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Abstract Two of the prime open-source environments available for machine/
statistical learning in data mining and knowledge discovery are the software packages
Weka and R which have emerged from the machine learning and statistics communi-
ties, respectively. To make the different sets of tools from both environments available
in a single unified system, an R package RWeka is suggested which interfaces Weka’s
functionality to R. With only a thin layer of (mostly R) code, a set of general interface
generators is provided which can set up interface functions with the usual “R look and
feel”, re-using Weka’s standardized interface of learner classes (including classifiers,
clusterers, associators, filters, loaders, savers, and stemmers) with associated methods.

1 Introduction

New Zealand has brought forth two kinds of wekas: a flightless endemic bird (Galli-
rallus australis) and the Waikato Environment for Knowledge Analysis (Weka, http://
www.cs.waikato.ac.nz/~ml/weka/), the leading open-source project in machine lear-
ning. Weka is a comprehensive collection of machine-learning algorithms for data
mining tasks written in Java and released under the GPL (General Public License),
containing tools for data pre-processing, classification, regression, clustering, asso-
ciation rules, and visualization. There are three graphical user interfaces (“Explo-
rer”, “Experimenter” and “KnowledgeFlow”) as well as a standardized command line
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interface. The Weka project was started in 1992, and has been funded by the New
Zealand government since 1993. It has recently joined Pentaho (http://www.pentaho.
com/), a leading and award-winning open-source business intelligence project, to
add “data mining capabilities to the broad range of business intelligence features” of
Pentaho.

Weka complements the book “Data Mining” (Witten and Frank 2005) which is
heavily used in computer science curricula. It implements a variety of methods popular
in machine learning and useful for statistical learning, but typically not available in
statistical software packages. This includes rule (JRip), lazy (LBR), and meta learners
(MultiBoostAB), as well as cluster algorithms such as CobWeb and DBSCAN, or
the association rule algorithm Tertius. For many algorithms, Weka provides de-facto
reference implementations, including the key decision tree algorithms J4.8 and M5’
implementing C4.5 and M5, respectively. See Witten and Frank (2005) for more details
and references. Finally, Weka also serves as the basis for a variety of additional
machine learning software projects.

Obviously, it is highly desirable that statisticians have convenient and efficient
access to Weka’s functionality, ideally through seamless integration into their com-
monly employed software environment. Such access particularly provides the benefit
that data pre-processing, exploratory analysis and model fitting can be carried out in a
single statistical environment or that different modeling algorithms can easily be com-
pared, e.g., in a benchmark study (see Schauerhuber et al. 2007, for some examples).
This paper discusses a Weka interface for R (R Development Core Team 2007), the
leading open-source system for statistical computing and graphics, which is provided
by the R extension package RWeka (Hornik et al. 2007). In the following we focus
on the software design for RWeka, presenting the interfacing methodology in Sect. 2
and discussing limitations and possible extensions in Sect. 3. The latter also relates to
general issues arising when interfacing R with “foreign” (e.g., Java-based) systems.

2 Interfacing Weka to R

There are several design issues which relate to the choice of the interface approach
taken, including generalizability (if access is desired only to a restricted subset of the
available functionality, hand-crafted interface functions suffice) and maintainability (if
the foreign system is modified for interfacing purposes, patches need to be maintained
along with new releases). At the technology level, a system such as Weka can be
interfaced “directly” via the operating system’s access to the command line interface
or by building on low-level R/Java interfaces, such as rJava (Urbanek 2007), SJava
(Temple Lang and Chambers 2005), or arji (Carey 2007). At the user level, one could
create R versions of Weka’s classes and an object-oriented programming (OOP) style
interface for Weka’s methods (typically by writing $ methods, i.e., “overloading” the
$ operator in OOP jargon).

Package RWeka builds on package rJava for low-level direct R/Java interfacing
to provide access Weka’s core functionality. As Weka provides abstract “core” classes
for its learners as well as a consistent “functional” methods interface for these learner
classes, it is possible to provide general interface generators that re-use Weka methods.
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Table 1 R/RWeka and corresponding Weka classifier functions/methods

R/RWeka Weka

Classifier interface make_Weka_classifier() Weka class (in JNI notation)

f I,W buildClassifier()

print() globalInfo(),

technicalInformation()

WOW() listOptions()

Fitted classifier print() toString()

fitted() classifyInstance()

predict() classifyInstance(),

distributionForInstance()

summary() “Evaluation” class

plot() (“Weka_tree”) –

write_to_dot() graph()

These yield R functions and methods with “the usual look and feel”, e.g., a customary
formula interface for supervised learners (which are called “classifiers” in Weka’s
terminology), again by re-using corresponding Weka methods. This approach allows
for both generalizability (because new interfaces can be generated on the fly) as well
as maintainability (because only the “exported” functionality of Weka is re-used). In
the following, setting up and fitting classifiers is discussed in more detail—Table 1
gives an overview of the R/RWeka functions/methods and their Weka counterparts.

RWeka contains R classes I (interface classes) for each key “group” of functiona-
lity provided by Weka and to be interfaced (currently, classifiers, clusterers, associa-
tors, filters, loaders, savers, and stemmers), and functions m I (interface generators)
which generate such interfaces by returning suitably classed functions f I,W interfa-
cing given Weka classes W . The interface functions f I,W have formals “as usual” and
are suitably classed so that standard R methods can be provided. The implementation
is based on the S3 object system (Chambers and Hastie 1992). The mechanism is best
illustrated by an example:

R> library("RWeka")
R> foo <- make_Weka_classifier("weka/classifiers/trees/J48", c("bar",
+ "Weka_tree"))

The interface generator make_Weka_classifier() (m I ) creates an interface
function foo() ( f I,W ) to the given Weka class “weka.classifiers.trees.”
“J48” (W ) whose fully qualified class name is specified in JNI notation. The
interface function foo() in fact inherits from the interface class
“R_Weka_classifier_interface” (I ). When fitted to data sets, it returns
objects inheriting from the given classes “bar” and “Weka_tree” as well as
“Weka_classifier” which objects returned by classifier interface functions
always inherit from. All classifier interface functions have the usual formalsformula,
data, subset and na.action, as well as formal control for specifying control
arguments to be passed to Weka (in this case, when building the classifier).
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Printing such interface functions uses Weka’s globalInfo() and
technicalInfomation() methods to provide a description of the functionality
being interfaced.
R> print(foo)

An R interface to Weka class ‘‘weka.classifiers.trees.J48’’,
which has information

Class for generating a pruned or unpruned C4.5 decision tree. For
more information, see

Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, San Mateo, CA.

BibTeX:

@BOOK{Quinlan1993,
title = {C4.5: Programs for Machine Learning},
author = {Ross Quinlan},
publisher = {Morgan Kaufmann Publishers},
year = {1993},
address = {San Mateo, CA},

}

Argument list:
foo(formula, data, subset, na.action, control = Weka_control())

Returns objects inheriting from classes:
bar Weka_tree Weka_classifier

When the classifier interface function is called, a model frame is set up in R which
is transferred to a Weka instance object. Then, the buildClassifier() method
of the Weka class interfaced is called with these instances. The fitted values
(model predictions for the training data) are obtained by calling the Weka
classifyInstances()method for the built classifier and each training instance.
As an example, a J4.8 tree for the iris data can be grown via
R> fm <- foo(Species ˜ ., data = iris, control = Weka_control(S = TRUE,
+ M = 5))
R> fm

J48 pruned tree
------------------

Petal.Width <= 0.6: setosa (50.0)
Petal.Width > 0.6
| Petal.Width <= 1.7
| | Petal.Length <= 4.9: versicolor (48.0/1.0)
| | Petal.Length > 4.9: virginica (6.0/2.0)
| Petal.Width > 1.7: virginica (46.0/1.0)

Number of Leaves : 4

Size of the tree : 7

A suitably classed object containing both a reference to the built classifier and the
predictions is returned. Such objects have at least a print() method (using Weka’s
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toString()), a summary() method (using Weka’s “Evaluation” class), and
a predict() (and fitted()) method for either “classes” (again using Weka’s
terminology: numeric for regression, factor for classification) or class probabilities
(using Weka’s distributionForInstance()). Therefore, a confusion matrix
can easily be computed “by hand” with table(observed = iris$Species,
predicted = fitted(fm)). Additionally, it is also included in the printed
output from summary(fm) along with further summary statistics. Weka provides
command-line style options for controlling building the classifiers. These can be que-
ried online using WOW(), the Weka Option Wizard (taking advantage of Weka’s
listOptions()). The desired control options can be given using the control
argument of the interface function using Weka_control(). This allows the user
to conveniently employ R’s typical tag-value style ((S = TRUE, M = 5)) which
is internally wrapped to Weka’s command-line option style (e.g., ‘-S -M 5’) In the
J4.8 example above, the control arguments were set to build a J4.8 tree without sub-
tree raising (S = TRUE) and setting the minimal number of instances per leaf to 5
(M = 5).

In addition to classifiers, RWeka provides interface generation facilities for cluste-
rers, associators, filters, loaders, savers, and stemmers, with filter interface functions
also exhibiting a formula-style interface. For some of the most important algorithms—
but not for all—interface functions are readily provided. Users can employ the inter-
face generator functions to create additional interface functions at their discretion, or
even create interface functions different from the default ones, typically to modify the
return signature to feature dispatch to different, potentially user-defined, plot() or
summary() methods.

The generality of the RWeka approach is made possible by the fact that, for
the kinds of functionality interfaced, Weka provides abstract “core” classes
(e.g., “weka.classifiers.Classifier”) with basic methods (e.g.,
buildClassifier() or classifyInstance()) as well as standardized
interfaces such as OptionHandler or TechnicalInformationHandler,
such that key functionality can be accessed in uniform ways. There are situations,
however, where interface computations need to be specialized. For example, Weka’s
meta learners expect the base learner to be given with their fully classified Java class
name, but R users would naturally like to specify the interface functions (or at least
only the “base names” of the Java classes). Thus, for interfaces to meta learners, the
control options should be rewritten accordingly. RWeka uses the notion of handlers
for these situations, which are named lists of functions to be called for certain pur-
poses. Currently, options handlers are used by classifier and saver interfaces, and the
corresponding interface generators allow their specification.

The specification of the return signature of the interface functions allows dispat-
ching to specialized S3 methods. As one example, package RWeka provides a cus-
tomized plot() method for the models returned by the Weka tree learners (such as
J48(), M5P() or LMT()) which inherit from class ‘Weka_tree’. This method is
based on the routines for plotting “BinaryTree” objects in package party (Hothorn
et al. 2006). For Weka learners implementing the Drawable interface, i.e., provi-
ding a graph()method, it is also possible to use write_to_dot() to create DOT
language representations of the built classifiers for processing via the dot program of
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Fig. 1 Visualizing fitted Weka trees within R and via Graphviz

Graphviz (Ellson et al. 2003). Figure 1 illustrates these approaches. Additionally, the
DOT representation could be read back into R and visualized by means of the Rgraph-
viz package (Gentry et al. 2007). In fact, one could also try to interface Weka’s native
plotting facilities. This is currently not done, as it cannot easily be integrated into
R’s device system, and thus would not comply with the design principle of remaining
within R’s “usual look and feel”.

The RWeka package includes the unmodified Weka jar file to maximize maintai-
nability: With a new version of Weka, a new version of RWeka is released which
typically needs no further modification because the interface relies on Weka’s API
(application programming interface). In addition to the jar file, the RWeka code base
consists of two components: First, the major component is high-level R code for
interface generators and reporters, and useful methods, based on the low level R/Java
interface provided by package rJava. Second, there is some Java-level interface code
for enhancing performance. E.g., unlike R’s data frames, Weka’s instance objects are
organized row-wise, and predictions (using classifyInstance()) are for single
instances: for performance, we use Java code for looping over all instances.

3 Discussion

We see three directions for possible enhancements of the current functionality of
RWeka, which relate to general issues arising when interfacing R with other systems.

Too much privacy: By definition, information private to Weka’s classes is not available
for interfacing. E.g. for fitted tree learners, Weka provides a description of the tree in
the DOT language. However, this contains the chosen split variables and split points
only as character strings which can not be re-used (e.g., for computing predictions
within R) unless this string representation is reverse engineered. Similar problems
occur for other models (e.g., for LinearRegression from which the terms struc-
ture of the AIC-selected model cannot be extracted). If by design a system interfaced
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is not modified for interfacing purposes (as in our case), then such issues need to be
resolved at the upstream source level. We have begun to work with the Weka deve-
lopers to add functionality typically available in state-of-the-art statistical software.
E.g., Weka 3.5.4 has added agetAllTheRules()method to access the association
rules found by its Tertius or Apriori implementations, allowing for efficient integration
of these algorithms into the association rule mining environment provided by package
arules (Hahsler et al. 2005).

Too much data manipulation: E.g., when using a filter interface function such as
Discretize()), data available as an R data frame are transformed to Weka ins-
tances, filtered, and transformed back to a data frame. If the next data analysis step
again employs an RWeka interface function, some of these data transformations are
unnecessary. A natural idea would be having common R/Java data objects encap-
sulating data access for both systems in a way that transformations between native
representations are only performed when needed (e.g., as references with transform-
on-dereference semantics). A somewhat simpler and less symmetric approach would
try to employ suitably classed R objects which when evaluated transfer data back
into R, but can be dispatched upon without evaluation. However, this is not possible
given R’s current semantics. Developing efficiently and transparently designed proxy
objects for common data handling is a general issue when interfacing two systems
(e.g., the various data base interfaces available for R).

One-way communication: The current R/Weka interface is entirely asymmetric in
nature as there is no way to access R’s functionality from the Weka side. Such “call-
backs” could be useful in a variety of circumstances, e.g., to employ R classifiers as
base learners for Weka’s meta learners, or a user-defined R dissimilarity measure as the
distance function used by Weka’s clusterers. One idea would be creating Weka classes
representing the corresponding R functionality (and ideally extending one of Weka’s
abstract classes) and providing the basic methods (e.g., buildClassifier(),
classifyInstance() for classifiers representing R regression or classification
models) by calling back into R. Ideally, such Weka-to-R interface classes would be
created using an interface generation approach along the lines described in Sect. 2.
However, apart from implementation issues such as threading disparity, it is currently
unclear whether such callbacks can be implemented in a satisfactorily efficient way:
Clearly, efficient data sharing across systems as discussed above is a key prerequisite.
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