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Abstract In this paper, a little known computational approach to density estimation
based on filtered polynomial approximation is investigated. It is accompanied by the
first online available density estimation computer program based on a filtered poly-
nomial approach. The approximation yields the unknown distribution and density
as the product of a monotonic increasing polynomial and a filter. The filter may be
considered as a target distribution which gets fixed prior to the estimation. The fil-
tered polynomial approach then provides coefficient estimates for (close) algebraic
approximations to (a) the unknown density function and (b) the unknown cumula-
tive distribution function as well as (c) a transformation (e.g., normalization) from
the unknown data distribution to the filter. This approach provides a high degree of
smoothness in its estimates for univariate as well as for multivariate settings. The nice
properties as the high degree of smoothness and the ability to select from different
target distributions are suited especially in MCMC simulations. Two applications in
Sects. 1 and 7 will show the advantages of the filtered polynomial approach over the
commonly used kernel estimation method.

Keywords Density estimation · Empirical transformation · Filtered polynomial ·
MCMC simulation ·Multivariate settings

JEL Classification C63

1 Motivation

Distribution and density estimation is a central concept in statistical data analysis.
Given a sample of random variables from a population, one wishes to estimate the

D. Heinzmann (B)
Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
e-mail: dominik.heinzmann@math.uzh.ch

123



344 D. Heinzmann

underlying unknown cumulative distribution function F(x) and the density function
f (x) of the population.

Based on the work of Elphinstone (1983, 1985), we implement an multi-
dimensional nonparametric density estimate using a filtered polynomial approach to
estimate F(x) and f (x) by H(t (x)) and h(t (x))t ′(x), where H, called the filter, is a
continuous target distribution, h its derivative, t (x) a monotonic increasing transfor-
mation and t ′(x) its derivative. As we will show, monotonic increasing polynomials
can be used to approximate t (x) in the approach and therefore, we refer to this approach
as the filtered polynomial density estimation (FPDE). A more detailed discussion of
the FPDE is given in Sect. 3. For instance, we focus on applications of the FPDE
for showing some of its qualities. We compare our approach to the commonly used
nonparametric kernel density estimation (Silverman 1986; Jonathon 1992; Linton and
Nielsen 1995). The kernel density estimation was executed by using the function
density of the software package R (R Development Core Team 2006) with a gaussian
kernel and the standard deviation of the smoothing kernel as bandwidth. The algorithm
used for the FPDE was written by Heinzmann (2005).

Figure 1 displays on the left side the application of the FPDE approach (solid line)
and the kernel density estimation method with a gaussian kernel (dashed line) to a
data set of size 50, derived from the density function

f (x) = 0.8 f1(x)+ 0.2 f2(x),

where f1(x) and f2(x) are the density functions of the two normal distributions
N (−2, 1) and N (2, 1). The density estimates are plotted versus the histogram of
the data. On the right side of the figure, the estimated transformation t (y) of the FPDE
approach (solid line) is plotted against a straight dotted line which indicates an identity
transformation of the form t (y) = x . Note that y = (x − â)/b̂, where â and b̂ are
the initially estimated transformation parameters which are discussed in Sect. 5. The
deviation of the transformation t from the dotted line is a measure on how much the
data needs to be modified in order to fit into the filter. For the FPDE, H is arbitrary
chosen to be a normal distribution. For the kernel density estimation, the function
density of the software package R (R Development Core Team 2006) with a gaussian
kernel and the standard deviation of the smoothing kernel as bandwidth is used.

Both estimates detects the bimodal nature of the data. But the FPDE shows a higher
degree of smoothness since it is a global estimation method where one considers all
observations simultaneously for finding an adequate estimate. In contrast, the kernel
density estimation is a local estimation method. It builds an estimate of the density
from pieces that have been constructed using information provided primarily by obser-
vations made in a local neighborhood of each point. Potential applications of the FPDE
are discussed in the next section.

2 Potential applications

The FPDE provides three functions of interest. First an estimate, F̂(x) = H(t (x)),
of the distribution function, then an estimate f̂ (x) = h(t (x))t ′(x) of the density

123



A filtered polynomial approach to density estimation 345

4202−4−

0.
0

0.
1

0.
2

0.
3

x

D
en

si
ty

4202−4−
−

3
−

2
−

1
0

1
2

3

x

t(
y)

Fig. 1 a Application of the FPDE approach (solid line) and the kernel density estimation method (dashed
line) to the data of size 50 derived from a mixture of normal distributions. b The transformation t (y) (solid
line) in the FPDE approach is plotted versus a straight dotted line which indicates an identity transformation
of the form t (y) = x . Note that y = (x− â)/b̂, where â = −1.323 and b̂ = 1.789 are the initially estimated
mean and SD of the data. (See Sect. 5 for an explanation of the initial data transformation)

function f (x), and finally an estimate of the transformation function t (x). For exam-
ple, if H is chosen to be a normal distribution, the estimate of t (x) provides an
estimated normalizing transformation. The estimate of t (x) of the previous applica-
tion to a mixture of normal distributions is represented in Fig. 1. The deviation the
dashed line corresponds to the identity transformation t (x) = x . The deformations
of the transformation t (solid line) compared to the straight dotted line indicate the
modifications necessary to the normal filter in order to fit the bimodal nature of the
data.

Potential applications of filtered polynomial estimation include: (i) Density esti-
mation for data, (ii) Estimation of transformations from empirical data distributions
to the normal distribution or to other standard statistical distributions, (iii) Estimation
of exceedance probabilities for test statistics or quantiles of estimators in bootstrap
applications, and (iv) Discriminant Analysis (Cooley and MacEachern 1998).

3 Transformation model

In this section, the FPDE approach will be validated. We will show that for infinite
large samples, the FPDE approach yields an arbitrary close approximation to the true
underlying distribution functions F(x) and the corresponding density function f (x).
The justification of the approach is divided into three steps.

In the first step, it will be shown that F(x) = H(t (x)), where H is the filter and t (x)

a monotonic increasing transformation and that h(t (x))t ′(x) can be used to estimate
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f (x), where h is the derivative of the filter and t ′(x) is the derivative of t (x). In a second
step, it will be justified that the unknown transformation t (x) can be approximated
by a monotonic increasing polynomial m(x) on a bounded and closed interval [a, b],
where a and b ∈ R. Finally, we will verify that the unknown continuous distribution
function F(x) can be approximated to any accuracy by H(m(x)) on R, where H(y)

is a continuous distribution function and m(x) is a monotonic increasing polynomial.
The accuracy of the approximation is determined by the order of m(x).

Note that the same transformation approach used in this paper may also be derived
by using the Cornish–Fisher expansion (Cornish and Fisher 1937). Based on this con-
nexion, it can be shown that in many practical applications, the accuracy of the FPDE
approach is more than sufficient and that it can be computed simpler and more effec-
tive than other methods, such as numerical Fourier inversion (Jaschke 2002). The fast
and effective performance of the FPDE approach is based on an imbedded structure
of the polynomials (see Sects. 5, 6) and favours it compared to alternative methods
like the numerical Fourier inversion.

Transformation t (x)

Theorem 3.1 Let x and y be random variables from continuous distribution func-
tions F(x) and H(y), respectively, where F(x) is not known. Suppose that F(x) and
H(y) tend to values of 0 and 1 at −∞ and∞, respectively. If x and y are related by
x = x(y), y = y(x), where y is continuous and differentiable in x and x is continuous
and differentiable in y, then it is possible to find at least one transformation function
t (x) such that y = t (x) = H−1(F(x)).

Proof A proof of the Theorem 3.1 can be found in Kendall and Stuart (1977). ��
Corollary 3.2 The transformation function t (x) in Theorem 3.1 is continuous and
monotonic increasing. Hence we can write

F(x) = H(t (x)).

Proof Since F(x) and H(y) are continuous and the inverse of H(y) exists, t (x) is con-
tinuous and monotonic increasing. Hence y = t (x) = H−1(F(x)) can be rewritten
as F(x) = H(t (x)). ��
Theorem 3.3 Let H(y) and t (x) be given as before and let h(y) and t ′(x) be their
derivatives. Then H(t (x)) is a distribution function and h(t (x))t ′(x) is a density
function.

Proof H(y) and t (x) are monotonic increasing. Hence H(t (x)) is monotonic increas-
ing. Hence H(t (x)) is a distribution function since H(y) is a distribution function
itself.

Suppose H(y) has the derivative h(y) and t (x) the derivative t ′(x). Then h(t (x))

is positive. As the derivative of a monotonic increasing function, t ′(x) is positive. And
finally

∫∞
−∞ h(t (x)) t ′(x) dx = 1 which indicates that H(t (x))′ = h(t (x))t ′(x) is a

density function. ��
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Polynomial approximation to t (x)

Theorem 3.4 (First fundamental theorem of calculus) If g(x) is continuous on the
closed interval [a, b], where a, b ∈ R, and G(x) is the indefinite integral of g(x) on
[a, b], then

b∫

a

g(x)dx = G(b)− G(a).

Proof A proof of the first fundamental theorem of calculus can be found in Krantz
(1999). ��
Theorem 3.5 (Weierstrass’ theorem on approximation of functions) For any contin-
uous real-valued function g(x) on the interval [a, b], where a, b ∈ R, there exists a
sequence of algebraic polynomials pi (x) which converges uniformly on [a, b] to the
function g(x).

Proof A proof of Weierstrass’ theorem on approximation of functions can be found
in Jeffreys and Jeffreys (1988). ��
Theorem 3.6 Let t (x) be a continuous monotonic increasing transformation and
a, b ∈ R. For any ε > 0, there is a monotonic increasing polynomial m(x), such
that |t (x)− m(x)| ≤ 2ε(b − a) for x ∈ [a, b].
Proof Suppose t (x) is a continuous monotonic increasing transformation in [a, b],
where a, b ∈ R. Hence its derivative t ′(x) is continuous in [a, b]. Theorem 3.4 indi-
cates that t (x) = ξ+∫ x

0 t ′(u)du, where−∞ < x <∞ and ξ is an arbitrary constant.
Since t (x) is monotonic increasing, t ′(u) is positive for all u. Hence by applying
Theorem 3.5, one can find a polynomial p(u) for any ε > 0 such that

|t ′(u)− p(u)| ≤ ε.

We may rewrite this result as

p(u)− ε ≤ t ′(u) ≤ p(u)+ ε.

Since t ′(u) is positive, the polynomial pε(u)
.= p(u) + ε is positive for all u. We

obtain

|t ′(u)− pε(u)| ≤ |t ′(u)− p(u)| + ε ≤ 2ε.

Hence t ′(u) can be approximated to any accuracy by a positive polynomial.
Let m(x) = ξ + ∫ x

0 pε(u)du be a monotonic increasing polynomial. Applying
Theorem 3.5 yields

∣
∣t (x)− m(x)

∣
∣ ≤

∣
∣
∣
∣
∣
∣

x∫

0

(
t ′(u)− pε(u)

)
du

∣
∣
∣
∣
∣
∣
≤

x∫

0

∣
∣(t ′(u)− pε(u)

)∣∣du,
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and finally

|t (x)− m(x)| ≤ 2ε(b − a). (1)

Hence the unknown transformation t (x) can be approximated to any accuracy by
a monotonic increasing polynomial m(x) on a bounded and closed interval [a, b]. ��

Filtered polynomial estimation

Theorem 3.7 (Mean value theorem) Let be a, b ∈ R and let g(x) be a continuous
function on the closed interval [a, b] and differential on the open interval (a, b). Then
there exists some c in (a, b) such that

g′(c) = g(b)− g(a)

b − a
.

Proof The proof of the mean value theorem can be found in Jeffreys and Jeffreys
(1988). ��
Theorem 3.8 Let F(x) and H(y) be continuous distribution functions. Then for any
ε > 0, there exists a monotonic increasing polynomial m(x) such that

|H(m(x))− F(x)| < ε.

Proof Without loss of generality, we may assume that m(x) ≤ t (x). H(x) is contin-
uous and has a continuous density function h(x) on [a, b]. Theorem 3.7 states that
there is a real value c in [a, b] such that

|H(m(x)− H(t (x))| = |h(c)(m(x)− t (x))| = h(c)|(m(x)− t (x))|,

where h(c) is finite.
By applying Theorem 3.6, we obtain

|H(m(x)− H(t (x))| ≤ 2ε(b − a)h(c). (2)

Relation (2) indicates that any arbitrarily close approximation H(m(x)) to H(t (x))

and hence to F(x) can be obtained on the bounded and closed interval [a, b].
To generalize our polynomial approach, we have to investigate the estimation of

F(x) in the domain for x /∈ [a, b]. Note that H(m(x)) and F(x) are both monotonic
increasing functions.

If x < a,

H(m(x))− F(x) ≤ H(m(x)) ≤ H(m(a)) ≤ F(a)+ ε

2
< ε,

and

H(m(x))− F(x) ≥ −F(x) ≥ −F(a) > −ε

2
> −ε.
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Hence we get

|H(m(x)) − F(x)| < ε.

If x > b,

F(x)− H(m(x)) = (1− H(m(x)))− (1− F(x)) ≤ 1− H(m(x))

≤ 1− H(m(b)) ≤ 1− F(b)+ ε

2
< ε.

and

F(x)− H(m(x)) = (1− H(m(x)))− (1− F(x)) ≥ −(1− F(x))

≥ −(1− F(b)) > −ε

2
> −ε.

So we get

|H(m(x))− F(x)| < ε.

��

4 Parametrization of the polynomial

To optimize the computing performance, the FPDE is reparameterized such that we
obtain an imbedded structure of the polynomials.

4.1 Preliminaries

Suppose the degree of a monotonic increasing polynomial m(x) is 2k + 1, where k
signifies the stage of our algorithm (k = 0, 1, 2, . . .). Elphinstone (1985) has shown
that one can find real-valued functions gi (i = 0, . . . , 2k+1) of a (2k+2)-dimensional
vector ��� = (ξ, α, λ11, λ12, . . . , λk1, λk2), such that

m2k+1(x) = m2k+1(x;���) =
2k+1∑

i=0

gi (���)xi (3)

is a monotonic increasing polynomial for all selections of values for ���.
The construction of gi (���) is based on the functions hi (i = 0, . . . , 2k) which

are real-valued functions of a (2k + 1)–dimensional vector ���∗, such that ���∗ =
(α, λ11, λ12, . . . , λk1, λk2). Note that ��� = (ξ,���∗). The hi (���

∗) are chosen such that
for all selections of values for ���∗,

p2k(x) = p2k(x;���∗) =
2k∑

i=0

hi (���
∗)xi (4)
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350 D. Heinzmann

is a positive polynomial. The relation between hi (���
∗) and gi (���) can be written as

m2k+1(x;���) = ξ +
x∫

0

p2k(t;���∗)dt = ξ +
2k+1∑

i=1

hi−1(���
∗)

i
xi

=
2k+1∑

i=0

gi (���)xi . (5)

For every choice of values for ξ = m(0), we get (3).
Let the algorithm be in stage k. Based on the relations (4) and (5), one can replace

the search for the optimal coefficients of m2k+1(x;���) and p2k(x;���∗) by the search
for the optimal (2k + 2)-dimensional parameter ���. Let ���k be the optimal value of ���

in stage k. Then the distribution and density estimates of the FPDE can be computed
as H(m(x;���k)) and h(m(x;���k))p2k(x;���∗k).

4.2 Construction of positive polynomials

Positive polynomials are of even degree, the coefficient multiplying the highest order
term is positive, and all roots have even multiplicity.

Suppose that ��� = (γ, γ11, γ12, . . . , γk1, γk2). Let z j = γ j1 + iγ j2. A positive
polynomial p2k of degree 2k may be written as

p2k(x;���) = γ

k∏

j=1

(x − z j )(x − z̄ j ).

Let z j z̄ j = γ 2
j1 + γ 2

j2 > 0. Therefore

p2k(x;���) = γ

k∏

j=1

z j z̄ j

k∏

i=1

(
x

z j
− 1

) (
x

z̄ j
− 1

)

.

Let w j = 1
z̄ j
= λ j1 + iλ j2 and λ = γ

∏k
j=1 z j z̄ j , we have

p2k(x; λ, λ11, λ12, . . . , λk1, λk2) = λ

k∏

j=1

(w̄ j x − 1)(w j x − 1). (6)

In terms of the original parameters, we can write:

λ = γ

k∏

j=1

(γ 2
j1 + τ(γ j2)), w j = λ j1 + iλ j2 = 1

γ 2
j1 + τ(γ j2)

(γ j1 + iγ j2).

If |z j | =
√

γ 2
j1 + τ(γ j2)→ 0, than |w j | → ∞.
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To ensure that the coefficient multiplying the highest-order term in the
parametrization (6) is positive, we must have γ 2

j1 + τ(γ j2) > 0 for all j and λ > 0.

One possibility to guarantee positivity is to select the function τ(.) to be τ(γ j2) = γ 2
j2.

This choice ensures that γ 2
j1 + τ(γ j2) > 0 without restriction on γ j2. For verifying

that the scale parameter λ is greater than 0, we set λ = eα . Hence we obtain the
following parametrization

p2k(x; λ, λ11, λ12, . . . , λk1, λk2) = eα
k∏

j=1

((
λ2

j1 + λ2
j2

)
x2 − 2λ j1x + 1

)
(7)

which provides the required imbedded structure. Note that these choices of τ(.) and
λ enable us to use an unconstrained search procedure in the FPDE approach.

We can rewrite Eq. (7) in terms of hi , which are real-valued functions of ���∗ =
(α, λ11, λ12, . . . , λk1, λk2). We get

p2k(x;���∗) = h0(���
∗)+ h1(���

∗)x + h2(���
∗)x2 + · · · + h2k(���

∗)x2k .

Further, we note that

p2k(x;���∗) = p2k−2(x;���∗)((λ2
k1 + λ2

k2)x2 − 2λk1x + 1)

= p2k−2(x;���∗)(d(k)
2 (���∗)x2 + d(k)

1 (���∗)x + d(k)
0 (���∗)),

where d(k)
i (���∗) is the value of di (���

∗) in stage k for the polynomial p2k(x;���∗). These

values are given by d(k)
0 (���∗) = 1, d(k)

1 (���∗) = −2λk1x and d(k)
2 (���∗) = λ2

k1+ λ2
k2.

Finally, the coefficients hi (���
∗) in stage k can be written as

h(k)
i (���∗) = h(k−1)

i (���∗)d(k)
0 (���∗)+ h(k−1)

i−1 (���∗)d(k)
1 (���∗) + h(k−1)

i−2 (���∗)d(k)
2 (���∗),

for i = 0, . . . , 2k. If l < 0 or l > 2(k − 1), we set h(k−1)
l (���∗) = 0 .

We obtained recursive formulas for the hi (���
∗)’s and hence we have an imbedded

structure to construct the polynomials.

5 The implemented algorithm

In the previous section, a method to compute the distribution and the density estimates
of the FPDE for a given stage k of the algorithm has been discussed. In this section, we
will describe the global procedure of the implemented version of the FPDE. First, the
algorithm will be presented. Then we will focus on the applied optimization method
to find the optimal parameter value for ���.
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352 D. Heinzmann

5.1 Global procedure

From experience, it has become clear that the sample values should not be too large
because when working with high order polynomials, numerical overflow problems may
arise (Heinzmann 2005). Hence an initial data transformation is required to ensure that
the minimum and the maximum value of the transformed data will be of the same mag-
nitude as that of the filter. Given the data xxx = (x1, . . . , xn), the initial transformation
has the form (xi − a)/b (i = 1, . . . , n), where a and b are the mean and the standard
deviation of the filter H(.). note that for a Chi-square distribution, a = 0 and b = 1.
The parameters a and b are initially estimated by the maximum likelihood method.

An estimate, �̂��, of the coefficient vector, ���, is chosen so as to minimize a mea-
sure of appropriateness of the filtered polynomial distribution for the data, xxx . The
recommended method in the algorithm is maximum likelihood. Alternative estimates
are obtained by minimizing the Anderson–Darling distance between the empirical
distribution function for the sample and the estimated distribution function, or the
Cramer–von Mises distance between the same two distribution functions (Elfenbein
1978). The minimization of these discrepancy functions is carried out by applying
a Newton–Raphson method based on an updating function for non positive Hessian
matrices (Sect. 5.2). The minimization leads to estimates for the parameter ��� and
hence for the coefficients of the polynomials.

For selecting the most appropriate degree of the polynomial over all stages of the
algorithm, criterions as AIC, BIC, likelihood ratio test and crossvalidation are imple-
mented (Bozdogan 1987; Stone 1977). A definition and application of these criterions
to two data sets of the mixture of normal distributions of sizes 10,000 and 40 may be
found in Heinzmann (2005). These applications yields:

1. The larger the sample size, the higher the selected degree of the polynomial m(x)

by all criterions and hence the closer the approximation to F(x) and f (x).
2. The difference in time to compute the AIC, BIC and likelihood ratio test are

marginal. But the computational effort to evaluate the crossvalidation criterion
increases heavily by higher order polynomials.

3. Finally, the BIC criterion is the authors’s proposed criterion. The BIC tends to
select a lower polynomial degree than the others. This is especially favourable for
smaller samples where the other criterions select polynomial degrees making the
FPDE detecting artificial characteristics in the data (Heinzmann 2005).

5.2 Modified Newton–Raphson method

The minimization of the discrepancy functions is made by a Newton–Raphson pro-
cedure (Bailey 1993; Lancaster 1966). Such a procedure requires the Hessian matrix
to be positive definite. To guarantee this positivity, we have implemented an update
function for the case when we have a non positive definite Hessian matrix. Such update
functions are widely used in optimization algorithms (Levenberg 1944). Suppose HHH k,m

is the Hessian matrix and gggk,m is the gradient of the discrepancy function and let sssk,m

be the search direction. If the Hessian matrix at iteration m of stage k of our algorithm
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A filtered polynomial approach to density estimation 353

is non positive definite, then we use the following modified Newton–Raphson step:

x̂xxk,m+1 = x̂xxk,m − (HHHk,m + EEEk,m)−1gggk,mx̂xxk,m, (8)

where EEEk,m = 2|λ1|III k , III k is the (2k + 2) × (2k + 2) identity matrix and λ1 is the
smallest eigenvalue of HHHk,m . The factor 2 is used to ensure positivity of the Hessian
matrix. Based on the singular value decomposition (Golub and Van Loan 1996), we
have

HHHk,m + EEEk,m = UUU k,m(DDDk,m + EEEk,m)UUU T
k,m =UUU k,m(DDDk,m + 2|λ1|III k)UUU

T
k,m ,

where UUU k,m is a (2k+2)×(2k+2) column-orthogonal matrix such that UUU k,mUUU T
k,m =

III k and DDDk,m is a (2k + 2)× (2k + 2) diagonal matrix.
Hence the quantity 2|λ1| is added only to the eigenvalues of the Hessian matrix

HHHk,m . Since λ1 is the smallest eigenvalue, the matrix (HHHk,m+EEEk,m) has only positive
eigenvalues and is therefore positive definite.

Note that when applying the update function, the selected search direction is no
longer optimal. But it can be shown that the performance of the update function
approach outperforms simple gradient descent and other conjugate gradient methods
in a wide variety of problems (Levenberg 1944; Heinzmann 2005).

6 Polynomial coefficients and its derivatives

For the implementation of the previously introduced Newton–Raphson procedure with
the update function for the non positive definite case, an iterative procedure for com-
puting the coefficients of the polynomial and its derivatives is presented in this section.
We will adapt the notation introduced in Sect. 4. But for reasons of simplicity, we will
suppress the function arguments ��� and ���∗.

6.1 Coefficients of the positive polynomial

Based on the parametrization of the polynomial evaluated in Sect.4, the procedure of
the algorithm in stage k can be described as follows. Let �i denotes the coefficients
of the parameter ���. In particular, we have �1 = ξ and �2 = α. Suppose that h̃i

(i = 1, . . . 2k − 2) are the values of the coefficients of the positive polynomial hi

obtained in stage k − 1 of our algorithm. Then based on the results from Sect. 4, our
algorithm calculates in stage k the new values for hi in three steps.

1. Set b0, b1, . . . , b2k−2 :

bi = h̃i (i = 2, . . . , 2k − 2),
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354 D. Heinzmann

2. Set d0, d1, d2 :

dk,0 = 1

dk,1 = −2�2k+1,

dk,2 = �2k+1
2 +�2k+2

2.

3. Set h0, h1, . . . , h2k :

h0 = b0dk,0,

h1 = b1dk,0 + b0dk,1,

hi = bi dk,0 + bi−1dk,1 + bi−2dk,2 (i = 2, . . . , 2k − 2),

h2k−1 = b2k−2dk,1 + b2k−3dk,2,

h2k = b2k−2dk,2.

We will refer to this procedure which updates the coefficients of the positive polyno-
mial as the stage procedure.

6.2 Coefficients of the monotonic increasing polynomial

Given the coefficients hi (i = 0, . . . , 2k) of the positive polynomial p2k , we want to
calculate the coefficients g j ( j = 0, . . . , 2k + 1) of the monotonic increasing poly-
nomial m2k+1. Any monotonic increasing polynomial m2k+1 can be expressed as the
integral of a positive polynomial p2k which satisfies p2k(x) = d

dx m2k+1(x). Hence
we can find for all m2k+1 a ���, such that

m2k+1(x) = ξ +
x∫

0

2k∑

i=0

hi t
i dt = ξ +

2k+1∑

i=1

hi−1

i
xi =

2k+1∑

i=0

gi xi ,

where g0 = ξ = m(0). Therefore, the hi ’s and g j ’s are related by gl = hl−1/ l
(l = 1, . . . , 2k+1) and we may solve for the coefficients of the monotonic increasing
polynomial.

6.3 Derivatives of the positive polynomial

Since the implemented procedure is based on a Newton–Raphson method, we need
to compute the derivatives of the coefficients for the positive polynomial. Based on
these derivatives, we then may compute the derivatives of the monotonic increasing
polynomial by applying the following relations:

dgl

d�n
= 1

l

dhl−1

d�n
and

d2gl

d�2
n
= 1

l

d2hl−1

d�2
n

(l = 1, . . . , 2k + 1). (9)
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Gradient of the positive polynomial

In stage k, the nth element of the gradient of a positive polynomial can be computed
in two steps. First, the coefficients ∂hi/∂�n for i = 0, . . . , 2k are evaluated. Then
we compute the nth element of the gradient by using

∂p2k(x)

∂�n
=

(((
∂h2k

∂�n
x + ∂h2k−1

∂�n

)

x + ∂h2k−2

∂�n

)

x . . .

)

x + ∂h0

∂�n
.

Note that

∂hi

∂�1
= ∂hi

∂ξ
= 0 and

∂hi

∂�2
= ∂hi

∂α
= hi ,

for i = 0, . . . , 2k.
At stake k, the calculations of ∂hi

∂�n
for n > 3 is made by applying the following

substitutions to the stage procedure if n = 2k + 1 or n = 2k + 2:

dk,0 ←− 0, dk,1 ←− ∂

∂�n
dk,1, dk,2 ←− ∂

∂�n
dk,2 .

Hessian matrix of the positive polynomial

For evaluating the (n, m)th component of the Hessian matrix of a positive polynomial
in stage k, we proceed in two steps. First we compute

∂2hl

∂�n∂�m
for l = 0, . . . , 2k. (10)

Then we evaluate the (n, m)th Hessian element as

∂2 p2k(x)

∂�n∂�m
=

(((
∂2h2k

∂�n∂�m
x + ∂2h2k−1

∂�n∂�m

)

x + ∂2h2k−2

∂�n∂�m

)

x . . .

)

x

+ ∂2h0

∂�n∂�m
.

Note that

∂2hi

∂�1∂�m
= 0 and

∂2hi

∂�2
2

= hi ,

for n = 1, . . . , 2k + 2 and i = 0, . . . , 2k. To calculate all other derivatives in (10),
we group them into three cases. In every case, we modify the stage procedure in a
different way.
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Case 1 ∂2

∂�2∂�m
hi (x) (m > 2). The derivative with respect to �2 are the coefficients

themselves. Hence if m = 2k + 1 or m = 2k + 2, we have the same modifications of
the stage procedure as for the calculation of the gradient, i.e.,

dk,0 ←− 0, dk,1 ←− ∂

∂�m
dk,1, dk,2 ←− ∂

∂�m
dk,2.

Case 2 ∂2

∂�n
2 hi (x) (n > 2). The following modifications of the stage procedure are

made for the case when n = 2k + 1 or n = 2k + 2:

dk,0 ←− 0, dk,1 ←− ∂2

∂�n
2 dk,1, dk,2 ←− ∂2

∂�n
2 dk,2.

Case 3 ∂2

∂�n∂�m
hi (x) (n, m > 2 , n �= m). Similar to case 2, we modify the stage

procedure if n = 2k + 1 or n = 2k + 2 as

dk,0 ←− 0, dk,1 ←− ∂

∂�n
dk,1, dn,2 ←− ∂

∂�n
dk,2 .

If m = 2k + 1 or m = 2k + 2, the modifications are

dk,0 ←− 0, dk,1 ←− ∂

∂�m
dk,1, dk,2 ←− ∂

∂�m
dk,2 .

It is important to recognize that if n > 1 is odd and m = n + 1, then

∂2

∂�n∂�m
hi = 0 ∀ i and hence

∂2

∂�n∂�m
p2k(x) = 0.

6.4 Derivatives of the monotonic increasing polynomial

Based on the derivatives of the positive polynomial, the derivatives

∂g j

∂�n
and

∂2gi (x)

∂�n∂�m

for j = 0, . . . , 2k + 1 and n, m = 1, . . . , 2k + 2 can be computed by using the
relations in (9). Note in this context that ∂

∂�1
m2k+1(x) = 1 and that

∂2m2k+1(x)

∂�1
2 = ∂2m2k+1(x)

∂�1∂�m
= 0 (m > 1).

Finally the nth element of the gradient can be computed by using

∂m2k+1(x)

∂�n
=

(((
∂g2k+1

∂�n
x + ∂g2k

∂�n

)

x + ∂g2k−1

∂�n

)

x . . .

)

x + ∂g0

∂�n
,
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and the (n, m)th element of the Hessian matrix can be calculated as

∂2m2k+1(x)

∂�n∂�m
=

(((
∂2g2k+1

∂�n∂�m
x + ∂2g2k

∂�n∂�m

)

x + ∂2g2k−1

∂�n∂�m

)

x . . .

)

x

+ ∂2g0

∂�n∂�m
.

7 Application of the FPDE

In this section, a second application to a univariate setting is given. The data sets con-
tains 100 test statistics of a MCMC simulation of Multitrait-Multimethod data. The
data set is described in detail in Heinzmann (2005). The asymptotic distribution is
known to be a Chi-square distribution with undetermined degree of freedom. Hence
the filter in the FPDE is specified as a Chi-square distribution. In order to compare
the FPDE to the kernel density estimation, the kernel function density of the software
package R (R Development Core Team 2006) with a gaussian kernel and the standard
deviation of the smoothing kernel as bandwidth is selected.

On the left side of Fig. 2, the two density estimates of the FPDE (solid line) and
the kernel estimation (dashed line), superposed to the histogram of the data, are repre-
sented. The FPDE estimate yields a higher degree of smoothness based on the fact that
it is a global estimation method which builds an estimate with all available data on the
same time. The kernel estimate as a local estimate detects more of the local features
of the data. Since the data is generated by a simulation study where one supposes a
high degree of smoothness, the FPDE provides a more appropriate result. The FPDE
estimate also provides an algebraic representation of the density estimate which is
computationally less expensive to store than all estimated points of the kernel method.
The right side of the figure shows the polynomial transformation m(x) of the FPDE
approach (solid line) and the straight dotted line which corresponds to an identity
transformation of the form m(x) = x . Note that in this case, the initial parameters a
and b are set to 0 and 1 since the filter is specified as a Chi-square distribution. The
plot indicates that only a small transformation of the data is necessary in order to fit
into the filter. More precise, only the upper tail of the distribution function needs to be
modified in order to get a good estimate.

8 Extension to multivariate settings

Let XXX be a p-dimensional random vector with expected values µµµ and covariance
matrix 


, which is symmetric and positive definite. For simplicity, set µµµ equal to the
p-dimensional null vector. The principal component transformation can be written as

XXX 
→ YYY = AAAT XXX , (11)

where AAA = [aaa1, . . . ,aaa p] is an orthogonal matrix with the eigenvectors aaai as columns.
The matrix AAA satisfies AAAT


AAA = ���, where��� is a diagonal matrix with the eigenvalues
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Fig. 2 a Application of the FPDE approach (solid line) and the kernel density estimation method (dashed
line) to the Multitrait-Multimethod data with sample size 100. b The polynomial transformation m(x) (solid
line) in the FPDE approach is plotted versus a straight dotted line which indicates an identity transformation
of the form m(x) = x . (Note that in this application, the initial data transformation parameters a and b are
0 and 1, respectively)

of 


 as elements such that ω1 ≥ ω2 ≥ . . . ≥ ωp ≥ 0. The i th principal component
of XXX can hence be written as Yi = aaaT

i XXX (i = 1, . . . , p). The aaaT
i are called the vector-

loadings. The orthogonality of AAA implies the uniqueness of the principal components
(Mardia et al. 1979).

If XXX is distributed normally, we may conclude that within the coordinate system
defined by aaa1, . . . ,aaa p, the coordinates of XXX are independent since not correlated. Let
xxx be a realization of XXX . Based on Eq. (11), we can write yyy = AAAT xxx and we have

fXXX (xxx) = fYYY (yyy) · det (AAAT ).

Since det (AAA) = 1, we have

fXXX (xxx) = fYYY (aaaT
1 xxx, . . . ,aaaT

p xxx) =
p∏

i=1

fYi (aaa
T
i xxx).

Hence the univariate estimates fYi lead to a multivariate estimate fXXX (Cooley and
MacEachern 1998). Applications of the FPDE to multivariate settings provide a high
degree of smoothness (Heinzmann 2005) and an algebraic expression of its multivar-
iate estimate.
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9 Discussion

The filtered polynomial approach provides coefficient estimates for (close) algebraic
approximations to the unknown cumulative distribution and density functions, F(x)

and f (x), as well as a transformation (e.g., normalization) from the unknown data
distribution to a target distribution (filter).

This approach provides a high degree of smoothness in its estimates for univariate
as well as for multivariate settings (Heinzmann 2005).

The main difference between the filtered polynomial method and the kernel method
is the procedure to estimate data. The filtered polynomial method can be seen as a
global estimation where one considers all observations simultaneously for finding an
adequate estimate. Hence we obtain a high degree of smoothness of the estimates as
has been shown in the two applications (Sects. 1, 7). The kernel estimation can be seen
as a local estimation since it builds its estimates using information provided primarily
by observations made in a local neighborhood of each point. This results in a less
smoothed representation of the distribution of the data (Sects. 1, 7 ).

From simulations it becomes clear that for randomly generated data (e.g., in MCMC
applications), where one supposes a high level of smoothing, filtered polynomial esti-
mation would be preferred. In situations where one supposes special characteristics
in the data (real data), the kernel method would be preferred. But sometimes, a highly
smoothed estimation of real data is less complicated to interpret than a less smoothed
one. Hence the choice of one of the two methods should be based on the purpose of
its application and the origin of the data (Bailey 1993).
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