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Abstract Goodness-of-fit tests are proposed for the case of independent
observations coming from the same family of distributions but with different param-
eters. The most popular related context is that of generalized linear models (GLMs)
where the mean of the distribution varies with regressors. In the proposed procedures,
and based on suitable estimators of the parameters involved, the data are transformed
to normality. Then any test for normality for i.i.d. data may be applied. The method
suggested is in full generality as it may be applied to arbitrary laws with continuous or
discrete distribution functions, provided that an efficient method of estimation exists
for the parameters. We investigate by Monte Carlo the relative performance of classical
tests based on the empirical distribution function, in comparison to a corresponding
test which instead of the empirical distribution function, utilizes the empirical char-
acteristic function. Standard measures of goodness-of-fit often used in the context of
GLM are also included in the comparison. The paper concludes with several real-data
examples.
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1 Introduction

Let {Y j }n
j=1 be independent observations, each following an arbitrary distribution

function (DF) {Fj }n
j=1, respectively. Denote by Fϑ a specific family of distributions

indexed by a parameter ϑ . We wish to test the null hypothesis

H0 : Fj ≡ Fϑ j , for some ϑ j ∈ �, j = 1, . . . , n, (1.1)

with � ⊆ R
q , q ≥ 1, i.e. that all Fj belong to a specific parametric family of distribu-

tions, and that their only stochastic difference is indexed by the varying parameter ϑ j .
Although goodness-of-fit (GOF) testing is one of the classical problems of inference,
most of the standard procedures are restricted to the i.i.d. case. The scenario described
above however occupies a central position in a variety of modeling situations, and
most importantly in the context of generalized linear models (GLMs). In GLMs, the
varying parameter ϑ j is related to the mean of the underlying distribution. In turn, this
mean is linearly related (through a function termed ‘the link’) to a vector of regressors
with value x j via a parameter vector β. If x j = (x0 j , x1 j , . . . , x pj )

T with x0 ≡ 1, and
β = (b0, . . . , bp)

T , the following cases are popular among practitioners:

• Poisson regression: Fj = Poisson(μ j ), with E(Y j ) = μ j and log μ j = xT
j β.

• Logistic regression: Fj = Bernoulli(μ j ), with E(Y j ) = μ j and log[μ j/(1 −
μ j )] = xT

j β.

• Negative Binomial regression: Fj = Poisson(μ j ), with log μ j = xT
j β+u j , where

Z j := eu j
i.i.d.∼ Gamma(1, ν), with density �(ν)−1zν−1e−z , and E(Z j ) = ν.

• Gamma regression: Fj = Gamma(μ j , ν), with density �(ν)−1(ν/μ j )
ν yν−1

e−νy/μ j , and E(Y j ) = μ j with log μ j = xT
j β.

• Inverse Gaussian regression: Fj = Inverse Gaussian(μ j , λ), with density
√

λ/(2πy3) exp
(
−λ(y − μ j )

2/(2μ2
j y)

)
, and E(Y j ) = μ j with log μ j = xT

j β.

For GLMs, standard measures of GOF are the so-called deviance statistic and the
generalized Pearson χ2 statistic (McCullagh and Nelder 1989); modifications of these
statistics may be found in Paul and Deng (2002) and Wood (2002). Note also that
apart from various attempts to apply the definition of the R2 measure of linear fit to
GLMs (refer to Mittlböck and Heinzl 2002, and Hu and Shao 2008), different notions
of residuals in GLMs (Pearson, deviance, and Anscombe, residuals) lead to alternative
measures of fit based on these residuals; see for instance Shayib and Young (2002).
Despite all these attempts there is limited work towards applying the standard omnibus
GOF tests to a specific GLM. These tests include the Cramér-von Mises statistic, and
the Anderson-Darling statistic, which utilize the empirical DF (EDF). One reason for
the lack of research in this direction may be that when estimation of parameters is
involved, these statistics depend not only on the distribution being tested but also on
the estimation method and on the true values of the parameters. This dependence of
course complicates the implementation of EDF-tests in the context of GLMs, as the
asymptotic null distribution of the test statistics, being specific to the hypothesized
family Fϑ and the method of estimation, would also depend on both the values of the
regressors as well as on the values of the regression parameter β.
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In this paper we propose a method in order to circumvent the aforementioned
difficulties involved in applying classical EDF-GOF tests in the context of GLMs. In
doing so, and in order to illustrate its performance, we apply the proposed method to
classical and more recent omnibus GOF tests. The rest of the paper unfolds as follows.
In Sect. 2 we present the new method and indicate how to apply it to the GOF statistics
in the context of GLM. Section 3 contains a simulation study in which the omnibus
procedures are compared to some measures which are routinely employed by practi-
tioners when trying to assess the fit of specific GLM. In Sect. 4 certain limitations of
the proposed procedure are exposed in the case of i.i.d. data. Finally, Sects. 5 and 6
contain real data examples and the conclusions of this study, respectively.

2 Test statistics

2.1 Description of the procedure

In the context of GLMs, consider the data (X, Y), where Y denotes the vector with
elements Y j , and X denotes the matrix with j th row equal to xT

j , j = 1, . . . , n. In
order to reduce testing for H0 in (1.1) to tests for composite normality for i.i.d. data
we adapt the following procedure originally found in Chen and Balakrishnan (1995):

(i) Consistently estimate ϑ j by ϑ̂ j , where ϑ̂ j := ϑ̂ j (X, Y).
(ii) Compute U j = Fϑ̂ j

(Y j ), 1 ≤ j ≤ n, and the ordered values U(1) ≤ · · · ≤ U(n).

(iii) Compute ϒ j = �−1(U( j)), and then ϒ̄ = n−1 ∑n
j=1 ϒ j , and S2

ϒ = (n −
1)−1 ∑n

j=1(ϒ j − ϒ̄)2.
(iv) Apply the tests in (2.1) and (2.2) with U j replaced by �(Z j ), j = 1, 2, . . . , n,

where

Z j = ϒ j − ϒ̄

Sϒ

, j = 1, 2, . . . , n. (2.1)

Since all distributions in GLMs belong to the exponential family, maximum like-
lihood estimation of the parameter vector β is always possible in step (i) (see, e.g.,
McCullagh and Nelder 1989, section 2.2.2). Further unknown parameters may also
be estimated by maximum likelihood, or by the method of moments (McCullagh
and Nelder 1989, section 8.3.6). Step (ii) transforms to uniformity (under the null
hypothesis H0 and the corresponding DF), apart from sampling variability due to the
estimation step. In turn step (iii) renders the observations ϒ j approximately normally
distributed. This finally brings us to step (iv), and the classical tests for normality
incorporating the standardized observations Z j , and the standard normal DF, �(·).
Note that the transformation in step (ii) is not monotone due to the dependence of
the parameter on the observation, and therefore, as a slight modification of the Chen
& Balakrishnan procedure, the U j have to be ordered. We note here that the actual
(quantitative) level of dependence induced by estimation in the pairs (U j , Uk), j �= k,
would be determined by the specific estimation method employed and by the type of
family being tested.
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Notice that the U j in step (ii) are just the crude residuals of Cox and Snell (1968).
Loynes (1980) analyzed the asymptotic behavior of the empirical process based on
the U j ; from this, the asymptotic distribution of EDF based tests can be derived. In
practice, however, these results are difficult to apply due to the dependence on the
distribution and the true values of the parameters. On the other hand, the quantities
ϒ j , j = 1, . . . , n, are the quantile residuals introduced by Dunn and Smyth (1996).
They differ from the U j only by a deterministic transformation, but are more suitable
for a visual inspection since people are most familiar with the normal distribution.
From this point of view, the Z j in (2.1) are a different type of residuals, and could be
termed standardized quantile residuals. For visualization purposes, for example Q-Q
plots, there is usually not much of a difference between the last two types of residuals;
refer for instance to Example 2, in Sect. 5.1.

The procedure described by (i)–(iv) works well for continuous DF, but should be
suitably adjusted when Fϑ is discrete. In this connection, we follow the modification
proposed by Dunn and Smyth (1996) which led to the definition of the so-called ran-
domized quantile residuals. According to this modification, for discrete DF step (ii)
should be replaced by: (ii) Let a j = limy↑Y( j) Fϑ̂ j

(y) and b j = Fϑ̂ j
(Y( j)), and gener-

ate U j as a random deviate following a uniform distribution on the interval (a j , b j ].

2.2 Tests for normality

The method proposed in the last subsection reduces the problem of testing H0 in (1.1),
to that of testing normality with estimated parameters. To recall some popular nor-
mality tests assume for a minute that we have i.i.d. observations {X j }n

j=1 in ascending
order. Then the Cramér-von Mises and the Anderson-Darling statistics are given by
(refer to D’Agostino and Stephens 1986 or Thode 2002),

W2 =
n∑

j=1

(
U j − 2 j − 1

2n

)2

+ 1

12n
, (2.2)

A2 = −n − 1

n

n∑

j=1

[
(2 j − 1) log U j + (2n + 1 − 2 j) log(1 − U j )

]
, (2.3)

respectively, where Z j = (X j − X̄)/SX are the standardized observations transformed
to U j = �(Z j ) by using the standard normal DF �(·), with X̄ = n−1 ∑n

j=1 X j and

S2
X = (n − 1)−1 ∑n

j=1(X j − X̄)2. Asymptotic percentage points and modifications
of the statistics for finite sample size can be found in Table 4.7 in D’Agostino and
Stephens (1986).

Turning now to competitive procedures other than the EDF tests, we would also
like to consider a recent test for normality which in the GLM-context of (1.1) takes
the form

C F = n

∞∫

−∞
|ϕn(t) − e−(1/2)t2 |2 1√

2π
e−(1/2)t2

dt, (2.4)
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where ϕn(t) = n−1 ∑n
j=1 eit Z j is the empirical characteristic function of Z j , j =

1, . . . , n, which are computed from (2.1). It is clear from (2.4), that instead of com-
paring the EDF to the hypothesized DF as in the case of the W 2 and A2 statistics, the
test statistic C F compares the empirical characteristic function to the hypothesized
characteristic function. After some straightforward algebra we have from (2.4),

C F = 1

n

n∑

j,k=1

e−(Z j −Zk )
2/2 − √

2
n∑

j=1

e−Z2
j /4 + n√

3
.

Epps and Pulley (1983) proposed this test statistic and showed that C F is very com-
petitive to the classical EDF tests. An approximation to the limit distribution of C F
under normality based on Johnson distributions is derived in Henze (1990). Using a
simple transformation of C F , the test can also be carried out for finite samples as long
as sample size is larger than or equal to 10 (Henze 1990, p. 17).

2.3 Deviance statistics

An often-used goodness of fit measure for generalized linear models is the scaled
deviance

D = 2(log L(y) − log L(μ̂))/ϕ,

where L(y) is the likelihood of the saturated model, L(μ̂) is the likelihood under the
model considered and ϕ is the dispersion parameter of the pertaining exponential fam-
ily of distributions which is assumed to be known. For Poisson and logistic regression,
ϕ equals 1. The same holds for the negative binomial model which also belongs to
the exponential family if we assume that the parameter ν is known. For gamma and
inverse Gaussian regression models, ϕ equals 1/ν and 1/λ, respectively. In the case of
the normal distribution, the scaled deviance has a χ2

n−(p+1) distribution where p +1 is
the number of regression parameters. For other distributions in the exponential family,
a similar assertion may be approximately correct; however, it is now well recognized
that this approximation can be very poor even for large sample sizes (Davison 2003,
p. 483).

For the models with continuous response, distribution theory for the deviance is
further complicated by the fact that ϕ is generally unknown. In this case, ϕ has to be
estimated which can be done by maximum likelihood or by the moment method, using
the residual chi-squared statistic divided by the residual degrees of freedom.

The deviance is often used with the upper tail as critical region. However, we used
a two sided test which seems more appropriate here as an omnibus test. As critical
values, we used quantiles of the χ2

n−p−1-distribution. For more details on deviance–
type statistics, as well as for some other measures of GOF in the context of GLMs the
reader is referred to Zheng (2000).

If there are several measurements with identical covariable values, one can use the
scaled deviance taking into account the group structure
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Dgroup = 2(log L(ȳ) − log L(μ̂))/φ,

where ȳ = (ȳ1, . . . , ȳm) is the vector of means of the different groups. Again, we
considered two sided tests based on Dgroup using quantiles of the chi-squared distri-
bution with m − p − 1 degrees of freedom as critical values. For grouped data, this
approximation improves if the number of observations increases in each group.

3 Simulations

3.1 Continuous response

In this and the following section, we report results of several simulation studies. Since
we are mainly interested in the performance for small and medium sample sizes, we
used simple models with a small number of parameters. For all computations, we
used the statistics software R (R Development Core Team 2011). Estimation of the
parameter vector β is done by maximum likelihood, while the dispersion parameter is
estimated by the method of moments. Computation of (randomized) quantile residuals
for generalized linear models can be done using the function qresiduals in the R
library statmod (Smyth 2011).

For the hypothesis of a GLM with inverse Gaussian distribution, we considered the
following two models.

Model I G1. μ j = exp(2.6 + 2x1 j ), for j = 1, . . . , n. The covariate x1 j has one
third of the values equal to each of 0, 0.5, and 1. The means μ j are then 13.46, 36.60
and 99.48, each for one third of the sample. As sample size, we took n = 15, n = 30
and n = 90. In the null model, the response variable Y j is inverse Gaussian with
dispersion parameter φ = 0.5 corresponding to λ = 2 in the usual parametrization.

Model I G2. μ j = exp(0 + 3x1 j ), for j = 1, . . . , n. The covariate x1 j has one
third of the values equal to each of 0, 0.5, and 1. The μ j are then 1.00, 4.48 and 20.09,
each for one third of the sample. Again, we put λ = 2.

Model I G3, a model with low mean values: μ j = exp(−2+2x1 j ), for j = 1, . . . , n
with the same values of x1 j as in I G1 and I G2. The μ j are then 0.135, 0.368 and 1,
each for one third of the sample. Again, λ is set to 2.

Other models considered include those with gamma distributed response variable,
with the same mean vectors as those of I G1, I G2 and I G3, and dispersion or shape
parameter equal to 1; these models are denoted by �1, �2 and �3.

We also considered cases of the standard Gaussian linear model; in particular, we
choose μ j = 1 + 4x1 j (denoted Normal 1) and μ j = 1 + 8x1 j (Normal 2) with the
same values of x1 j as above. The μ j are then 1, 3, 5 and 1, 5, 9, respectively.

Results: Table 1 shows that the new tests maintain their theoretical level very well.
This also holds for the models I G3 and �3 which have low mean values in each of
the three groups. There is no marked difference between the tests based on W 2, A2

and C F .
The test based on the scaled deviance D, hence ignoring the grouping, does not

maintain its level neither for the gamma nor for the inverse Gaussian distribution and
should not be used. In particular, the test is extremely liberal for the first two inverse
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Table 1 Empirical levels of the tests based on W 2, A2, C F, D and Dgroup, theoretical level α = 10% and
5%, based on 10,000 replications

n W 2 A2 C F D Dgroup

10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

I G1 15 10.5 5.2 11.6 5.6 11.9 6.1 86.2 81.3 23.1 16.4

30 9.9 5.0 10.0 5.1 10.4 5.5 89.9 86.7 19.6 13.0

90 9.3 4.9 9.3 4.8 9.1 4.7 86.4 82.9 14.8 9.0

I G2 15 9.6 4.9 9.7 4.7 9.7 4.5 45.9 36.9 13.9 8.3

30 9.5 4.9 9.5 4.8 9.2 4.6 48.3 39.4 12.3 7.0

90 8.7 4.3 8.5 4.1 8.4 3.8 53.5 45.4 10.4 5.3

I G3 15 9.4 4.5 9.5 4.8 9.5 4.5 1.6 0.6 8.2 4.1

30 9.6 4.9 9.6 4.9 9.9 4.9 2.3 0.8 7.8 3.9

90 10.0 5.1 10.0 5.1 10.2 4.9 3.5 1.3 8.1 3.7

�1 15 9.8 4.8 10.1 4.9 10.0 4.8 17.3 9.9 10.3 4.9

30 10.1 5.1 9.9 5.1 10.1 5.2 23.2 14.1 10.2 5.0

90 9.7 4.8 9.8 4.8 9.9 4.6 36.9 26.0 9.8 4.9

�2 15 9.6 4.8 9.8 4.8 9.8 4.9 17.7 10.5 9.7 4.9

30 9.7 4.9 9.6 4.8 9.9 5.0 23.0 14.2 9.9 4.9

90 9.1 4.7 9.5 4.9 9.1 4.4 37.1 25.9 10.2 5.2

�3 15 10.1 5.1 10.4 5.1 10.4 5.4 17.3 10.0 9.6 4.5

30 10.1 5.1 10.1 5.1 10.1 5.3 23.2 13.8 9.9 4.7

90 9.9 5.0 9.8 5.0 10.0 4.8 37.1 25.7 10.2 4.9

Normal 1 15 10.6 5.2 10.7 5.1 10.4 5.0 − − 9.0 4.0

30 10.0 5.1 10.0 5.1 9.9 4.9 − − 9.7 4.7

90 9.4 4.6 9.7 4.7 9.6 4.9 − − 10.7 5.1

Normal 2 15 9.2 4.7 9.2 4.6 9.2 4.7 − − 9.0 3.8

30 10.1 4.8 9.9 4.9 9.8 5.1 − − 9.6 4.8

90 9.7 5.0 9.6 5.0 9.8 4.9 − − 10.0 5.1

Gaussian models, but conservative for the low mean model I G3. For all three models
with gamma distributed response, the empirical level is much higher than the theoret-
ical one. For the normal distribution with estimated dispersion parameter, D equals
the mean of a χ2

n−2- distribution, i.e. D = n − 2, and a test based on D makes no
sense.

On the other hand Dgroup, although liberal for small sample size at least under
the first and second IG model, shows an observed level which seems to converge to
the theoretical one as the sample size increases, even if the dispersion parameter is
estimated.

In Table 2, we present the results of a small simulation to study the empirical power
of the different tests. In the upper part, data are generated according to models �1 and
�2, and the hypothetical model is inverse Gaussian. In the lower part, we assume a
gamma regression model, but generate data from I G1 and I G2.
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Table 2 Empirical power of the tests based on W 2, A2, C F, D and Dgroup, α = 10% and 5%, based on
10,000 replications

Sim Est n W 2 A2 C F D Dgroup

10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

�1 IG 15 61.0 52.6 62.9 54.7 65.8 57.9 82.0 76.3 9.5 5.4

30 86.5 81.3 87.7 83.1 89.6 85.3 95.1 93.1 8.7 4.5

90 99.8 99.8 99.9 99.8 99.9 99.9 99.9 99.9 7.7 3.8

�2 IG 15 68.0 60.3 69.7 62.1 72.7 65.1 79.3 74.0 9.2 4.7

30 91.3 87.8 92.1 88.7 93.3 90.2 93.4 91.1 9.2 4.9

90 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.6 9.0 4.5

I G1 � 15 48.0 35.7 50.8 39.2 54.3 42.4 6.6 1.6 11.4 4.5

30 83.9 76.8 87.5 81.1 90.3 84.4 33.7 25.0 11.1 4.8

90 100.0 99.9 100.0 100.0 100.0 100.0 97.6 95.9 10.5 4.9

I G2 � 15 17.7 11.6 18.6 12.5 20.3 13.9 4.0 1.2 9.6 4.0

30 28.0 19.1 32.5 22.6 35.6 25.7 18.6 11.1 10.9 5.2

90 66.8 53.6 81.3 69.7 82.6 72.2 80.0 73.5 11.6 6.1

The first three tests show a similar behaviour with power clearly increasing with
sample size. The characteristic function test has a slight edge over the test based on
A2, with the based on W 2 being the least powerful, but differences in power are not
pronounced.

Turning to the deviance statistics we see that Dgroup has no power at all (we only
refer to Dgroup since the D test fails to maintain the theoretical level). At first view, this
may be quite surprising. However, for grouped data, deviance tests are specification
tests for the mean, but not for the response distribution. Since intercept and the sole
regressor are in the model, means are consistently estimated in the saturated as well as
the hypothetical model, and deviance becomes small even if it is based on the wrong
distributional assumption.

In this and the subsequent section we used designs with replications to be able
to compare the results with the test based on the grouped deviance. We also con-
sidered random designs, using the same models as above but replacing the values
of x1 j ( j = 1, . . . , n) by random values from a uniform distribution on (0, 1). The
results for the tests based on W 2, A2, C F and D are nearly unchanged, and, hence,
are omitted.

3.2 Discrete response

Poisson regression: As basic models for mean, we used the same models as Spinelli
et al. (2002), and a third model with low mean values:

Model 1. μ j = exp(2.6 + 2x1 j ), for j = 1, . . . , n. The covariate x1 j has one third
of the values equal to each of 0, 0.5, and 1. The μ j are then 13.46, 36.60 and 99.48,
each for one third of the sample.
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Model 2. μ j = exp(0 + 3x1 j ), for j = 1, . . . , n. The covariate x1 j has one third of
the values equal to each of 0, 0.5, and 1. The μ j are then 1.00, 4.48 and 20.09, each
for one third of the sample.

Model 3. μ j = exp(−2 + 2x1 j ), for j = 1, . . . , n with the same values of x1 j as
in Model 1. The μ j are then 0.135, 0.368 and 1, each for one third of the sample.

As sample size, we took n = 15, n = 30 and n = 90. In the null model, the response
variable Y j is Poisson with mean μ j ; with means from Model 1 (resp. Model 2/3)
above, it is called Poisson 1 (resp. Poisson 2/3). Note that there exist some difficulties
in simulating and estimating the Poisson 3 model: if the simulated values are mainly
zeros, fitted rates can occur which are numerically 0, and no valid model is provided.
These cases (about 9% of all cases for n = 15, 0.7% for n = 30 and 0% for n = 90)
have been discarded in the simulations.

Alternatives are similar to the models given in Spinelli et al. (2002):

(i) The negative binomial distribution is an overdispersed alternative to the Poisson.
It has mean μ j and variance μ j + μ2

j/ν. The models with means as in Model
1 and Model 2 and ν = 5 are called Nbinom 1 and Nbinom 2, respectively.

(ii) A further common overdispersed alternative is the mixture of two Poisson dis-
tributions. Two equally weighted Poisson distributions with means 0.5μ j and
1.5μ j have been chosen. The resulting mixtures are called Pmix 1 and Pmix 2.

(iii) The binomial distribution B(n, p) provides an underdispersed alternative. We
have chosen μ j = n j p j and n j = floor(1.2μ j ) (the integer part of 1.2μ j );
hence, the probability of success is approximately 0.8.

(iv) The beta-binomial distribution can be used to provide an equally dispersed
alternative. This distribution can be defined as binomial distribution with n j

trials and with the probability of success p a random variable from the beta
distribution. We have put ni = floor(μ j ) + 3 with parameters chosen so that
the mean of the beta-binomial distribution is μ j and the variance equals the
mean.

Table 3 shows that the new tests maintain the theoretical level very well. The tests
based on W 2, A2 and C F behave very similarly and power is again clearly increasing
with sample size.

The deviance test based on D works very well for the Poisson models 1 and 2. How-
ever, for the low mean model Poisson 3, the test is conservative for small sample size
but becomes liberal for larger samples. Its power is much higher than that of the other
tests for most alternatives; as expected, the equally dispersed beta-binomial alternative
can not be detected (this would also be the case for the underdispersed alternatives
if we would have chosen a one-tailed test). On the other hand, the power of the test
based on Dgroup is poor and has the unpleasant feature of not being increasing with
sample size (which suggests an inconsistent test); the reason is the same as in the case
of continuous distributions.

Logistic regression: In this section, the hypothetical models are:
Binom 1: Y j ∼ Bin(10, p j ) with p j = (1 + exp(−2 + 4x1 j ))

−1 for j = 1, . . . , n.
The covariate x1 j has one third of the values equal to each of 0, 0.5, and 1. The p j are
then 0.12, 0.5 and 0.88, each for one third of the sample.
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Table 3 Empirical level (lines 3–11) and power (lines 12–35) of the tests based on W 2, A2, C F, D and
Dgroup for the Poisson regression model, α = 10% and 5%, based on 10,000 replications

Sim n W 2 A2 C F D Dgroup

10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Poisson 1 15 9.6 5 10 4.9 9.7 5 10.3 5.1 10.3 5

30 10 4.9 10.1 5.1 10.2 4.9 10.5 5.2 10 4.9

90 9.9 5.1 9.8 5.1 9.9 5 10.2 5.3 9.7 4.8

Poisson 2 15 10 5.3 10.2 5.1 10.1 5.1 9 4.5 10 5.3

30 10.3 5.4 10.5 5.2 10.2 5.1 9.5 4.7 10.3 5.1

90 10 4.9 10 5 9.9 4.8 11.6 6.2 9.9 5

Poisson 3 15 9.4 4.6 9.4 4.5 9.4 4.6 3.5 1.4 8.7 4.9

30 9.4 4.7 9.4 4.6 9.2 4.6 7.5 3.8 9.8 5.1

90 9.4 4.6 9.4 4.5 9.3 4.4 15.5 8 11.3 5.6

NBinom 1 15 21.2 16.5 21.3 16.5 20.8 16.2 99.9 99.8 47.7 40.9

30 40.5 35.8 40.6 35.9 39.6 35.8 100 100 48.5 41.2

90 80.7 78.5 80.8 78.9 80.4 78.4 100 100 48.9 41.8

NBinom 2 15 12 6.7 12.6 7 12.2 6.3 77.8 71.1 16.6 10.2

30 16 9.5 17.4 10.3 17.5 10.3 96 93.8 16.4 9.9

90 33.7 23.3 37.6 26.6 38.6 27.8 100 100 16.5 10.1

Pmix 1 15 39.4 27 39.2 26.3 34.3 21.7 99.9 99.9 54 47.3

30 79.5 65.3 80.5 65.5 72.3 52.7 100 100 52.9 46.1

90 100 99.9 100 100 100 99.9 100 100 52.3 45.4

Pmix 2 15 12.1 6.3 13.2 6.9 13.9 7.5 93.4 90.6 19.3 12.2

30 15.4 8.7 16.2 9.5 17.8 10.7 99.8 99.6 19.2 11.8

90 20.6 13 22.7 14.3 25.9 16 100 100 18.2 11

Binom 1 15 11.4 5.9 11.7 6.2 11.6 6.1 99.9 99.6 12.9 6.7

30 14 7.7 14.9 8.3 16.2 9.2 100 100 12.8 6.6

90 23.6 14.9 26.6 17.1 30.4 20 100 100 13 6.6

Binom 2 15 16.4 9.2 17.9 10.1 18.3 10.4 100 99.9 20.9 10

30 25.4 16 29.6 19 30.1 19.7 100 100 23.3 11.8

90 55.4 41.8 66.7 52.8 64 50.6 100 100 22.1 11.3

Beta-binom 1 15 92.5 88.4 92.5 88.5 89.5 85.6 60.7 53.7 12.9 7.1

30 99.9 99.9 99.9 99.9 99.8 99.6 61.6 54.7 11.3 6.1

90 100 100 100 100 100 100 65.9 59.6 9.9 4.8

Beta-binom 2 15 34.6 23.3 35.4 24.3 33.8 23.4 22.9 16.3 11.1 5.5

30 67.7 56.1 68.3 56.9 65.1 54.3 29.2 21.5 10.4 5.3

90 99.3 98.4 99.2 98.3 98.4 97 44 35.2 10.2 5.2

Binom 2: Y j ∼ Bin(10, p j ) with p j = (1 + exp(0 + 2x1 j ))
−1; x1 j as in

Binom 1. The p j are then 0.5, 0.73 and 0.88, each for one third of the sample.
As alternatives, we have chosen two beta-binomial distributions representing

different degrees of overdispersion relative to the binomial distribution. Specifically,
we used a binomial distribution with 10 trials and with parameters chosen so that the
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Table 4 Empirical level (lines 3–8) and power (lines 9–20) of the tests based on W 2, A2, C F, D and
Dgroup for the logistic regression model, α = 10% and 5%, based on 10,000 replications

Sim n W 2 A2 C F D Dgroup

10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Binom 1 15 9.4 4.8 9.5 4.7 9.4 4.6 10.5 5.1 10.9 6.6

30 9.7 4.8 9.7 4.9 9.8 4.9 12.2 6.3 10.6 5.8

90 9.7 4.8 10 4.8 10 4.7 21.5 12.6 10.2 5.2

Binom 2 15 10.4 5.3 10.5 5.3 10.2 5.1 11.5 6 10.3 5.8

30 9.5 4.9 9.6 4.7 9.6 4.8 13 7.1 10.4 5.5

90 10 5.3 10.1 5.4 10 5 18.8 11.2 9.6 4.8

Beta-Binom A1 15 10.7 5.2 11 5.3 9.8 4.9 91.3 87.5 32.8 25.2

30 12.4 6.2 12.3 6.1 10.1 4.9 99.6 99.3 31.6 24.3

90 20.5 11.7 19.6 10.8 10.9 5.5 100 100 30.6 23

Beta-Binom A2 15 18.3 10.7 18.9 10.9 19 11 95.3 92.5 32.3 24.4

30 33.3 22.4 34 22.8 36.8 24.7 99.9 99.8 32.3 24

90 79.3 69.3 79.9 69.9 82.2 72.4 100 100 30.6 22.9

Beta-Binom B1 15 12.8 6.5 12.7 6.5 9.7 4.2 97.5 96.4 48 41

30 19.5 11.1 18.1 10.1 11.1 5.9 99.9 99.9 45.3 37.6

90 40 26.3 36.9 22.7 12 6.4 100 100 43 35.7

Beta-Binom B2 15 40.8 29.7 41 29.4 40.5 28.7 99.3 99 46 38.8

30 72 62.2 71.3 61.2 71.2 60.9 100 100 45 37.8

90 99.2 98.5 99.1 98.2 98.7 97.7 100 100 44.2 36.4

mean of the beta-binomial distribution is the same as that of Binom 1 and Binom 2, but
with variance 3.25 times larger. These models are called called Beta-Binom A1/A2.
Similar models but with factor 5.5 between variances are called Beta-Binom B1/B2.

Results for sample size n = 15, 30 and 90 are given in Table 4. Again, the newly
introduced tests maintain their level very well, and show similar behaviour under alter-
natives with power clearly increasing with sample size. For the logistic model, the test
based on D does not work well: the theoretical level is not maintained. Hence, the
results for alternative distributions have little or no meaning. For Dgroup, we observe the
same behaviour as in the previous simulations. In particular, power does not increase
(or even decreases, slightly) with sample size.

4 The i.i.d. case revisited

The work of Chen and Balakrishnan (1995) shows that their procedure works well
for some standard lifetime distributions. This fact was further strengthened by the
results in Meintanis (2009). We have done a similar simulation with a larger range
of distributions and a higher number of replications to see if the procedure is more
widely applicatle.

Results of the simulations for sample sizes n = 10, 20, 40 based on 50000
replications showed that the procedure does not always work satisfactorily: it works
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very well for gamma, inverse Gaussian and lognormal distributions; further, it is good
for Weibull and acceptable for logistic and t5 distributions. The results become worse
if the degrees of freedom of the t-distribution declines, eventually failing for the Cau-
chy distribution. This behaviour is not really surprising: for the t-distribution with 2
degrees of freedom and the Cauchy distribution, the second moment does not exist and
the standardization in (2.1) is not meaningful. Even if the second moment exists, the
speed of convergence of mean and standard deviation to the population counterparts
is low for heavy tailed distributions.

Hence, the procedure is not a general purpose procedure, but acceptable for a
remarkable number of hypothetical distributions. We opted not to report the afore-
mentioned simulation results in order to save space. These results however can be
obtained from the authors upon request.

5 Real data examples

5.1 Examples with continuous distributions

5.1.1 Example 1

In our first example, we consider a dataset with motor insurance claims in Sweden
for the year 1977 analyzed by Hallin and Ingenbleek (1983). The dataset can also be
found together with further description and references on the Statistical Science Web
under http://www.statsci.org/data/general/motorins.html.
The dataset comprises the following variables.
Response variable Payment: Total value of payments
Offset: Insured: Number of insured in policy-years
Covariates Kilometres: Kilometres travelled per year, ordered factor from 1 to 5,
taken as numeric quantity
Zone: Geographical zone (Zone 1: major cities)
Bonus: No claims bonus. Equal to the number of years, plus one, since last claim.
Make: Different car models.
Claims: Number of claims.

The total dataset has 1797 observations, among them 295 in Zone 1. In the source
given above, one may find the following citation: “The number of claims in each cat-
egory can be treated as Poisson to a good approximation. The amount of each claim
can be treated as gamma. The total payout is therefore compound Poisson.” In this
example, we want to assess the gamma hypothesis for the individual claims.

For the whole dataset and all examined models, all GOF tests yield a p-value of
zero. Hence, we restrict attention to data from Zone 1, as it is done in Faraway (2006),
p. 139. For the analysis of the total value of payments, he used a gamma GLM with
log-link:
Payment offset(log(Insured)) + Kilometres + Make + Bonus.

The results of the GOF tests are given in the second line of Table 5. They range
from 0.004 to 0.016. Hence, even for this subset of the original data, the gamma model
is questionable. An alternative analysis uses a linear model with log(Payment) as
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Table 5 p-values for the
models in Example 1 C F W 2 A2

Gamma GLM 0.016 0.004 0.007

Log linear model 0.010 0.012 0.011
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Fig. 1 Data points and fitted mean functions in Example 2

response variable. For this model, the p-values of all GOF tests are similar to those of
the gamma model (2nd line of Table 5).

5.1.2 Example 2

As a second example, we analyze a data set with the logarithm of the surface tem-
perature and the light intensity of 43 stars in the star cluster CYG OB1. This data set
is available as data set star in the R library faraway (Faraway 2011, the data set
star gives the log of the light intensity and, in addition, contains data of four giant
stars).

We fitted gamma models with the light intensity as response variable, using the
canonical link function 1/μ, the log link and the identity link. Figure 1 shows the data
and the fitted mean functions.

The tests applied to the gamma model with canonical link yield p-values
around 0.3; with log link, the p-values are around 0.5; and with identity link, the
p-values are around 0.2 (see Table 6). There is no wide difference between the link
functions in this example, but the canonical and log link seem to have an edge over
the identity link.

Figure 2 shows Q-Q plots of the quantile residuals (ϒ j in Sect. 2.1) and the stan-
dardized quantile residuals (Z j in Sect. 2.1) for the gamma model with log link. One
can observe only a slight difference between the plots; both indicate a reasonable fit
of the model.
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Table 6 p-values for the
gamma model with different link
functions in Example 2

C F W 2 A2

Canonical link 0.31 0.26 0.30

Log link 0.43 0.51 0.53

Identity link 0.18 0.23 0.20
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Fig. 2 Q–Q plots of the quantile residuals (left) and the standardized quantile residuals (right) for the
gamma model with log link in Example 2

Table 7 p-values for the
negative binomial model in
Example 3

C F W 2 A2

1st trial 0.09 0.19 0.12

2nd trial 0.03 0.09 0.05

3rd trial 0.05 0.14 0.09

Mean value 0.07 0.18 0.11

5.2 Examples with discrete distributions

5.2.1 Example 3

Here, we consider again the data set of Example 1, but with the number of claims as
response variable. Again, we only consider data of Zone 1.

First we fitted a Poisson model (with canonical link), using the number of insured
as offset and Kilometres, Make and Bonus as covariates. The deviance for this model
is 782, compared with the null deviance (i.e. the deviance of the model only including
the intercept) of 6978. However, since some estimated means are incompatible with
the corresponding observations, this model is clearly rejected by all tests.

As a more flexible alternative, we fitted a negative binomial regression model
(again with logarithmic link function). Here, we used the function glm.nb in the
R library MASS (Venables and Ripley 2002). Deviance and null deviance are 278 and
1157, respectively. Table 7 shows the p-values from three executions of the different
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Table 8 p-values for the
Poisson model in Example 4 C F W 2 A2

1st trial 0.22 0.43 0.40

2nd trial 0.91 0.74 0.75

3rd trial 0.04 0.15 0.09

Mean value 0.54 0.57 0.55

(randomized) tests. The last line of Table 7 shows the mean value of 100 replications
of the test. Contrary to the Poisson distribution, the negative binomial distribution
seems to yield an acceptable model.

5.2.2 Example 4

As our last example, we analyze data originating from a study of cancer in 4213 male
aluminum workers. The data set is used and described in detail in Spinelli et al. (2002).
The 4213 workers were divided into 44 groups indexed by weighted years of exposure
(treated as numeric predictor) and age (a factor with 11 levels). The observations Y j

of the response variable are the counts of cases of bladder cancer for group j .
A Poisson model (with log link) has a residual deviance of 22.9 on 32 degrees of

freedom and null deviance of 70.3 on 43 degrees of freedom. Three replications of the
randomized test yield the results in Table 8. Since the fitted means are very small (the
median is 0.24), the randomization has a pronounced effect, contrary to the previous
example. In such a situation, we recommend also to look at the mean value of several
replications of the test; this is given in the last line of Table 8 (for 100 replications).

Fitting a Poisson model without the covariate exposure yields a model with devi-
ance of 33.7 on 33 degrees of freedom. Hence, the covariate has a significant influence
on the mean function. This is in agreement with p-values of zero for all goodness-of-fit
tests for this sub-model.

Next, we tried negative binomial regression models, again with logarithmic link
function. With all predictors, the estimated additional parameter is very large, and the
model is not distinguishable from a Poisson model. Without the predictor exposure,
the negative binomial model is rejected. From the results, we conclude that the Pois-
son model with both covariates age and exposure is a very satisfactory model for this
dataset.

6 Conclusion

In this paper we propose a method of testing goodness-of-fit for the distribution of
observations in the context of GLMs. The main idea is to apply on these observa-
tions a variation of a parametric transformation suggested by Chen and Balakrishnan
(1995) in the i.i.d. context. As a result of this transformation, the inherent dependence
of the null distribution of any goodness-of-fit test statistic on the underlying param-
eters, regressors, and methods employed in estimating these parameters, is thereby
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removed and critical points, apart from becoming free of all these specifications, they
also remain invariant among different GLMs. The technique reduces the problem to
a goodness-of-fit test for normality with estimated parameters, but it is nevertheless
suitable for continuous as well as discrete response, by making use of the quantile
residuals and the randomized quantile residuals of Dunn and Smyth (1996).

A detailed Monte Carlo study reveals the sampling properties of the proposed
methods compared to conventional tests based on the notion of deviance, under some
popular GLM situations such as gamma and inverse Gaussian regression, Poisson
and logistic regression, as well as the classical normal linear model. In particular,
the results show that the deviance statistics may not be appropriate to use under all
GLMs as they often lead to distortion of type I error probabilities and consequently
power results are hard to assess. On the other hand, the proposed procedures always
yield omnibus tests (though in certain cases not as powerful as the deviance), which
consistently respect the theoretical level of significance.
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