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Abstract This paper analyzes the NOx levels measured by a control station
near a power plant by using techniques for functional data. First, we test for
differences between the levels on working and non working days. Second, we
obtain several location estimators and confidence sets of the center of the func-
tional distribution. Third, we provide scale estimators and confidence sets of
the dispersion of the functional distribution. Finally, a distance based procedure
provides a criterion to determinate the presence of outlying observations, which
allows to detect relevant NOx levels.

Keywords Functional data analysis · Functional mode · Functional trimmed
means · Functional trimmed standard deviation · NOx levels · Outliers

1 Introduction

NOx (nitrogen oxides) is the term for a group of gases which mainly contents
nitrogen and oxygen. Nitrogen oxides are, not only ones of the most important
pollutants, but also precursors of ozone formation and contributors to global
warming. Although NOx can be formed naturally, it is primarily caused by
combustion processes in sources such as motor vehicles, electric utilities, indus-
tries and any other system that burn fuels. Nowadays, many governments have
develop directives to put limit values for NOx emissions which mainly affect
industries, airports and motor vehicles, among others. Therefore, it is necessary
to develop procedures to study NOx emissions, for instance, in order to know
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if the NOx levels are different at different times of the week or if, occasionally,
the levels are significatively large or small due to some abnormal effects.

The main purpose of this paper is to analyze the NOx levels measured by an
environmental control station by means of techniques for functional data anal-
ysis, hereafter FDA. FDA is concerned with the analysis of functional random
variables. We say that X is a functional random variable if it takes values in
an infinite dimensional space. In the particular case of the NOx levels here
analyzed, the observation space is a closed interval [tmin, tmax] and the vari-
able is observed at a discretized set of different times t1, . . . , tm belonging to
[tmin, tmax], providing an observation of the functional variable, x(t1), . . . , x(tm).
Therefore, a dataset of n identically distributed functional variables values,
x1, . . . , xn, observed at a grid of points t1, . . . , tm is given by:

{xi(tj); i = 1, . . . , n; j = 1, . . . , m}.

Monographs on FDA can be found in Ramsay and Silverman (2004, 2005),
which presents a large variety of methods and case studies, and Ferraty and
Vieu (2006), which presents a non parametric approach to analyze functional
data. See also the references therein.

The dataset of NOx emissions that we have at hand have been taken by a
control station in Barcelona, Spain, during the first semester of 2005 and can
be downloaded from the webpage http://www.gencat.net. In particular, the lev-
els have been observed at every hour of every day of the observation period
providing a long sample of measures that we split in functional samples of
24 h observations. Thus, each curve represents the evolution of the levels in
1 day. Our analysis is composed of four aspects. First, we carry out an explor-
atory analysis of the data which allows us to characterize the behavior of the
observed NOx levels as of a functional nature. After that, we analyze if there
are differences between the levels on working and non working days by using an
ANOVA test for functional data. Second, we locate the center of the functional
distribution of the NOx levels by means of location estimates and confidence
sets. Third, we analyze the dispersion of the sample with two scale estimators:
the functional standard deviation and the functional trimmed standard devi-
ation, which, as far as we know, is firstly analyzed here in functional settings.
Finally, it is important to identify days or periods in which the NOx levels are
abnormally large or small, because these outlying observations may allow us
to find out sources which produce large NOx emissions. Thus, we develop a
distance based method for outlier detection in functional data which relies on
a bootstrap procedure which allows to obtain percentiles of the distribution of
functional distances of the curves with respect to a location estimator. If the
distance for a curve relative to one scale estimator is large enough compared
with the ones for the rest of curves, we assume that the curve is a functional
outlier.

The rest of this paper is organized as follows. In Sect. 2, we present the col-
lected data and summarize their principal characteristics. In Sect. 3, we analyze
the presence of two groups of curves in the data. In Sect. 4 we study location
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estimates and confidence sets for the NOx data, while in Sect. 5 we obtain
scale estimates, including the trimmed standard deviation for functional data.
In Sect. 6, we look for outliers in the NOx data by means of a distance based
method. These outliers represent days in which the NOx levels are significa-
tively large or small compared with the rest of the sample. Finally, in Sect. 7, we
conclude.

2 The NOx data

The data correspond to levels measured by a environmental control station in
Poblenou, a neighborhood in Barcelona, which is around an industrial area in
Besòs. The control station measures NOx levels in µg/m3 every hour of every
day. The dataset consists of the amount of 127 days of data, from February, 23rd,
to June, 26th in 2005. Figures 1 and 2 show boxplots of the data in terms of two
factors: the hours (Fig. 1) and the day of the week (Fig. 2). The first graphic
shows the boxplot of the data for the 24 h of the day. The graphic gives us a
first look of the behavior of the data. The NOx levels increase in the morn-
ing, attaining their largest values around 8:00am. Then the levels decrease until
14:00am approximately and increase again at the evening. As the control sta-
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Fig. 1 Boxplot of the NOx data by hour of the day
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Fig. 2 Boxplot of the NOx data by day of the week

tion is located at the city center, apparently there is a large influence of traffic
on the measured NOx levels, as, on the other hand, it may be expected. The
boxplot also suggest the presence of several outliers in most of the hours. The
second graphic shows the boxplots of the data for two different subsamples: (1)
working days, which are the weekdays, and (2) non working days, which are the
Saturdays, Sundays and festive days. From the plot, we conclude that apparently
may be differences on the levels of both groups. In both graphics, it is really
meaningful the presence of several extreme values, especially on working days.
These both aspects, the existence of two groups and the presence of outliers,
will be primarily the subjects of our ongoing analysis.

In order to make a functional analysis of the data, we assume that each curve
is formed by the 24 observations of 1 day. Therefore, we have 127 curves corre-
sponding to 127 days. Some of the measures are missing for several consecutive
hours of some days, so that only 115 days are complete for the analysis. We
decided to discard the days with incomplete periods. Figure 3 shows the 115
observed curves divided in two groups: working days (up) and non working
days (down). As we can see, the shape of the observed curves are rather similar
except for some of them that are somewhat different for all or some hours of
the day. Note also that most of the largest values are attained for the working
days, as expected from Fig. 2.
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Fig. 3 Sample curves of the NOx data: working days (up); non working days (down)

3 Testing for the equality of means

Once that we have introduced the data, the first step in our analysis is to deter-
minate if there are significant differences between the levels depending on the
day of the week. For that, we split the dataset into two group of curves formed by
the working and the non working days, and use the ANOVA test for functional
data proposed by Cuevas et al. (2004), for which we first need to introduce three
important notions, which will be further used along the paper: sample mean,
sample covariance and norms for functional data. Let x1, . . . , xn be the n = 115
sample curves. The functional sample mean for the n curves is given by:

µ̂M = 1
n

n
∑

i=1

xi, (1)

while the functional sample covariance is a matrix with size m×m and elements
is given by:

̂�(tj, tk) = 1
n − 1

n
∑

i=1

(xi(tj) − µ̂M(tj))(xi(tk) − µ̂M(tk)),
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for j, k = 1, . . . , m. The sample functional mean is an estimator of the center
of the functional distribution, while the sample functional covariance is an esti-
mator of the scale and correlation structure of the functional distribution. Both
estimators will be further analyzed for the NOx data in Sects. 4 and 5. Although
several norms for functional data have been proposed, the most relevant ones
are the Lp norms, where p = 1, 2, . . . , ∞, which, for a curve x1, are given by:

‖x1‖p =
⎛

⎝

tmax
∫

tmin

|x1 (t)|p dt

⎞

⎠

1
p

‖x1‖∞ = sup
t∈(tmin ,tmax)

|x1 (t)| .

The distances between two curves x1 and x2 associated with these norms,
dp(x1, x2), p = 1, 2, . . . , ∞, are defined in the usual way as the norm of the
functional difference, x1 − x2. For more information and definitions of alterna-
tive distances see Ferraty and Vieu (2006).

The ANOVA test proposed by Cuevas et al. (2004) is based on the statistic:

V =
G

∑

g<h

ng
∥

∥µ̂M,g − µ̂M,h
∥

∥

2 , (2)

where G is the number of groups, ng is the number of curves in group g and
µ̂M,g denotes the functional sample mean for the curves in group g. We can
conclude that the G groups are different if the statistic V is large enough. The
asymptotic distribution of the statistic (2) can be approximated by means of
a Monte Carlo procedure which, in the homoscedastic case, depends on the
functional sample covariance matrix of the curves, and, in the heteroscedastic
case, depends on the functional sample covariance matrices of the curves in
each group g = 1, . . . , G. We refer to Cuevas et al. (2004) for a more detailed
exposition of the properties of the statistic (2) and its asymptotic distribution.

For the NOx data, we have G = 2 groups with n1 = 76 and n2 = 39 curves
in each group, respectively. We apply the ANOVA test assuming heteroscedas-
ticity. The results indicated a strong evidence of the hypothesis that the two
group of curves are different as the resulting p-value was 0. We conclude that
there are significatively differences between the working and non working days.
This conclusion may be expected because, as we have seen in Figs. 1 and 2, the
traffic appears to have a large influence on NOx levels. One may wonder if we
can go further and look for differences between Saturdays and the subgroup
of Sundays and festive days. Note that there are only 18 and 21 curves in the
first and second subgroups, respectively, which is less than the 24 h of the day.
Thus, results obtained with these small groups may be unreliable, so we prefer
to consider them as members of the same group.

Consequently, in what follows, we are going to do a parallel analysis of the
NOx data, for the whole dataset and for both groups by separate. The rest of



A functional analysis of NOx levels 417

our analysis explores three different aspects: (1) location estimation; (2) scale
estimation; and (3) outlier detection.

4 Location estimation: mean, trimmed mean, median and mode for functional
data

Our second step in analyzing the NOx data is to provide location estimators and
confidence sets of the central curve. Obviously, the first candidate to estimate
the center of the distribution is the sample mean defined in (1) and introduced
in the previous section, but alternative location estimates have been proposed.
As an attempt to obtain a robust location estimator of the center of the distri-
bution, Fraiman and Muniz (2001) introduced the functional α-trimmed mean
which is defined as the mean of the most central n−[αn] curves, where α is such
that 0 ≤ α ≤ (n − 1)/n and [] denotes the integer part. The notion of depth is
used to define what the most central curve means. Depths for multivariate data
points were introduced to measure the centrality of a multivariate observation
within a given data cloud. For continuous one-dimensional random variables,
the most popular depths are the halfspace depth, proposed by Tukey (1975),
which, for a point x, drawn from a random variable with distribution function
F, is given by:

HD(x) = min{F(x), 1 − F(x)},

and the simplicial depth, proposed by Liu (1990), which is given by:

SD(x) = 2F(x)(1 − F(x)).

Also, Fraiman and Muniz (2001) considered a depth of the form:

FMD(x) = 1 −
∣

∣

∣

∣

1
2

− F(x)

∣

∣

∣

∣

. (3)

In practice, the distribution function F is substituted by the empirical distribu-
tion function of the observed sample. Thus, if D is a univariate depth defined
on �, the univariate depth of the point xi(t) with respect to the sample points
x1(t), . . . , xn(t), is given by D(xi(t)), which allows to define the functional depths
of the curves x1, . . . , xn as:

FD(xi) =
tmax
∫

tmin

D(xi(t))dt, i = 1, . . . , n.

Therefore, each curve xi is associated with its corresponding functional depth
FD(xi), such that the deepest and the less deepest curves are the ones which
attain the maximum and minimum values of the functional depths. If the curves
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are ranked according to decreasing values of their depths, we get the ordered
curves x(1), . . . , x(n), such that x(1) is the deepest curve and x(n) is the less deepest
one. The functional trimmed mean of x1, . . . , xn for a given value α, is defined
as:

µ̂TM,α = 1
n − [αn]

n−[αn]
∑

i=1

x(i).

Note that the trimmed means is the functional mean taking α = 0. Also Fraiman
and Muniz (2001) defined a functional median as the trimmed mean with the
depth (3) and α = (n−1)/n. In other words, the functional median is the deepest
curve with the depth (3). Thus, the trimmed means range from the functional
mean to the functional median by considering α from 0 to (n − 1)/n.

Finally, Gasser et al. (1998), Dabo-Niang et al. (2004) and Cuevas et al. (2006)
extended the concept of mode to the functional framework. The idea of Cuevas
et al. (2006) is to select the curve most densely surrounded by the rest of curves
of the dataset. The functional mode, µ̂MOD, of a set of curves x1, . . . , xn, is then
defined as:

µ̂MOD = arg max

⎧

⎨

⎩

n
∑

j=1

K

(∥

∥xj − xi
∥

∥

h

)

, i = 1, . . . , n

⎫

⎬

⎭

,

where ‖ ‖ is a norm in the functional space, K : �+ → �+ is a kernel function
and h is a bandwidth. See Dabo-Niang et al. (2006) and Ferraty and Vieu (2006)
for asymptotic properties of the functional mode. Note that only the median
and the mode are curves belonging to the dataset, while the mean and trimmed
means are just linear combinations of all the curves.

We define the confidence set of a curve x1 at the confidence level β as the set
of curves c which have the same distribution that x1 and such that:

CS(x1) = {c : d(x1, c) < Dβ},

where d is a functional distance and Dβ is such that Pr(CS(x1)) = β. A sample
of curves belonging to the confidence set of a location estimator µ̂, CS(µ̂), can
be obtained using the smoothed bootstrap approach proposed by Cuevas et al.
(2006) which works as follows. Let µ̂ be a location estimate based on the curves
x1, . . . , xn observed at times t1, . . . , tm. First obtain B standard bootstrap samples
from the curves that we denote by xb

i , for i = 1, . . . , n and b = 1, . . . , B. Then,
obtain smoothed bootstrap samples:

yb
i = xb

i + zb
i ,

where zb
i is such that (zb

i (t1), . . . , zb
i (tm)) is normally distributed with mean 0

and covariance matrix γ�x, where �x is the covariance matrix of the vec-
tor x(t1), . . . , x(tm) and γ is a bootstrap smoothing parameter. Each smoothed
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Fig. 4 Location estimates and bootstrap confidence sets for the whole sample

bootstrap sample provides a location estimate, namely µ̂b, such that a sample
of curves belonging to CS(µ̂) for confidence level β is defined by calculating the
value DB such that the (100 × β)% of the smoothed bootstrap replications µ̂b

are within a distance from their average smaller than DB. The sample of curves
obtained with this procedure will be called a bootstrap confidence set.

Now, we obtain the location measures and their respective bootstrap confi-
dence sets for the NOx data. Figures 4, 5 and 6 show the mean, median, trimmed
mean and mode for the whole sample, the working days and the non working
days, joint with their respective bootstrap confidence sets, respectively. In the
three cases, we take α = 0.10 to compute the trimmed mean, so that, the less
10% deepest curves are not taken into account for averaging. In order to com-
pute the mode, we follow the recommendations given in Cuevas et al. (2006).
Then, we consider the Gaussian kernel:

K(x) = 2√
2π

exp

(

−x2

2

)

, x > 0

and take the bandwidth as the 15-th percentile of the distribution of
max{‖xj − xk‖2 : j, k = 1, . . . , n}, where ‖ ‖2 is the L2 norm. We note that
in our problem, we do not need to specify a bandwidth h which provides a very
good fit of the density because we are not directly concerned here with density
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Fig. 5 Location estimates and bootstrap confidence sets for the working days

estimation but with support estimation. Thus, we are more interested in the
values around the center of the distribution which are not very sensitive to the
choice of the bandwidth. In fact, a wide range of values of the bandwidth are
appropriate with the only requirement that the bandwidth be not very small.
See Cuevas and Fraiman (1997) and Cuevas et al. (2001) for more information
on the choice of the bandwidth in these situations.

For the bootstrap confidence sets, we have taken B = 200 bootstrap samples,
bootstrap smoothing parameter γ = 0.05, confidence level β = 0.95 and the
L2 distance. Some conclusions are as follows. First, the location estimates of
the working and non working days are clearly different, as expected from the
results in Sect. 3. Second, note that the functional mean and trimmed mean
are much less rough than the median and the mode. Obviously, this is due to
the smoothing provided by the average of the curves in the computation of the
means. Third, for the whole sample and the non working days, both the mean
and trimmed mean and the median and mode, look very close to each other. In
fact, the median and the mode are the same for the whole sample. This is not
the case with the working days as the median and the mode strongly differ at
the evenings, being the median closer to both means. Fourth, note also that the
median and the mode for the whole sample and the working days have a peak
around 3:00pm, which is not observed for both means. This peak may be due to
the traffic as this is the hour at which many people take their cars to come back
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Fig. 6 Location estimates and bootstrap confidence sets for the non working days

home after work. Finally, the differences between the bootstrap confidence sets
widths for the mean and trimmed mean with respect to the median and mode
are quite large. This is also a consequence of the averaging made for the means,
which considerably reduces the variability of these estimators in contrast with
the median and mode.

5 Scale estimation: the standard deviation and trimmed standard deviation for
functional data

As a third step in our analysis, we study the scale properties of the NOx data.
The simplest candidate to estimate the dispersion of the curves is the sample
standard deviation, which is defined by:

σ̂SD =
(

1
n − 1

n
∑

i=1

(xi − µ̂M)2

) 1
2

.

A more robust estimator of the dispersion of a univariate distribution is
the trimmed standard deviation. The idea is similar to the trimmed mean:
obtain the sample standard deviation of the deepest points. We generalize this
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estimator for functional settings by introducing the functional α-trimmed stan-
dard deviation of x1, . . . , xn, which is defined as follows:

σ̂TSD,α =
(

1
n − [αn]

n−[αn]
∑

i=1

(

x(i) − µ̂TM,α
)2

)
1
2

.

As we are considering variation of the curves with respect to a trimmed mean,
it is expected that σ̂TSD,α is less affected by extreme curves because the less
deepest ones have no influence on the calculation of the trimmed standard
deviation. As in the case of the trimmed mean, note that different trimmed
standard deviations are defined by considering alternative depth measures. For
both estimates, bootstrap confidence sets can be obtained with the bootstrap
samples and the procedure described for location estimates.

Now, we obtain the scale measures and their respective bootstrap confidence
sets for the NOx data. Figures 7 and 8 show the standard deviation and the
trimmed standard deviation for the whole sample, the working days and the
non working days, joint with their respective bootstrap confidence sets. In the
three cases, we take α = 0.10 to compute the trimmed standard deviation, so
that, the less 10% deepest curves are not taken into account for averaging. The
main conclusion from the plots is that the trimmed standard deviations in the
three cases attain smaller values than the standard deviations. For instance, the
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Fig. 7 Scale estimates and bootstrap confidence sets for the whole sample
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Fig. 8 Scale estimates and bootstrap confidence sets for the working (up) and non working days
(down)

reduction after trimming in the case of the working and non working days is
as large as the 20%. Although it is expected that the trimmed deviation will
give smaller values than the standard deviation, the amount of reduction get-
ting here suggests that some curves which attain abnormal large values may
be present in the sample. This conjecture is further analyzed in Sect. 6. Finally,
note that the bootstrap confidence sets widths are quite similar in both cases.

6 Outlier detection

The last step in our analysis is concerned with detection of outliers in the NOx
data. Although the presence of outliers may have significative impact on FDA
in many different ways, no outlier detection procedure has been proposed for
functional data. Here, in order to look for outliers in the NOx data, we develop
an algorithm based on distances and analyze its behavior for the NOx data. First
of all, it is necessary to introduce some idea of what an outlier in functional
settings is.

We consider that a curve is an outlier if it has been generated by a stochastic
process with a different distribution than the rest of curves, which are assumed
to be identically distributed. Note that this definition is wide enough to include
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curves which are different from the rest for all the observation period but also
curves which are different from the rest only during some subinterval of the
observation period.

It is well known that if z1, . . . , zn is a sample drawn from the normal distri-
bution, the likelihood ratio test statistic for testing that the observation zi is an
outlier is asymptotically the most powerful test, see, for instance, Barnett and
Lewis (1994). This statistic is given by:

LRT(zi) = zi − z
σ̂

, (4)

where z and σ̂ are the sample mean and standard deviation of the sample.
In practice, the number and location of outliers are unknown a priori, so it is
needed to check every observation for i = 1, . . . , n and employ the statistic:

λ = max
1≤i≤n

|LRT(zi)|. (5)

By comparing the test statistic (5) with some threshold, and an iterative pro-
cedure, one can determinate the presence of outliers. If the observations have
been not drawn from the normal distribution, the likelihood ratio test statistic
(4) can be seen as a quasi likelihood ratio test and still works well. Neither
the sample mean nor the sample standard deviation are resistant to the pres-
ence of outliers, and this produces the effect known as “masking”: a big outlier
inflates the standard deviation, masking the presence of others. Thus, to avoid
this effect, the mean and variance are replaced by some robust estimates such
as the median or the trimmed mean, for the mean, and the median absolute
deviation or the trimmed standard deviation, for the standard deviation.

In accordance with the reasoning for the univariate case, we proceed as
follows. Let Oα(xi) be the statistic:

Oα(xi) =
∥

∥

∥

∥

xi − µ̂TM,α

σ̂TM,α

∥

∥

∥

∥

, (6)

where ‖ ‖ is a norm in the functional space (‖ ‖1, ‖ ‖2 or ‖ ‖∞), µ̂TM,α is the
α-trimmed mean and σ̂TSD,α is the α-trimmed standard deviation. Thus, Oα(xi)

is the distance between xi and µ̂TM,α relative to σ̂TSD,α . We look for functional
outliers in the NOx data by using the statistic:

� = max
1≤i≤n

Oα (xi) , (7)

in conjunction with the following procedure:

Functional outlier detection procedure

1. Given the functional sample x1, . . . , xn, obtain the statistic (7).
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2. Let xI be the curve that attains the maximum value of the statistic (7). If
� = Oα(xI) > C, assume that xI is an outlier, remove it from the sample,
and repeat steps 1 and 2, until no more outliers are found.

The key point in the application of the algorithm is to obtain the threshold C.
For that we propose the following bootstrap procedure, which make use of the
smoothed bootstrap samples needed to obtain the confidence intervals of the
location and scale estimators, and works as follows:

Bootstrap procedure for the threshold

1. Let yb
i , i = 1, . . . , n and b = 1, . . . , B, be the B smoothed bootstrap samples.

For each b = 1, . . . , B, obtain:

�b = max
1≤i≤n−[αn]

Oα

(

yb
(i)

)

,

where yb
(i), i = 1, . . . , n, are the ordered smoothed bootstrap curves according

with their depths, where α is the one taken to obtain µ̂TM,α and σ̂TSD,α in the
outlier detection procedure.

2. The maximum value of the sample �1, . . . , �B is the threshold C used in step
2 of the functional outlier detection procedure.

It is important to note that we compute the values �1, . . . , �B using only
the n − [αn] most deepest smoothed bootstrap curves. This is done in order to
avoid the presence of outliers in the bootstrap curves. But, if the dataset has
no outliers, this choice may be not appropriate because the threshold C will
be downward biased. Thus, we try to avoid the detection of false outliers by
taking the threshold as the maximum of the set �1, . . . , �B, which is expected
to be large enough. Obviously, the procedure depends on the trimming used. A
reasonable choice appears to be select α as the proportion of curves suspicious
of being outliers in the sample.

We apply the outlier detection procedure for the NOx data with α = 0.1.
Table 1 shows the outliers detected by the procedure with the three norms ‖ ‖1,

Table 1 Outliers detected by the procedure for the NOx data

Dataset ‖ ‖1 ‖ ‖2 ‖ ‖∞
C � Outliers C � Outliers C � Outliers

Whole sample 42.57 77.71 03/18 10.68 16.78 03/18 4.87 5.96 03/11
61.20 04/29 14.42 04/29 5.94 03/18
49.48 03/11 12.52 03/11 5.14 04/29

10.87 05/02 5.06 05/02
Working days 47.12 76.46 03/18 11.83 16.47 03/18 4.90 6.01 03/11

60.38 04/29 14.26 04/29 5.61 03/18
50.08 03/11 12.48 03/11 5.09 04/29

Non working days 55.84 61.63 04/30 11.23 13.76 04/30 3.98 4.43 04/30
64.16 03/19 13.55 03/19 4.12 03/19
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‖ ‖2 and ‖ ‖∞. Rows 3 to 6, 7 to 9 and 10 to 11 show the outliers detected
by the procedure for the whole sample, the working and non working days,
respectively. Columns 2, 5 and 8 show the threshold obtained with the boot-
strap procedure for each dataset and norm, respectively. Columns 3, 6 and 9
shows the values of the statistic � for the outliers detected by the procedure,
which are shown in columns 4, 7 and 10. Note that the outliers detected with
the three norms coincide for the working and non working days. This does not
happen for the outliers detected in the whole sample. This is not surprising as
the whole sample is formed by two different groups of curves and the outliers
have been detected not taken this fact into account. About the days in which
the outliers has been detected, the Friday, 03/18 and Saturday, 03/19 correspond
to the beginning of the Eastern vacation in Spain in the year 2005. The Friday,
04/29, Saturday, 04/30 and Monday, 05/02 correspond to a long weekend. Also
the Friday, 03/11 is the beginning of a weekend. All these periods of time are
related with vacation days, so that we conclude that the abnormal observations
detected are linked to a strong increase in traffic due to small vacation periods.
Figure 9 shows the observed curves divided into two groups with the outliers
detected by the procedure with the three norms. This plot confirms the results
obtained by the proposed algorithm. Also, this appears to confirm that the
choice of α = 0.1 is reasonable. We also run the procedure for larger values of
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Fig. 9 Outliers in the curves of the NOx data: working days (up) and non working days (down).
Outliers are in black
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α, but a large number of outliers were detected, so we decided to discard values
of α larger than 0.1.

7 Conclusions

In this paper, we have analyzed a dataset of NOx emissions by using tech-
niques for functional data analysis. First, we have found differences between
the means of the groups formed of working and non working days by using
an ANOVA test. Second, several location estimates, including the mean, the
median, the trimmed mean and the mode have been analyzed for the NOx
emissions, joint with their respective confidence bands, which show differences
between the estimates. Third, two scale estimates, including the standard devi-
ation and the trimmed standard deviation have been obtained for the NOx
emissions, joint with their respective confidence bands, suggesting the presence
of outliers. Finally, we have found outliers in the NOx data by using an outlier
detection procedure for functional data. All the outliers detected are linked to
small vacation periods producing large traffic concentrations.
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