variance method, but
other methods, including cross–validation or information criteria, can be used as well.
Since the vk form an orthonormal basis in L2, the kernel ψ admits the expansion

ψ(t, s) =
∞∑

k,�=1

ψk�vk(t)v�(s).

The empirical version of this relation, computed from the sample X1, X2, . . . , X N , is

ψ̂p(t, s) =
p∑

k,�=1

ψ̂k�v̂k(t)v̂�(s), (3)
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where

ψ̂ j i = λ̂−1
i (N − 1)−1

N−1∑

n=1

〈
Xn, v̂i

〉 〈
Xn+1, v̂ j

〉
. (4)

Equation (4) is an empirical analog of the relation ψ j i = λ−1
i E[〈Xn−1, vi 〉

〈
Xn, v j

〉],
which is not difficult to derive; λi is the eigenvalue corresponding to vi , and λ̂i the
eigenvalue corresponding to v̂i . Using the estimated kernel (3), we calculate the pre-
dictions as

X̂n+1(t) =
∫
ψ̂p(t, s)Xn(s)ds =

p∑

k=1

( p∑

�=1

ψ̂k�
〈
Xn, v̂�

〉
)

v̂k(t). (5)

Predictive Factors (PF). The estimator (3) is not directly justified by the problem
of optimal prediction, it is based on FPC’s, which may focus on the features of the
data that are not relevant to prediction. In this section, we describe a technique known
as predictive factors, which may (potentially) be better suited for forecasting. It finds
directions most relevant to prediction, rather than explaining the variability, as the
FPC’s do. We describe only the general idea, as theoretical arguments developed by
Kargin and Onatski (2008) are quite complex. One of the messages of this paper is
that the PF method does not offer an advantage in finite samples, so we do not need
to describe here all the details.

Denote by Rk the set of all rank k operators i.e. those operators which map L2 into
a subspace of dimension k. The goal is to find A ∈ Rk which minimizes E ||Xn+1 −
A(Xn)||2. To find a computable approximation to the operator A, a parameter α > 0
must be introduced. Following the recommendation of Kargin and Onatski (2008), we
used α = 0.75. The prediction is computed as

X̂n+1 =
k∑

i=1

〈
Xn, b̂α,i

〉
Ĉ1

(
b̂α,i

)
,

where

b̂α,i =
p∑

j=1

λ̂
−1/2
j

〈
x̂α,i , v̂ j

〉
v̂ j + α x̂α,i .

The vectors x̂α,i are linear combinations of the EFPC v̂i , 1 ≤ i ≤ k, and are approx-
imations to the eigenfunctions of the operator Φ defined by the polar decomposition
ΨC1/2 = UΦ1/2, where C is the covariance operator of X1 and U is a unitary operator.
The operator Ĉ1 is the lag–1 autocovariance operator defined by

Ĉ1(x) = 1

N − 1

N−1∑

i=1

〈Xi , x〉 Xi+1, x ∈ L2.
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The method depends on a selection of p and k. We selected p by the cumulative
variance method and set k = p.

3 Design of a simulation study

Data generating processes. The FAR(1) series are generated according to model

Xn+1(t) =
1∫

0

ψ(t, s)Xn(s)ds + εn+1(t), n = 1, 2, . . . , N . (6)

We use a burn–in period of 50 functional observations.
We consider three error processes ε(1)(t), ε(2)(t), and ε(3)(t) defined as follows:

ε(1)(t) = B B(t) = W(t)− tW(1), (7)

where W (·) is the standard Wiener process generated as

W

(
k

K

)

= 1√
K

k∑

j=1

Z j , k = 0, 1, 2, . . . , K ,

where the Zk are independent standard normals and Z0 = 0.

ε(2)(t) = ξ1
√

2 sin(2π t)+ √
λ
√

2ξ2 cos(2π t), (8)

where ξ1 and ξ2 are independent standard normals and λ can be any constant (in the
simulations we use λ = 0.5).

ε(3)(t) = ε(2)(t)+ aε(1)(t), (9)

where a can be any constant.
The errors ε(1) are Brownian bridges, they admit the Karhunen–Loéve expansion

with infinitely many terms. In contrast, the errors ε(2)(t) have only two terms in this
expansion. The errors ε(3)(t) have two dominant terms, and the degree of their domi-
nance is controlled by the parameter a.

The eigenfunctions and the eignevalues of the covariance operator of the observa-
tions Xn can differ significantly from those of the errors because they depend on the
kernel ψ . We use four kernels (defined for (t, s) ∈ [0, 1]2):

Gaussian: ψ(t, s) = C exp{−(t2 + s2)/2},
Identity: ψ(t, s) = C,

Sloping plane (t): ψ(t, s) = Ct,

Sloping plane (s): ψ(t, s) = Cs.
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The normalizing constants C are chosen such that ||Ψ || = 0.5 or ||Ψ || = 0.8. To
implement the numerical integration in (6), the kernels were evaluated on a grid of
200 × 200 points.

Measures of quality of prediction and estimation. To measure the prediction error
at time n, we use the quantities:

En =

√√
√
√
√

1∫

0

(
Xn(t)− X̂n(t)

)2
dt and Rn =

1∫

0

∣
∣
∣Xn(t)− X̂n(t)

∣
∣
∣ dt.

We use mean squared errors (MSE), averaged distance (AD) and ratio averaged
distance (RAD) to measure the estimation of the kernel ψ :

M SE =

√√
√
√
√

1∫

0

1∫

0

(
ψ̂(t, s)− ψ(t, s)

)2
dsdt,

AD =
1∫

0

1∫

0

|ψ̂(t, s)− ψ(t, s)|dsdt,

R AD =
1∫

0

1∫

0

|ψ̂(t, s)− ψ(t, s)|
|ψ(t, s)| dsdt.

To present simulation results, we compute the appropriate averages, as explained
in Sects. 4 and 5.

4 Improved estimation of the autoregressive kernel

We begin by illustrating the performance of estimator (3). Figure 1 shows the
Gaussian kernel whose Hilbert–Schmidt norm (2) is 1/2, and three estimates which use
p = 2, 3, 4. The innovations εn are generated as Brownian bridges. Such visual dis-
crepancies are observed for other kernels and other innovation processes as well.
Moreover, by all three measures, MSE, AD and RAD, the distance betweenψ and ψ̂p

increases, as p increases. This is counterintuitive because by using more EFPC’ v̂ j ,
we would expect the approximation (3) to improve. For the FAR(1) used to produce
Fig. 1, the sums

∑p
j=1 λ̂ j explain, respectively, 74, 83 and 87 percent of the vari-

ance for p = 2, 3 and 4, but (for the series length N = 100), the absolute deviation
distances between ψ and ψ̂p are 0.40, 0.44 and 0.55, see Table 1. As N increases,
these distances decrease, but their tendency to increase with p remains. This problem
is due in part to the fact that for many FAR(1) models, the estimated eigenvalues λ̂ j

are very small, except λ̂1 and λ̂2, and so a small error in their estimation translates
to a large error in the reciprocals λ̂−1

j appearing in (3). We have experimented with
many ways of remedying this, and found that a simple solution that gives a consistent
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Fig. 1 The kernel surface ψ(t, s) (top left) and its estimates ψ̂p(t, s) for p = 2, 3, 4

improvement is to replace in (4), λ̂i by λ̂i + b̂, i > 2, where b̂ = 1.5(λ̂1 + λ̂2). Add-
ing the baseline b̂ does not make the estimated surfaces ψ̂p look much more similar
to ψ , but the errors, MSE, AD and RAD, become smaller and do not increase with
p. The latter property is important, because the quality of original estimates depends
strongly on p, so an estimator with a weaker dependence on p offers an advantage.
This is illustrated in Tables 2 and 3. Note that in Table 3, the original method gives
best results for p = 2. This is because the FAR(1) model for which ψ has been
especially chosen to have slowly decaying eignevalues λ̂i . For the innovations ε(2),
the original method fails completely for p > 2 and some kernels, because the esti-
mated eigenvalues λ̂i , i > 2 are practically zero. Table 2 shows the most typical
picture.

We presented in this section only a very small selection of graphs and tables; an
extensive presentation is given in Kokoszka and Zhang (2010). Our findings pertain
to lengths N occurring in most applications, in which N does not exceed 200.
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Table 1 Kernel estimation errors; Brownian bridge innovations ε(1)(t), Gaussian kernel

MSE AD RAD

N = 50

p = 2 0.67 (0.04) 0.56 (0.03) 0.79 (0.04)

p = 3 10.17 (0.06) 0.93 (0.05) 10.30 (0.07)

p = 4 10.70 (0.07) 10.32 (0.05) 10.83 (0.07)

N = 100

p = 2 0.46 (0.01) 0.40 (0.01) 0.56 (0.01)

p = 3 0.53 (0.02) 0.44 (0.02) 0.61 (0.02)

p = 4 0.67 (0.02) 0.55 (0.02) 0.77 (0.03)

N = 200

p = 2 0.44 (0.01) 0.38 (0.01) 0.53 (0.01)

p = 3 0.43 (0.01) 0.37 (0.01) 0.51 (0.02)

p = 4 0.52 (0.01) 0.42 (0.01) 0.58 (0.01)

In parentheses, standard errors based on 50 replications

Table 2 AD errors for original and improved kernel estimates; innovations ε(1), N = 100

p = 2 p = 3 p = 4

Original Improved Original Improved Original Improved

Gaussian 0.400 (0.010) 0.400 (0.010) 0.440 (0.020) 0.390 (0.010) 0.550 (0.020) 0.380 (0.010)

Identity 0.520 (0.010) 0.243 (0.005) 0.540 (0.020) 0.220 (0.006) 0.630 (0.020) 0.220 (0.006)

Ct 0.280 (0.010) 0.280 (0.005) 0.340 (0.010) 0.274 (0.005) 0.480 (0.020) 0.270 (0.006)

Cs 0.300 (0.010) 0.255 (0.004) 0.370 (0.010) 0.245 (0.004) 0.510 (0.020) 0.237 (0.005)

In parentheses, standard errors based on 50 replications

Table 3 AD errors for original and improved kernel estimates; innovations ε(3), a = 3, N = 100

p = 2 p = 3 p = 4

Original Improved Original Improved Original Improved

Gaussian 0.398 (0.008) 0.439 (0.004) 0.337 (0.009) 0.403 (0.004) 0.587 (0.020) 0.407 (0.003)

Identity 0.390 (0.007) 0.444 (0.003) 0.312 (0.009) 0.411 (0.003) 0.619 (0.020) 0.411 (0.003)

Ct 0.396 (0.008) 0.386 (0.004) 0.393 (0.010) 0.364 (0.004) 0.631 (0.020) 0.360 (0.002)

Cs 0.327 (0.007) 0.384 (0.004) 0.291 (0.008) 0.358 (0.003) 0.584 (0.030) 0.357 (0.003)

In parentheses, standard errors based on 50 replications

5 Comparison of prediction methods

We selected five prediction methods for comparison, two of which do not use the auto-
regressive structure. To obtain further insights, we also included the errors obtained by
assuming perfect knowledge of the operatorΨ . For ease of reference, we now describe
these methods, and introduce some convenient notation.
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MP (Mean Prediction) We set X̂n+1(t) = 0. Since the simulated curves have mean
zero at every t , this corresponds to using the mean function as a predictor. This
predictor is optimal if the data are uncorrelated.

NP (Naive Prediction) We set X̂n+1 = Xn . This method does not attempt to model
temporal dependence. It is included to see how much can be gained by utilizing
the autoregressive structure of the data.

EX (Exact) We set X̂n+1 = Ψ(Xn). This is not really a prediction method because
the autoregressive operator Ψ is unknown. It is included to see if poor predic-
tions might be due to poor estimation of Ψ (see Sect. 4).

EK (Estimated Kernel) This method is described in Sect. 2.
EKI (Estimated Kernel Improved) This is method EK, but the λ̂i in (4) are replaced

by λ̂i + b̂, as described in Sect. 4.
PF (Predictive Factors) This method is described in Sect. 2.

We produced boxplots of the errors En and Rn, N − 50 < n < N , defined
in Sect. 3, for the innovations and kernels defined in Sect. 3. We considered N =
50, 100, 200, ||Ψ || = 0.5 and ||Ψ || = 0.8. Typical results are shown in Figs. 2 and
3, but for some choices of the innovations and the kernels, the relative placement of
the boxplots changes. To assess the statistical significance of the results, we computed
the averages of the En and Rn, N − 50 < n < N , and the standard errors of these
averages. Typical examples are given in Tables 4 and 5. For example, in Table 5, the
average Rn for kernel Ct with ||Ψ || = .8 is 0.30 for EK and 0.36 for PF. Given that
the standard error is 0.02, the corresponding population averages are significantly dif-
ferent at 5% level. This agrees with the boxplots in Fig. 3. The standard errors like

MP NP EX EK EKI PFMP NP EX EK EKI PF

0.
2

0.
4

0.
6

0.
8

1.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2 Boxplots of the prediction errors En (left) and Rn (right); innovations: ε(1), kernel: sloping plane
(t), N = 100, p = 3, ||Ψ || = 0.5
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Fig. 3 Boxplots of the prediction errors En (left) and Rn (right); innovations: ε(1), kernel: sloping plane
(t), N = 100, p = 3, ||Ψ || = 0.8

Table 4 Averages of En and Rn and their standard errors; ε(1)(t), p = 3, ||Ψ || = 0.5

MP NP EX EK EKI PF

En

Gaussian 0.41 (0.03) 0.47 (0.02) 0.38 (0.02) 0.37 (0.02) 0.37 (0.02) 0.37 (0.02)

Identity 0.39 (0.03) 0.49 (0.03) 0.35 (0.02) 0.35 (0.02) 0.34 (0.02) 0.37 (0.02)

Ct 0.44 (0.02) 0.57 (0.03) 0.42 (0.03) 0.42 (0.03) 0.42 (0.03) 0.44 (0.03)

Cs 0.39 (0.02) 0.48 (0.03) 0.37 (0.02) 0.36 (0.02) 0.36 (0.02) 0.36 (0.02)

Rn

Gaussian 0.35 (0.03) 0.38 (0.02) 0.31 (0.02) 0.31 (0.02) 0.31 (0.02) 0.31 (0.02)

Identity 0.32 (0.02) 0.41 (0.03) 0.29 (0.02) 0.29 (0.02) 0.29 (0.02) 0.30 (0.02)

Ct 0.38 (0.02) 0.48 (0.03) 0.36 (0.02) 0.36 (0.02) 0.36 (0.02) 0.37 (0.02)

Cs 0.33 (0.02) 0.40 (0.02) 0.30 (0.02) 0.30 (0.02) 0.30 (0.02) 0.30 (0.02)

those in Tables 4 and 5 are computed assuming that the En and Rn are uncorrelated.
This is confirmed by the examination of the ACF plots, and can be expected because
prediction errors are close to the iid model errors.

Since we cannot present all 32 sets of boxplots and 32 sets of tables, we report only
the general conclusions:

1. Taking the autoregressive structure into account reduces prediction errors, but, in
some settings, this reduction is not be statistically significant relative to method
MP, especially if ‖Ψ ‖ = 0.5. Generally if ‖Ψ ‖ = 0.8, using the autoregressive
structure significantly and visibly improves the predictions.
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Table 5 Averages of En and Rn and their standard errors; ε(1)(t), p = 3, ||Ψ || = 0.8

MP NP EX EK EKI PF

En

Gaussian 0.46 (0.02) 0.52 (0.03) 0.40 (0.02) 0.40 (0.02) 0.40 (0.02) 0.55 (0.02)

Identity 0.40 (0.03) 0.48 (0.03) 0.36 (0.02) 0.36 (0.02) 0.36 (0.02) 0.36 (0.02)

Ct 0.46 (0.02) 0.50 (0.02) 0.37 (0.02) 0.36 (0.02) 0.37 (0.02) 0.42 (0.02)

Cs 0.49 (0.03) 0.48 (0.03) 0.38 (0.02) 0.36 (0.02) 0.36 (0.02) 0.36 (0.02)

Rn

Gaussian 0.39 (0.02) 0.43 (0.02) 0.33 (0.02) 0.33 (0.02) 0.33 (0.02) 0.48 (0.04)

Identity 0.33 (0.02) 0.39 (0.02) 0.30 (0.02) 0.30 (0.02) 0.30 (0.02) 0.30 (0.02)

Ct 0.39 (0.02) 0.41 (0.02) 0.30 (0.02) 0.30 (0.02) 0.31 (0.02) 0.36 (0.02)

Cs 0.43 (0.03) 0.39 (0.02) 0.32 (0.02) 0.30 (0.02) 0.30 (0.02) 0.30 (0.02)

2. None of the Methods EX, EK, EKI uniformly dominates the other. In most cases
method EK is the best, or at least as good at the others.

3. In some cases, method PF performs visibly worse than the other methods, but
always better than NP.

4. Using the improved estimation described in Sect. 4 does not generally reduce
prediction errors.

We also applied all prediction methods to mean corrected precipitation data studied
in Besse et al (2000). For this data set, the averages of the En and the Rn are not sig-
nificantly different between the first five methods, method PF performs significantly
worse than the others. We should point out that method PF depends on the choice of
the parameters α and k. It is possible that its performance can be improved by better
tuning these parameters. On the other hand, our simulations show that method EK
essentially reaches the limit of what is possible, it is comparable to the theoretically
perfect method EX.

6 Limits of prediction quality

In this section we provide some discussion of the empirical findings reported in Sect. 5.
Our simulation study shows that while taking into account the autoregressive struc-

ture of the observations does reduce prediction errors, the boxplots in Figs. 2 and 3
suggest that many prediction errors are comparable to those of the trivial MP method.
To analyze this observation further, we present in Fig. 4 six consecutive trajectories
of the FAR(1) process with Gaussian kernel, ||Ψ || = 0.5, and Brownian bridge inno-
vations together with EK predictions. Predictions obtained with other methods look
similar. We see that the predictions look much smoother than the observations, and
their range is much smaller. If the innovations εn are smooth, like the ε(2)n , the obser-
vations and their predictions are also smooth, but the predicted curves have a visibly
smaller range than the observations. This is further illustrated in Fig. 5 which shows
centered precipitation curves studied by Besse et al (2000) together with their EK
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Fig. 4 Six consecutive trajectories of the FAR(1) process with Gaussian kernel, ||Ψ || = 0.5, and Brownian
bridge innovations. Dashed lines show EK predictions with p = 3

predictions. We estimate the mean function for precipitation data first, subtract from
the curves, and then do the forecasting for the centered data.

The smoothness of the predicted curves follows from representation (5), which
shows that each predictor is a linear combination of a few EFPC’s, which are smooth
curves themselves. The smaller range of the the predictors is not peculiar to func-
tional data, but is enhanced in the functional setting. For a mean zero scalar AR(1)
process Xn = ψXn−1 + εn , we have Var(Xn) = ψ2Var(Xn−1) + Var(εn), so the
variance of the predictor ψ̂Xn−1 is about ψ−2 times smaller than the variance of Xn .
In the functional setting, the variance of X̂n(t) is close to Var[∫ ψ(t, s)Xn(s)ds]. If
the kernel ψ admits the decomposition ψ(t, s) = ψ1(t)ψ2(s), as all the kernels we use
do, then

Var
[

X̂n(t)
]

≈ ψ2
1(t)Var

⎡

⎣
1∫

0

ψ2(s)Xn−1(s)ds

⎤

⎦ .
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Fig. 5 Six consecutive trajectories (1989–1994) of centered pacific precipitation curves (solid) with their
EK predictions (dashed)

If the function ψ1 is small for some values of t ∈ [0, 1], it will automatically drive
down the predictions. If ψ2 is small for some s ∈ [0, 1], it will reduce the integral∫ 1

0 ψ2(s)Xn−1(s). For the Gaussian kernel, ψ1 = ψ2 are small for arguments less
than 1/2, so the predictions are very small, as seen in Fig. 4. The estimated kernels
do not, in general admit a factorization of this type, but are always weighted sums
of products of orthonormal functions (the EFPC’s v̂k). A conclusion of this discus-
sion is that the predicted curves will in general look smoother and “smaller” than
the data. This somewhat disappointing performance is however, not due to poor pre-
diction methods, but to a natural limit of predictive power of the FAR(1) model; the
curves Ψ(Xn) share the general properties of the curves Ψ̂(Xn), no matter how Ψ is
estimated.
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