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Abstract Public health surveillance of emerging infectious diseases is an essential
instrument in the attempt to control and prevent their spread. This paper presents the R
package “surveillance”, which contains functionality to visualise routinely collected
surveillance data and provides algorithms for the statistical detection of aberrations
in such univariate or multivariate time series. For evaluation purposes, the package
includes real-world example data and the possibility to generate surveillance data by
simulation. To compare algorithms, benchmark numbers like sensitivity, specificity,
and detection delay can be computed for a set of time series. Package motivation, use
and potential are illustrated through a mixture of surveillance theory, case study and
R code snippets.

Keywords Monitoring · Public health surveillance · Time series of counts ·
Outbreak detection · Univariate and multivariate surveillance

1 Introduction

Public health authorities have, in an attempt to meet the threats of infectious diseases,
created comprehensive mechanisms for the routine collection of disease data. The
vast amounts of data resulting from this acquisition demands the development of
automated algorithms for the detection of abnormalities. This paper considers the
setup, where these data, possibly after an initial processing from the surveillance
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database, result in univariate or multivariate time series of case counts. Monitoring of
such time series typically occurs by a combination of heuristic methods and statistical
modelling. Prominent examples of surveillance algorithms are the work by Stroup et al.
(1989) and Farrington et al. (1996) applied in e.g. the ISIS project in the Netherlands
(Widdowson et al. 2003) or the monitoring of bacterial gastrointestinal in Denmark
(Ethelberg and Mølbak 2007). A comprehensive survey of outbreak detection methods
can be found in (Farrington and Andrews 2003; Sonesson and Bock 2003; Lawson
and Kleinman 2005).

The R package surveillance offers an implementation of surveillance
algorithms for epidemiologists and an infrastructure for developers within R, a free
software environment for statistical computing and graphics (Development Core Team
2006). Statistically trained analysts can use the implemented algorithms to monitor
their data and developers of new algorithms can test and compare results with those
of standard surveillance methods. To this end, real-world outbreak datasets are in-
cluded together with mechanisms for simulating surveillance data. With the package
at hand, comparisons between algorithms as in Hutwagner et al. (2005) should be easy
to conduct.

This paper is organised as follows. Section 2 gives a brief introduction to surveillance
data and illustrates how to create new datasets by simulation. These data are then
analysed in Sect. 3, which explains and exemplifies the use of univariate surveillance
algorithms. Usage of the package for the visualisation and analysis of multivariate sur-
veillance data is covered in Sect. 4. Finally, Sect. 5 provides a discussion and indicates
directions of future work.

2 Univariate surveillance data

Denote by {yt ; t = 1, . . . , n} the time series of counts. Because such data are
typically collected on a weekly or monthly basis, the alternative notation {yi : j } shall
also be used, with j ∈ {1, . . . , 52} or j ∈ {1, . . . , 12} being the week or month in
year i ∈ {−b, . . . ,−1, 0}. That way the years are indexed such that the most re-
cent year has index zero. Without loss of generality I shall in the following assume
weekly data. For evaluation of the outbreak detection algorithms it is also possi-
ble for each week to store—if known—whether there was an outbreak that week.
The resulting time series {(yt , xt ) ; t = 1, . . . , n} is in surveillance given by
an object of class disProg (disease progress), which is basically a list con-
taining two vectors: the observed number of counts and a Boolean vector state
indicating whether there was an outbreak that week. A number of time series are
contained in the data directory, mainly originating from the SurvStat@RKI data-
base maintained by the Robert Koch Institute, Germany (Robert Koch Institute 2004).
For example the object ha describes the weekly number of adult male hepatitis A
cases in the federal state of Berlin during 2001–2006. In the summer of 2006 the
health authorities noticed an increased amount of cases compared to the previous
years (Robert Koch Institute 2006). In surveillance this time series is stored as
disProg object, which contains the counts for each of the 12 districts in Berlin,
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Hepatitis A in Berlin 2001−2006
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Fig. 1 Weekly adult male hepatitis A cases in Berlin 2001–2006, with the 4-weeks of the known outbreak
denoted by ‘+’

but in the following only the time series aggregated over all districts is considered.
Visualisation as in Fig. 1 is done as follows.

R> data("ha")
R> plot(aggregate(ha), main = "Hepatitis A in Berlin 2001-2006")

For test purposes it is also often of interest to generate surveillance data by
simulation. A Hidden Markov Model (HMM) is introduced, where a binary state
Xt , t = 1, . . . , n, denotes whether there was an outbreak and Yt is the number of
observed counts. The state Xt is given by a homogeneous Markov chain with a
2 × 2 transition matrix specified by two parameters p and r : P(Xt+1 = 0|Xt =
0) = p and P(Xt+1 = 1|Xt = 1) = r . In addition, the observed Yt is Poisson-
distributed with log-link mean depending on a seasonal effect and time trend, i.e.,
log µt = A · sin (ω · (t + ϕ)) + α + βt . In case of an outbreak (Xt = 1) the mean
increases with a value of K , altogether

Yt ∼ Po(µt + K · Xt ). (1)

The model in (1) corresponds to a single-source, common-vehicle outbreak, where the
length of an outbreak is controlled by the transition probability r and the frequencies
of outbreaks by p. The advantage of (1) is that it allows for an easy definition of a
correctly identified outbreak: each Xt = 1 has to be identified. More advanced set-
ups would require different definitions of an outbreak, e.g., as a connected series of
time instances, where the number of outbreak cases is greater than zero. Care is then
required in defining what a correctly identified outbreak for time-wise overlapping
outbreaks means.

In surveillance the function sim.pointSource is used to simulate such
a point-source epidemic; the result is an object of class disProg as shown in Fig. 2.

R> sps <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
+ A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1,
+ state = NULL, K = 1.7)
R> plot(sps, xaxis.years = FALSE)
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Fig. 2 A simulated time series. The ‘+’ indicate time points, where Xt = 1

3 Univariate surveillance algorithms

The aim of surveillance algorithms is the timely detecting of aberrations in surveil-
lance data. Surveillance offers two classes of algorithms: reference value based
and those inspired by statistical process control. The following will exemplify the two
classes and discuss how to evaluate their performance.

3.1 Algorithms based on reference values

Surveillance data often exhibit strong seasonality; one way to deal with this fact is
through the use of reference values: let y0:t be the number of cases of the current week
(denoted week t in year 0), b the number of years to go back in time and w the number
of weeks around t to include from these previous years. For the year zero we use w0
as the number of previous weeks to include, typically w0 = w. Altogether the set of
reference values is:

R(w,w0, b) =
⎛
⎝

b⋃
i=1

w⋃
j=−w

y−i :t+ j

⎞
⎠ ∪

⎛
⎝

−1⋃
k=−w0

y0:t+k

⎞
⎠ .

This gives the number of cases at time points with similar conditions as at y0:t . Note
that the number of cases of the current week is not part of R(w,w0, b).

A surveillance algorithm based on reference values is a procedure using R(w,w0, b)

to create a prediction ŷ0:t for the current week. This prediction is then compared with
the observed y0:t : if the observed number of cases is much higher than the predicted
number, the current week is flagged for further investigations. In order to do surveil-
lance for time 0 : t , an important concern is the choice of b and w. Values as far back
as time −b : t − w contribute to R(w,w0, b) and thus have to exist in the observed
time series.

Four different types of algorithms based on reference values are implemented in
surveillance. The Centers for Disease Control and Prevention (CDC) method
(Stroup et al. 1989), the Farrington method (Farrington et al. 1996), the method used
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at the Robert Koch Institute (RKI), Germany (Altmann 2003), and a Bayesian approach
documented in Riebler (2004). To give an idea of concepts the Bayesian approach is
presented.

Here, one assumes independently and identically (iid) Poisson distributed reference
values with parameter λ. A gamma distribution is used as prior distribution for λ. The
reference values are defined to be RBayes = R(w,w0, b) = {y1, . . . , yn} and y0:t is
the value to predict. Thus, λ ∼ Ga(α, β) and yi |λ ∼ Po(λ), i = 1, . . . , n. Standard
derivations show that the posterior distribution is

λ|y1, . . . , yn ∼ Ga

(
α +

n∑
i=1

yi , β + n

)
.

Computing the predictive posterior distribution for the next observation

f (yn+1|y1, . . . , yn) =
∞∫

0

f (yn+1|λ) f (λ|y1, . . . , yn) dλ,

one gets the Poisson-gamma distribution, which is a generalisation of the negative
binomial distribution. Altogether,

yn+1|y1, . . . , yn ∼ NegBin

(
α +

n∑
i=1

yi ,
β + n

β + n + 1

)
.

Using Jeffrey’s prior Ga( 1
2 , 0) as non-informative prior distribution for λ, the param-

eters of the negative binomial distribution are

α +
n∑

i=1

yi = 1

2
+

∑
yi : j ∈RBayes

yi : j and
β + n

β + n + 1
= |RBayes|

|RBayes| + 1
.

Employing a quantile-parameterα, the smallest value yα is computed, so that P(yn+1 ≤
yα|y1, . . . , yn) ≥ 1 − α. Now A0:t = I (y0:t ≥ yα), i.e., if the observed value y0:t is
equal to or greater than yα , then an alarm will be flagged for the current week. For
example, the below-stated code applies this procedure with R(w,w0, b) = (6, 6, 2)

and α = 0.01 to observations 209–290 from the ha dataset, the resulting plot is shown
in Fig. 3.

R> ha.b662 <- algo.bayes(aggregate(ha), control = list(range = 209:290,
+ b = 2, w = 6, alpha = 0.01))
R> plot(ha.b662, firstweek = 1, startyear = 2005)

As an example of applying the more traditional algorithms, Fig. 4 is the result of
applying the CDC and Farrington procedure to the simulated time series sps from
Fig. 2. Note that the CDC procedure operates with 4-week aggregated data—to better
compare the upper bound values, the aggregated number of counts for each week are
thus shown as circles in the plot.
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Analysis of aggregate(ha) using bayes(6,6,2)
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Fig. 3 The Bayes algorithm with R(w, w0, b) = (6, 6, 2) applied to the ha dataset. Triangles indicate
alarms by the algorithm and should be compared to the known outbreaks (‘+’)
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Fig. 4 The CDC (left) and the Farrington (right) algorithm applied to the simulated time series from Fig. 2

R> cntrl <- list(range = 300:400, m = 1, w = 3, b = 5, alpha = 0.01)
R> sps.cdc <- algo.cdc(sps, control = cntrl)
R> sps.farrington <- algo.farrington(sps, control = cntrl)

3.2 Algorithms inspired by statistical process control

Because monitoring at each time instance is only based on a subset of the observations,
surveillance algorithms based on reference values tend to be sub-optimal. A different
class of algorithms is the one inspired by statistical process control (SPC) techniques
such as the cumulative sum (CUSUM) chart. In the basic SPC setting one assumes
that during an in-control state the observations are iid x1, . . . , xn ∼ N (0, 1). In case
of an out-of-control state, i.e., an outbreak, this distribution changes to N (µ,1). Aim
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of an SPC chart is now to detect on-line if and when such a change-point occurs.
The CUSUM for example accomplishes this by monitoring the time series using the
statistic:

St = max(0, St−1 + xt − k), t = 1, . . . , n,

where S0 = 0 and k is a user-defined constant called the reference value determining
the magnitude of change to detect. A change-point is detected once St > h, where h
is called the decision interval. An important measure of chart performance is the so
called average run length (ARL). Typically, two ARLs are reported: the mean time
before the first alarm (i) in an in-control state (i.e., no change-point) and (ii) in an
out-of-control state (i.e., change-point at time zero). Given desired values for these
two ARLs, the function find.kh uses the spc-package (Knoth 2004) to compute
the corresponding h and k.

Several differences between the standard CUSUM chart and charts suited for the
surveillance of infectious disease data exist though: the time series consist of count
data, which might experience seasonality or other time changing behaviour. To obtain
a CUSUM for iid count data, y1, . . . , yn ∼ Po(m), Rossi et al. (1999) suggested to
transform data to normality by using the following transformation:

xt = yt − 3m + 2
√

m · yt

2
√

m
.

In case of time-changing behaviour one loosens the iid assumption through risk-
adjusting the chart by letting m be time varying. A suggestion to handle seasonality
is to use predictions from a Poisson regression model:

log(mt ) = α +
S∑

s=1

(
γs cos(ωs t) + δs sin(ωs t)

)
,

where ωs = 2π
52 s are the Fourier frequencies, see Höhle (2006) for details.

The code below performs the above Rossi based seasonal CUSUM detection to the
hepatitis data using S = 1 with Fig. 5 showing the results. Once the CUSUM signals,
no resetting is applied as suggested by Kenett and Pollak (1983), i.e., alarms occur
until the St statistic again drops below the threshold. CUSUMs are better to detect
sustained shifts, which compared to Fig. 3 means that the alarm is sounded earlier.

R> kh <- find.kh(ARLa = 500, ARLr = 7)
R> ha.cusum <- algo.cusum(aggregate(ha), control = list(k = kh$k,
+ h = kh$h, m = "glm", trans = "rossi", range = 209:290))

The algo.cusum function also supports different transformations to normality,
e.g., deviance, Pearson or Anscombe residuals (Pierce and Schafer 1986). Simulation
studies (not shown) though underline that such detectors are problematic in case of
low count numbers, as the normal approximation is not sufficiently warranted here.
In these cases the discrepancy between the anticipated and actual ARLs can thus be
ample and very instable, see Rogerson and Yamada (2004).
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Analysis of aggregate(ha) using cusum: rossi
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Fig. 5 Rossi CUSUM applied to the hepatitis data using a Poisson regression model with S = 1, α = 0.046,
γ1 = 0.016 and δ1 = −0.057. The upper line shows for each time instance the number of diseased indi-
viduals it would have taken the CUSUM to signal

3.3 Algorithm performance

Typically, one is interested in testing and comparing surveillance algorithms. An easy
way is to look at the sensitivity and specificity of the procedure. A correct identifi-
cation of an outbreak is defined as follows: If the algorithm raises an alarm for time
t , i.e., At = 1, and Xt = 1, one has a correct classification. If At = 1 and Xt = 0,
one has a false positive. In order to compute various performance scores, the function
algo.quality can be used on a SurvRes object.

R> print(algo.quality(ha.b662))
TP FP TN FN Sens Spec dist mlag
[1,] 3 2 76 1 0.75 0.974359 0.2513115 0

This computes the number of false positives, true negatives, false negatives, the
sensitivity and the specificity. Finally, mlag is the average number of weeks between
the first of a consecutive number of Xt = 1’s (i.e., an outbreak) and the first alarm
raised by the algorithm.

In order to compare the results of different algorithms for a single time series, a
list of control objects is declared—each element containing the name and settings
of one algorithm to be applied. Testing on a set of time series is performed in the
following way. Firstly, a list containing all disProg objects is created. Secondly,
each algorithm specified in the afore mentioned control object is applied to all series.
Consequently, all predefined algorithms based on weekly reference values (saved in
aparv.control) are applied to the 14 surveillance time series from SurvStat@RKI
(i.e., the list outbrks) by:

R> surv.one <- function(outbrk) {
+ algo.compare(algo.call(outbrk, control = aparv.control))
+ }
R> algo.summary(lapply(outbrks, surv.one))
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TP FP TN FN sens spec dist mlag
rki(6,6,0) 38 62 2646 180 0.174 0.977 0.826 5.43
rki(6,6,1) 65 83 2625 153 0.298 0.969 0.703 5.57
rki(4,0,2) 80 106 2602 138 0.367 0.961 0.634 5.43
bayes(6,6,0) 61 206 2502 157 0.280 0.924 0.724 1.71
bayes(6,6,1) 123 968 1740 95 0.564 0.643 0.564 1.36
bayes(4,0,2) 162 920 1788 56 0.743 0.660 0.426 1.36
farrington(6,0,1) 97 140 2568 121 0.445 0.948 0.557 5.07
farrington(4,0,2) 92 126 2582 126 0.422 0.953 0.580 5.43

The above results compare the algorithms at α = 0.05 using different amounts
of past data. This and previous simulation studies show that the Bayesian approach
seems to perform quite well. However, the extent of the above comparisons do not
legitimate any more supported statements. Consult the work of Riebler (2004) for a
more thorough comparison using simulation studies.

4 Towards multivariate surveillance

An extension to the surveillance setup described in the preceding sections is the
situation where several time series of counts are observed simultaneously. This could
e.g., be the same disease observed in multiple regions or the joint observation of several
related diseases. The simplest approach to such multivariate surveillance is to simulta-
neously and independently monitor each region using a univariate method. However,
this approach fails to take any correlation between regions or diseases into account and
can thus result in poor detection performance. Sonesson and Frisén (2005) provide a
recent review of more genuine multivariate surveillance techniques.

Representation and visualisation of multivariate time series data occurs through the
already familiar disProg and survRes S3 classes. However, first steps towards
the more formal S4 class system are made by the class sts (surveillance time series),
which covers the contents of disProg and survRes. Thus an sts object contains
matrices with observations, state, population counts, alarm bounds and alarms for each
observational unit and time point.

R> setClass("sts", representation(week = "numeric", freq = "numeric",
+ start = "numeric", observed = "matrix", state = "matrix",
+ alarm = "matrix", upperbound = "matrix", neighbourhood = "matrix",
+ populationFrac = "matrix", map = "SpatialPolygonsDataFrame",
+ control = "list"))

Two additional slots neighbourhood and map capture the spatial dimension:
the former specifies the spatial or structural relation between the units of observa-
tion, the latter allows a specification of the spatial structure through a Spatial-
PolygonsDataFrame object from the sp package (Pebesma and Bivand 2005).
Using the maptools package (Lewin-Koh and Bivand 2006), it is easy to use shape-
files from geographical information systems (GIS) for this visualisation. To illustrate,
the hepatitis data from Sect. 2 are re-visited by converting them to an sts object.
Figure 6 shows the time-aggregated counts for each of the twelve districts in Berlin,
which makes apparent that most of the cases originate from regions near the city center.
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Fig. 6 Spatial visualisation of
the time aggregated hepatitis
data for each district in Berlin
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R> shp <- system.file("shapes/berlin.shp", package = "surveillance")
R> ha <- disProg2sts(ha, map = readShapePoly(shp, IDvar = "SNAME"))
R> plot(ha, type = observed ˜ 1 | unit)

Using type = observed˜1| time*unit instead would have created an
animation consisting of a picture like Fig. 6 for each time index. The initial visualisa-
tion suggests a closer look at the six districts Pankow, Mitte, Friedrichshain-Kreuzberg,
Tempelhof-Schöneberg, Charlottenburg-Wilmersdorf and Neukölln. To robustify sur-
veillance, counts for each district are aggregated in four week blocks. Figure 7 shows
the result of the following CUSUM surveillance.

R> ha4 <- aggregate(ha[, c("pank", "mitt", "frkr", "scho",
+ "chwi", "neuk")], nfreq = 13)
R> ha4.cusum <- cusum(ha4, control = list(k = 1.5, h = 1.75,
+ m = "glm", trans = "rossi", range = 52:73))
R> plot(ha4.cusum, type = observed ˜ time | unit)

Independent univariate CUSUMs thus sound alarms for Pankow, Mitte and
Tempelhof-Schöneberg, but as Fig. 7 shows: detection might have been quicker if
dependencies between districts had been utilised. Currently, the package implements
only multivariate monitoring by the independent univariate methods from Sect. 3, but
work is in progress to implement some of the techniques mentioned in Sonesson and
Frisén (2005) and to add detection to the model of Held et al. (2005).

5 Discussion and future work

Surveillance provides a framework for the application of surveillance algorithms
using the freely available environment for statistical computing R. Combining the func-
tionality of R with Sweave (Leisch 2003) and LaTeX allows for easy access to SQL
databases, GIS systems and automatic generation of reports. Importing respective R
packages to accomplish tasks such as ARL calculation and map visualisation shows
how beneficial it can be to reside within a free software environment. The package
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Fig. 7 Hepatitis surveillance results for the six selected districts of Berlin with 4-week aggregation

is available under the GPL licence from the comprehensive R Archive Network at
http://cran.r-project.org. With demo("cost") the analyses in this article can be
reproduced.

Casting surveillance algorithms into a Bayesian framework and thus interpreting
alarm thresholds as quantiles of the posterior predictive distribution gives a new way
to see outbreak detection. Yet an important issue remains multiple testing and the
choice of threshold. Here, evaluation based on ARLs, conditional delays or receiver
operating characteristic (ROC) curves should be preferred.

Several extensions of the algorithms described in Sect. 3 are conceivable: clever
ways to handle reporting delay, an estimation procedure correcting for past outbreaks
and treating the inherent over-dispersion in surveillance data by a negative-binomial
model. However, in these situations methods like Markov Chain Monte Carlo have to
be used in order to obtain the required alarm thresholds, see e.g., Held et al. (2006). A
different idea is to capitalise more on SPC techniques, e.g., by extending the CUSUM
chart to only specify the parametric form of the alternative and base detection on
the generalised-likelihood-ratio statistic (Höhle 2006). Yet another extension is to
provide more complex mechanisms for the simulation of epidemics. In particular it
would be interesting to include multi-day outbreaks originating from single-source
exposure with varying incubation time (Hutwagner et al. 2005) or SEIR-like epidem-
ics (Andersson and Britton 2000).
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