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Summary 

Real world data analysis is often affected by different types of errors as: 
measurement errors, computation errors, imprecision related to the method 
adopted for estimating the data. 
The uncertainty in the data, which is strictly connected to the above errors, may be 
treated by considering, rather than a single value for each data, the interval of 
values in which it may fall: the interval data. Statistical units described by interval 
data can be assumed as a special case of Symbolic Object (SO). In Symbolic Data 
Analysis (SDA), these data are represented as boxes. Accordingly, purpose of the 
present work is the extension of Principal Component analysis (PCA) to obtain a 
visualisation of such boxes, on a lower dimensional space pointing out of the 
relationships among the variables, the units, and between both of them. The aim is 
to use, when possible, the interval algebra instruments to adapt the mathematical 
models, on the basis of the classical PCA, to the case in which an interval data 
matrix is given. The proposed method has been tested on a real data set and the 
numerical results, which are in agreement with the theory, are reported. 
Keywords: interval-valued variable, interval algebra, PCA, visualization. 
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1 Introduction 

The statistical modelling of many problems must account in the majority of cases 
of "errors" both in the data and in the solution. These errors may be for example: 
measurement errors, computation errors, errors due to uncertainty in estimating 
parameters. Interval algebra provides a powerful tool for determining the effects 
of uncertainties or errors and for accounting them in the final solution. 
Interval mathematics deals with numbers which are not single values but sets of 
numbers ranging between a maximum and a minimum value. Those sets of 
numbers are the sets all possible determinations of the errors. A form of interval 
algebra appeared for the first time in the literature in (Burkill 1924), (Young 
1931); then in (Sunaga 1958). Modern developments of such an algebra were 
started by R.E. Moore (Moore 1966). Main results may be found in (Alefeld & 
Herzerberger 1983), (Kearfott & Kreinovich 1996), (Neumaier 1990). 
The methods which have been proposed for treating errors in the data, may be also 
applied to different kind of data that in real life are of interval type. For example: 

�9 Financial data; e. g., (opening value and closing value in a session) 

�9 Customer satisfaction data (expected or perceived characteristic of the 

quality of a product). 

�9 Tolerance limits in quality control. 

�9 Confidence intervals of estimates from sample surveys. 

�9 Query on a database. 
It is known that statistical methods have been primarily developed for single- 
valued variables. However, in real life there are many situations in which the 
adoption of single-valued variables cause a loss of information. This have 
prompted the development of new methodologies of statistical analysis for treating 
interval-valued variables, that is variables that may assume not just a single value 
on the unit on which they have been measured, but an interval of values. Statistical 
indexes for interval-valued variables have been defined in (Canal & Pereira 1998) 
as scalar statistical summaries. These scalar indexes, may cause loss of 
information inherent in the interval data For preserving the information contained 
in the interval data many researchers and in particular Diday and his school of 
Symbolic Data Analysis (SDA) have developed some methodologies for interval 
data which provide interval index solutions that sometimes appear oversized as 
they include unsuitable elements. An approach, which is typical for handling 
imprecise data, is proposed by (Marino & Palumbo 2003). The centre and the 
radius of each considered interval and the relations between these two quantities 
are taken into account. An alternative approach for treating interval-valued 
variables is proposed in (Gioia & Lauro 2005).The methodology consists in using 
both the interval algebra and the optimization theory. 
Methods for Factorial Analysis and in particular for Principal Component 
Analysis (PCA) on interval data, has been proposed by (Cazes et al. 1997), 
(Chouakria 1998), (Chouakria et al. 1998), (Gioia F. 2001), (Lauro & Palumbo 
2000), (Lauro et al. 2000), (Palumbo & Lauro 2003), (Rodriguez 2000). Statistical 
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units described by interval data can be assumed as a special case of  Symbolic 
Object (SO). In Symbolic Data Analysis (SDA), these data are represented as 
boxes. The purpose of  the present work is the extension of  Principal Component 
analysis (PCA) to obtain a visualisation of  such boxes, on a lower dimensional 
space pointing out the relationships among the variables, the units, and between 
both of  them. The approach that we propose, having previously analysed the 
applicability of  the interval algebra tools (Alefeld & Herzberger 1983), (Neumaier 
1990), (Kearfott & Kreinovich 1996) is to adapt the mathematical models, on the 
basis of  the classical PCA, to the case in which an interval data matrix is given. 
With difference to other approaches proposed in the literature that work on scalar 
recoding of  the intervals using classical tools of  analysis, we make extensively use 
of  the interval algebra tools combined with some optimization techniques. The 
introduced methodology, named Interval Principal Component Analysis (IPCA) 
will embrace classical PCA as special case. 
In section 2 of  the present work some definitions, notations and main results of  the 
interval algebra are introduced. In section 3 the 1PCA methodology is presented. 
In section 4 and section 5 the interpretation of  the obtained interval solutions and 
some numerical results on a real data set are presented. 

2 Definitions notations and basic facts 

2.1 Interval algebra 

An interval [a,b] with a < b, is defined as the set of  real numbers between a and b: 
[a,b]:{x/a< x<b} 

Degenerate intervals of  the form [a,a], also named thin intervals, are equivalent to 
real numbers.The symbols E ,  c ,  U ,  ~ ,  will be used in the common sense of  

set theory. For example by [a,b] c [c,d] we mean that interval [a,b] is included as 
a set in the interval [c,d].Furthermore it is [a,b]=[c,d] ~ a=c, b=d. 
Let ,~ be the set of  intervals. Thus 1E,7 then l=[a,b] for some a _< b. Let us 
introduce an arithmetic on the elements of  ,% The arithmetic will be an extension 
of  real arithmetic. I f  �9 is one of  the symbols +, -,-, /, we define arithmetic 
operations on intervals by: 

[a,b].[c,d]={xoy/ a<_x<_b,c<_y<d} (2.1.1) 

except that we do not define [a, by[c,d] if 0 E[c,d]. 
The sum, the difference, the product, and the ratio (when defined) between two 
intervals is the set of  the sums, the differences, the products, and the ratios 
between any two numbers from the first and the second interval respectively. 
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Let us write an equivalent set of  definitions in terms of  formulas for the endpoints 
o f  the resultant intervals. 
Let [a,b], [c,d] be elements o f ~ ,  it is: 
[a, bl+[c, dJ=[a+c, b+d] 
[a,b]-[c, dl=[a-d,b-c) (2.1.2) 
[a,b] x [c,d]=[min(ac, ad, bc, bd), max(ac, ad, bc, bd)] 
if O~[c,d], then 
[a, by/fc, d] :[a, by • 1/c] 
It can be easily proved that the addition and the product in (2.1.2) are associative 
and commutative. Real numbers 0 and 1 can be both regarded as units for addition 
and for product respectively. Other properties may be found in (Moore 1966). 

Definition 2.1.1 

A rational expression F ( X  1 , X  2 ..... Xn)  in the intervals X,, X2, .... Xn, is a finite 

combination, with the interval arithmetic operations, o f  Xz, X2 . . . . .  X,  and a finite 
set o f  constant intervals. 

Theorem 2.1.1 

I f  F ( X  1 , X  2 ..... X n ) is a rational expression in the intervals Xl, X2, .... X,, then 

X '  1 c X l .. . . .  X '  n c X n = F (X ' , ,X '  2 ..... X ' n ) c  F ( X I , X 2  ..... Xn) .  

for  every set o f  interval numbers XI, )(2 . . . . .  X ,  for  which the interval arithmetic 
operations in F are defined. 
From Theorem 2.1.1 follows that, computing a finite number o f  interval arithmetic 
operations, it is possible to bound the range of  values of  a real rational function 
over interval of  values for each of  its arguments. 

Proposition 2.1.1 

I f  F(xl, �9 " ", xn) is a real rational function in which each variable xi occurs only 
once and only at the first power, then the corresponding interval expression 
F ( X  1 , X  2 ..... X n ) will compute the actual range o f  values o f  F for  xi in Xi : 

F ( x t . x 2  ..... x.): { y / y =   (Xl,X2 ..... x . ) ,  x, x , , i  = 1 ..... . }  

2.2 Interval matrices 

Definition 2.2.1 

An nxn interval matrix is the following set: 

where X__ e X are nxn matrix which verify." 

X < _ X  

The inequalities are understood to be component wise. 

(2.2.0 
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Introducing the centre matrix and the radius matrix." 

the (2.2.1) may be expressed as follow: 

x I = [Xc -A ,  Xc +A]. 
Definition 2.2.2 

An nxn interval matrix X t is called symmetric if." 

X I = Xls 

where." 

From the definition follows the characterisation: 

A "e is symmetric r Xand  ~ are symmetric 

Hence a symmetric interval matrix may contain non-symmetric matrices. 
Let us indicate by M,p(R) the set of  interval matrices of  order n • An interval 
matrix A u eM,  p(R) will be represented, in analogy to the case of  scalar matrices, by 
its components as follow: X'=(X,~, where X,j is an interval. 

Definition 2.2.3 

�9 Let )(I =(X,j), ]A =(YcQ E M,p(R). Then. 

~ • r'..=(x,j + r~  

defines the sum interval matrix and the difference interval matrix respectively. 
�9 Let Xf=(Xij) ~ M,r(R) and yt =(YrQ E Mrp(R). Then; 

defines the product interval matrix. 
In particular." 
let Xt=(Xij) ~M,r (R) and u* 6 Mrt(R) (interval vector o f  r interval components), it 
is: 

x l u 1 = ivUv 

�9 Let X ~ E M,p(R) and K be an interval. Then." 

KX'= X' K." = ( KX,.O. 
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2.3 Interval eigenvalues and interval eigenvectors 

Given an interval data matrix X~eM.p(R), a lot of research has been done in 
characterizing solutions of the following interval eigenvalues problem: 

X I u ~: 2 u* (2.3.1) 

which has interesting properties (Deif 1991a), (Rhon 1993), and serves a wide 
range of applications in physics and engineering. 
More in details, the interval eigenvalue problem (2.3.1) is solved by determining 

two sets 2 / and ula given by: 

2 1 = [ 2 a ( X ) : X e X  1] and ulct=[Uct(X).'XEX I] a = l , A , r  

where (2a(x), ua(x)) is an eigenpair of XEX'. The couple (~, d a)will be the a-th 

eigenpair of X t and it represents the set of all a-th eigenvalues and the set of the 
corresponding eigenvectors of all matrices belonging to the interval matrix X/. 

Definition 2.3.1 

For x ER ~ the vector z =sign x may be defined as." 

1 if xi>O 
zi= -1  if xi<O 

i=l, ...,n 

S=diag(sgn x) will indicate the diagonal matrix with sgn x on the principal 
diagonal. 
The above definitions are necessary to enunciate the following theorem (Deif 
1991 a) which gives an important instrument for calculating the eigenvalues of an 
interval matrix. 
Let X ~ be an nxn real interval matrix, Xc and AX its centre and radius matrix 
respectively, and let ua(XJ a=l ..... n, be the eigenvectors of Xc. 

Theorem 2.3.1 

I f  X 1 is symmetric and if S~=diag (sgn ua(X~)), (a=l,...n) calculated for Xc is 
constant on 3( 1, then the eigenvalue A~ of)(,, Xe)d ranges over the interval." 

,t I =~_~(x c - s % a x s a ) , - ~ ( x ~  +saa~'sa)], a=l,...,n (2.3.2) 

Theorem 2.3.1 consents to calculate the interval 2Ja in which the a-th eigenvalue 

of the matrix X, XaX 4 lies. The theorem gives an interesting interpretation of 2 / 

which may be regarded as the a-th eigenvalue of the given interval matrix. The 
further novelty lies in the fact that while previously the problem of the search of 
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the bounds for 2 / was limited to their "estimate", now the approach is different 

inasmuch as it is possible to determine exactly the interval 2/a without recurring 

to any approximation. The interval eigenvectors may be computed by solving a 
linear programming problem as described in (Seif et al. 1992): 

Theorem 2.3.2 

A necessary and sufficient condition for  ua(X) to be an eigenvector o f  X 
corresponding to Aa(X) is: 

= (2.3.3) 

where I is the unitary matrix and 2_a ( X ) < 2,a ( X ) <_ h a ( X  ) . 

To obtain bounds for the components of u~(X), we write (2.3.3) as: 

I 2 a ( X ) I  - S a Xc Sa - AX-  

S a X c  Sa - AX - &a ( X ) I  [ua (x)l ~- o 

where 2_a(X ) <_ h a ( X  ) <_ h a ( X  ) . 

To compute lower and upper bounds for u,(X) we minimize and maximize 

lugs] subject to (2.3.3) for a=l  ..... n-l,  while keeping lu,,I equal to unity. This type 

of constrained optimization problems is known as Linear Parametric Programming 
Problems, the solution of which will be obtained via numerical technique. Bounds 
for u,(X) are readily obtained by multiplying those for lua ( X )  I by the matrix S ~. 

2.4 Interval singular values 

The interval singular values of an interval matrix X 4 can be computed directly 
from the eigenvalue problem for the matrices XIX, XEX t (Deif 1991 b). 
Thus the problem of computing the interval singular values of X / becomes the 
following: given an interval matrix X r with central matrix Xc ~R nXp, find a 
description of the set: 

-r={~:xrxu=~2u, u.O, x~xr} 
Rather than compute bounds for set Z', to confine our self to the single interval 
singular values of XZ: 

cr I ,  a = l  ..... p, V X E X  I 
c t  

the following three assumption must be introduced: 
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Assumption 1 

s i g n ( u a ( X ) ) ,  a=l ..... p, is invariant for each Xe)~, and therefore equals 

sign ( u a ( X c )) evaluated at the centre matrix Xc. 

Assumption 2 

[b'Xua[ < 2lX c ua 

where [ ~ [  _< AX 

Assumption 3 

sign(Xcuo), a=l,...p, is invariant for each XEX t and is therefore equal to 
sign(Xcua(Xc)), evaluated at the centre matrix Xc. 

Conditions for the validity of  Assumptions 1,2,3 may be found in (Deif & Rohn 
1994). Indicating by: 

s~  = diag(sign(ua )) S~ = diag(sign(Xcu,~)) 

it can be proved: 

Lemma 

Values of  8X which extremize the singular value a~ of the matrix Xc+aX, 
V[fi~ I < AX are given by: 

aY = AXS  

Theorem 2.4.1 

Under some Assumptions 1,2,3, the squared singular values o; of 
X e + 6~(, V[~([ < AX, range over the interval: 

2 " I = ~ a , - 2  ] ..... r 

where: 

Thus, once the singular values an interval matrix X r have been computed, a 
description of  the set: 

Z = ~ . ' X T X u = c r 2 u ,  u:r S E X  l} 

is provided and, in particular, a description of  the set of  the eigenvalues of  any 
matrix of  the form XrX, when X~X ~, is computed. 
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Let us consider an interval data matrix of  n units on which p interval-valued 

variables X / , x /  ..... X J , w i t h X / = ( X i j = ~ x O , x g ] ) , i = l , . . , n ,  have been 

observed: 

[ LXllMll ] ... Lxij,Xlj] ... Lxlp,Xlp] 
M M 

xl=l~XilMil] "'" ~xij'xiJ]M "'" ~Xip'Xip]M 

L~Xn,,Xnl] ... ~Xnj,Xnj] ... ~Xnp,Xnpl 

(3.b 

X 1 may be visualized as a set o fn  boxes in ap-dimensional  space. 

The task is to extend to X ! Principal Component Analysis to obtain a 
visualisation, on a lower dimensional space, of  the relationships among the 
variables, the units, and between both of  them. 
The aim is to use, when possible, the interval algebra instruments to adapt the 
mathematical models, on the basis of  the classical PCA, to the case in which an 
interval data matrix is given. Let us suppose that the interval-valued variables have 
been previously standardized (see Appendix). 
It is known that the classical PCA on a real matrix X, in the space spanned by the 
variables, solves the problem of  determining m<_p axes u~,  a = l  ..... m such that the 
sum of  the squared projections of  the point-units on u~ is maximum: 

u~ X ' X  u~ = Max  1 < tz < m 

under the constraints: (3.2) 

t 'u'~up =o for  a ~ fl  

u' auf l  = l for" a =  fl 

The above optimization problem may be reduced to the eigenvalue problem: 

X ' X  u~ = A u~, 1 < a < m (3.3) 

When the data are of  interval type, f f  may be substituted in (3.3) and the interval 
algebra may be used for the products; equation (3.3) becomes an interval  
e igenvalue  prob lem of  the form: 

( s l  ) ' x l u l  a 1 1 = 2  u a ( 3 . 4 )  
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which has the following interval solutions: 

[2ct(Z) ." Z ~ ( X  l ) ' x  I ] , [Uot (Z)  .'Z E(X  l ) ' x  I ] a= l ,A  , p (3.5) 

i.e., the set of a-th eigenvalues of any matrix Z contained in the interval product 

(X 1) 'X 1 , and the set of the corresponding eigenvectors respectively. The 

intervals in (3.5) may be computed by Theorem 2. 3.1. 
Using the interval algebra for solving problem (3.4), the interval solutions will be 
computed but, refer to worse, those intervals are oversized with respect tothe 
intervals of  solutions that we are searching for as it will be discussed below. 
For the sake of simplicity, let us consider the case p=2, thus two interval-valued 
variables: 

XI l=(Xi l=~Xi l , ' x i l ] ) , i= l  ..... n, X2I=(x i2=~xi2 ,x i2] ) , i=l  ..... n 

have been observed on the n considered units. 

XI I and X21 assume an interval of  values on each statistical unit: we do not know 

the  exact value of the components xil or x~2 for i=l,...n, but only the range in 
which this value falls. In the proposed approach the task is to contemplate all 
possible values of the components x~ , xi2 each of which in its own interval of 

values Xil=~_i l ,Xi l ] ,Xi2=~_i2 ,Ei2  ] for i=l,...n. Furthermore for each 

different set of values xl,,x21 ..... x,l and XI2,X22,...,Xn2, where 
r . 

xij ~ _ i j , x i j J i = l , A , n , j = l , 2 ,  a different cloud of points in the plane is 

univocally determined and the PCA on that set of points must be computed. Thus, 
with interval PCA (IPCA) we mean to determine the set of solutions of the 
classical PCA on each set of point-units, set which is univocally determined for 
any different choice of the point-units each of which in its own rectangle of 
variation. 
Therefore, the interval of  solutions for which we are looking for are the set of the 
a-th axes, each of which maximize the sum of square projections of a set of points 
in the plane, and the set of the variances of those sets of points respectively. 
This is equivalent to solve the optimization problem (3.3), and so the eigenvalue 
problem (3.4) for each matrix X e X  1. 
In the light of the above considerations, the background in approaching directly the 
interval eigenvalue problem (3.4), comes out by observing that the following 
inclusion holds: 

1 
this means that in the interval matrix ~Y I ]'X I are contained also matrices which 

are not of the form X)(. Thus the interval eigenvalues and the interval 
eigenvectors of (3.4) will be oversized and in particular will include the set of all 
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eigenvalues and the set of the corresponding eigenvectors of any matrix of  the 

form XT(contained in Of ! ) ' X ' .  

This drawback may be solved by computing an interval eigenvalue problem 
considering in place of the product: 

( X ' ) I x I = { x y  / X ~ . ( X ' ) I , y ~ x  1} 

the following set of matrices: 

O I = ~ ( ' X  / X E X  I}  

i.e., the set of all matrices given by the product of a matrix multiplied by its 
transpose. 
For computing the a-th eigenvalue and the corresponding eigenvector of  set O,  

1 Theorem 2.4.1 may be used. that will still be denoted by 2I a u a , 

It is important to remark that Theorem 2.4.1 may be applied under strong 
hypotheses 1 on the input matrix as described in w When the above hypotheses 
are not verified, considering that the variables have been previously standardized, 
the eigenvalues and eigenvectors of the correlation interval matrix may be 
computed by Theorem 2.3.1 which is subject to a reduced number of hypotheses 
than Theorem 2.4.1. The correlation interval matrix will be indicated by: 

F I =  (corro() where corro! is the interval o f  correlations b e t w e e n  x i l , x j  1 

(Gioia & Lauro 2005). Notice that while the ij-th component of/-r is the interval 

o f  correlations b e t w e e n  Xi I ' Xj I , the ij-th component of ( x ' ) l  x I is an interval 

which includes that interval of  correlations and contains also redundant elements. 
It is important to remark that 01 c 1 "I , then the eigenvalues/eigenvectors o f / 4  

will be also oversized with respect to those of  01 . 
The a-th interval axis or interval factor will be the a-th interval eigenvector 
associated with the a-th interval eigenvalue in decreasing order 2. 
The orthonormality between pairs of interval axes must be interpreted according 
t o :  

Vu a ~ u 1 such that u'au a = 1, 3 ufl ~ ulp with a * fl such that u'flufl = 1 / 

t 
UaU # = 0 

Thus two interval axes are orthonormal to one another if, taking a unitary vector in 
the first interval axis there exists a unitary vector in the second one so that their 
scalar product is zero. 

The method works with intervals which are small with respect to the ratio between the radius and the coordinate of 
�9 the centre of each interval. Empirically it has been observed that the above ratio must be approximately of 2-3%. 

2 Considering that the a-th eigenvalue of O is computed by perturbing the a-th eigenvalue of (.V)'A x, the ordering on 
the interval eigenvalues is given by the natural ordering of the corresponding scalar eigenvalues of (A")'A ~. 
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In the classical case the importance explained by the a-th factor is computed by: 
P 

h a / ~ h  B . In the interval case the importance of each interval factor is the 
fl=l 

interval: 

2_a ~_~ -~ (3.7) P-- P 
#=1 #=J 
#~a 3r 

i.e., the set of all ratios o f  variance explained by each real factor u~ belonging to 

I The analytical form of the bounds in (3.7) has been the interval factor u a . 
computed by considering the following chain of equalities: 

A a 1 
f ('~l'22"A "~p ) = p - 

Z h p  1+ 1 p 
fl= l ha fl=~l h fl 

flr 
fhas  been transformed into a real rational function in which each variables occurs 
only once and at the first power; therefore according to Proposition 2.1.1, the 

\ 

I ) will compute the actual range corresponding interval expression f ( h l , h l , A  hp 

of values o f f  for h a e h / V a = 1,A ,p .  

Analogously to what already seen in the space R p, in the space spanned by the 
units (R"), the eigenvalues and the eigenvectors of the set: 

(O ' ) ]  = ~,X' / X ~ X /  } 

must be computed; the a-th interval axis will be the a-th interval eigenvector 
associated with the a-th interval eigenvalue in decreasing order. 
Also in this case, Theorem 2.4.1 on the interval matrix (X) l may be used if all its 
hypotheses are satisfied, otherwise the eigenvalues/eigenvectors of the 
standardized interval matrix (SS')I: 

(SS,)I  =((ss,O. )I ) where (ss' O. )1 =[ss,o. ,ss'--70.] 

(see Appendix for details) may be computed. 

Considering that ( 0 ' )  ! c (SS') I , the eigenvalues/eigenvectors of (SS ' f  will be 

oversized with respect to those of ( 0 ' ) 1 .  

It is known that a real matrix and its transpose have the same eigenvalues and the 
corresponding eigenvectors connected by a particular relationship. Let us indicate 
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again with ,~//, 2 / ,A, 2. / the interval eigenvalues of  s and with Vl I V21~ . . . .  I~p I 

the corresponding eigenvectors, and let us see how the above relationship applies 
also for the "interval" case. Let us consider for example the a- th  interval 

eigenvalue 201 and let ua 1, v~ 1, be the corresponding eigenvectors of O I and 

( 0 ' ) I  associated with At respectively. 

Taking an eigenvector of some X ' X e O  ! : v ,~v~ t, then: 

1 / U a = k a X ' v  a (3.8) 3 u ~ u  a 

where the constant ka is introduced for the condition of unitary norm of the vector 
X'v~. 

4 Representation and interpretation 

4.1 Units 

From classical theory, given an n • real matrix Xwe  know that the a-th principal 
component ca is the vector of  the coordinates of  the n units on the a-th axis. Two 
different approaches may be used to compute ca: 

1) 

2) 

ca may be computed by multiplying the standardized matrix Xby  the a-th 
computed axis us: Xu~  
from the relationship (3.8) among the eigenvectors of X ' X  and XX', ca 

may be computed by the product 2~--~ - v a of the a-th eigenvalue of XX' 

with the corresponding eigenvector. 

When an n xp interval-valued matrix X / is given, the interval coordinate of the i-th 
interval unit on the a-th interval axis, is a representation of an interval which 
comes out from a linear combination of the original intervals of the i-th unit by p 
interval weights; the weights are the interval components of  the c~-th interval 
eigenvector. A box in a bi-dimensional space of representation, is a rectangle 
having for dimensions the interval coordinates of the corresponding unit on the 
pair of computed interval axis. For computing the a-th interval principal 

I I 1 (c la ,C2a,A , c l a  } two different approaches may be used: component c a = 

I 1 1 1) compute by the interval row-column product: c a = X Ua,  

2) compute the product between a constant interval and an interval vector: 

C ~  = �9 l-' a . 
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In both cases, the interval algebra product is used thus, the i-th component clia of 

! will include the interval coordinate, as it has been defined above, of the i-th Cot 
interval unit on the a-th interval axis. 
We refer to the first approach, for computing principal components, when the 
theorem for solving the eigenvalue problems (for computing v~) cannot be applied 
if its hypotheses are not verified .Classical PCA gives a representation of the 
results by means of graphs, which permit us to represent the units on projection 
planes spanned by pairs of factors. The methodology (IPCA), that we have 
introduced, permit us to visualize on planes how the coordinates of the units vary 
when each component, of the considered interval-valued variable, ranges in its 
own interval of values, or equivalently when each point-unit describes the boxes to 
which it belongs. 
Indicating with U / the interval matrix whose j-th column is the interval 
eigenvector u~ ~ (a=l,...p), the coordinates of all the interval-units on the 
computed interval axis are represented by the interval product X~U t. 

4.2 Interval variables 

In the classical case, the coordinate of the i-th variable on the a-th axis is the 
correlation coefficient between the considered variable and the a-th principal 
component. Thus variables with greater coordinates (in absolute Value) are those 
which best characterize the factor under consideration. 
Furthermore, the standardization of each variable makes the variables, represented 
in the factorial plane, fall inside the correlation circle. 
In the interval case the interval coordinate of the i-th interval-valued variable on 
the a-th interval axis is the interval correlation coefficient (Gioia & Lauro 2005) 
between the variable and the a-th interval principal component. The interval 
variables in the factorial plane however, are represented, not in the circle but in the 
rectangle of correlations. In fact, computing all possible pair of elements, each of 
which in its own interval correlation, may happens that pairs with the coordinates 
that are not in relation one another would be also represented; i.e. pairs of 
elements which are correlations of different realizations of the two single-valued 
variables for which the correlation would be considered. 
The interval coordinate of the i-th interval-valued variable on the first two interval 
axes ua z u J,  namely, the interval correlation between the variable and the first and 
second interval principal component respectively, will be computed according to 
the procedure in (Gioia & Lauro 2005) and indicated as follow: 
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Naturally the rectangle of correlations will be restricted, in the representation 
plane, to its intersection with the circle with centre in the origin and unitary radius. 

4.3 Contributions 

In the case of single-valued variables, the weight of the i-th unit on the variability 
of the a-#: axis, named absolute contribution, is given by: 

2 
C 

ia (4.3.1) 
n 
s 

h=l  

n 2 
where c 2 is the squared coordinate of the i-th unit and ~Chj is the variance of 

i j  h=l  

the projected units on the a-th axis respectively. In the case of interval-valued 
variables, (4.3.1) must be considered as a function g of ci~ which may be 
transformed as follow: 

g(Cla, C2a ,A ,c na ) = 

c 2 
ia 1 

n n 2 1 2 
Z chct l+~.2tah~=lCha 
h=l 

h~:i 

Proposition 2.1.1 applies to function g, thus the interval: 

Cict 

n --2 --2 n 
+ ZChc t  C O" + ZC_2ct 

h=l h=l 
h~i h~i 

(4.3.2) 

is the set of all absolute contributions of the i-th unit on the a-th axis varying the 
squared projections cei~ in their interval of values. Interval (4.3.2) is the interval 
absolute contribution of the i-th interval unit on the a-th interval axis. 
The contribution of the j- th variable on the a-th axis may be analogously 
computed. Interval indexes for the quality of representation on that axis might be 
calculated substituting the denominator in (4.3.1) with the sum of squared 
coordinates of the units or of the variables. This procedure however would not 
furnish a good solution for measuring the "quality" of the reconstruction of the 
original data matrix. To this purpose the introduction of the singular value 
decomposition for interval matrices is necessary. 
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5 Numerical  results 

This section shows an example of the proposed methodology on a real data set: the 
Oil data set (Ichino 1988) (the table below). The data set presents eight different 
classes of oils described by four quantitative interval-valued variables: "Specific 
gravity", "Freezing point", "Iodine value" "Saponification". 

Spec. Freezing Iodine Saponifi- 
value cation gravity point 

Linseed 0.93 0.94 

Perilla 0.93 0.94 

Cotton 0.92 0.92 

Sesame 0.92 0.93 

CameHia 0.92 0.92 

Olive 0.91 0.92 

Beef 0.86 0.87 

Hog 0.86 0.86 

-27 -18 

-5 -4 

-6 -1 

-6 -4 

-21 -15 

0 6 

30 38 

22 32 

170 204 

192 208 

99 113 

104 116 

80 82 

79 90 

40 48 

53 77 

Table2: The interval data set 

118 196 

188 197 

189 198 

187 193 

189 193 

187 196 

190 199 

190 202 

The first step of the 1PCA consists in calculating the following interval correlation 
matrix: 

Spec.gravity 
Freezing, point 
Iodine value 
Saponification 

Spec.gravity Freezingpoint 
[1.00,1.00] 
[-0.97,-0.80] [1.003.00] 
[0.62,0.88] [-0.77,-0.52] 
[-0.64,-0.16] [0.30,0.75] 

lodine value 

[1.00,1.00] 
[-0.77,-0.34] 

Saponification 

[1.O0,1.OO] 

Table2." The interval-correlation matrix 

The interpretation of the interval correlations must take into account both the 
location and the span of the intervals. Intervals containing the zero are not of 
interest because they indicate that "everything may happen". An interval with a 
radius smaller than that of another one is more interpretable. In fact as the radius 
of the interval correlations decreases, the stability of the correlations improves and 
a better interpretation of the results is possible. In the considered example, the 
interval correlations are well interpretable because all intervals do not contain the 
zero, thus each pair of interval-valued variables are positively correlated or 
negatively correlated. For example we observe a strong positive correlation 
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between Iodine and Specific gravity and a strong negative correlation between 
Freezing point and Specific gravity. At equal lower bounds, the interval 
correlation between Iodine value and Freezing point is more stable than that 
between Iodine value and Saponification. 

Eigenvalues and explained variance: 
21=[2.45,3.40], Explained Variance on the 1st axes: [61%, 86%] 
22=[0.68,1.11 ], Explained Variance on the 2nd axes: [ 15%, 32%] 
/13=[0.22,0.33], Explained Variance on the 1st axes: [4%, 9%] 
;t4=[0.00,0.08], Explained Variance on the 1st axes: [0%, 2%]. 

The choice of  the eigenvalues and so of  the interval principal components may be 
done using the interval eigenvalue-one criterion [1,1]. In the numerical example, 
only the first principal component is of  interest because the lower bound of  the 
corresponding eigenvalue is greater than 1. The second eigenvalue respects the 
condition of  the interval eigenvalue-one partially and, moreover, it is not 
symmetric with respect to 1. Thus the representation on the second axis is not of  
great  interest even though the two first eigenvalues reconstruct most part of  the 
initial variance. Thus, the second axis is not well interpretable. 

Interval variables representation: 
The principal components representation is made analysing the correlations 
among the interval-valued variables and the axes, as illustrated below: 

Correlations 
Variables/l st axes 
Correlations 
Variables/2nd axes 

Spec.~,ravity Freezing point 
[-0.99, -0.34] [0.37,0.99] 

[-0.99,0.99] [-0.99,0.99] 

Iodine value 
[-0.99, -0.20] 

[-0.99,0.99] 

Saponification 
[-0.25,0.99] 

[-0.99,0.99] 

Table3: Interval-correlations Variables~Axes 

The first axis is well explained by the contraposition of  the variable Freezing 
point,  on the positive quadrant, with respect to the variables Specific gravity and 
lodine value on the negative quadrant. The second axis is less interpretable 
because all the correlations vary from -0.99 and 0.99.1 
Here below, the graphical results achieved by IPCA on the input data table are 
shown. In Figure 1 the graphical representation of  the units is presented; in Figure 
2 only the two variables: Specific gravity and Freezing poin t  are represented: 

The absolute contributions on the first axes vary from the interval [0,0.91] for Linseed and the 
interval [0,0.16] for Sesame, this reflect the "size" of the individuals on the first axes. 
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FiOOtre I:  RepYesentatJo.o of the 
#nit# on the f "  factorial#lane 

Fi#ure 2: Repreaentatioo oF the 
variable~ or) the fz* factoria l plane 

The objects (Fig 1) have a position on the first axis which is strictly connected to 
the "influence" that the considered variables have on that axis. It can be noticed 
that Beef and Hog are strongly influenced by Saponification and Freezing point; 
on the contrary Linseed and Perilla are strongly influenced by Specific gravity and 
lodine value. The other oils Camilla and Olive, are positioned in the central zone 
so they are not particularly characterized by the interval-valued variables. 
It is important to remark that the different oils are characterized not only by the 
positions of the boxes but also by their size and shape. A bigger size of a box with 
respect to the first axis, remarks a greater variability of the characteristics of the 
oil represented by the first axis. However also the shape and the position of the 
box can give information on the variability of the characteristics of the oil, with 
respect to the first and second axis. 
Computational cost: the computational cost of each optimization problem reefers 
to the cost of a constrained nonlinear optimization or nonlinear programming 
problem. For computing the correlation matrix, p • optimization problems must 
be solved. The computational cost for computing thej-th eigenvector reefers to the 
cost of a linear parametric programming problem. 

Appendix 

Given two single-valued variables: X r : ( X i r ) , X  s = (X i s ) ,  i = 1 ..... n ,  it is known 

that the correlation between Xr and Xs may be computed as follow: 

cov( Xr ,Xs ) (1) 
c ~  = h ( X l  . . . . . .  X n , r . X i , s , ' " X n , s )  = ~ ~ f ~  X s  ) 
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Let us consider now the following interval-valued variables: 

=Lx,  X i r ] )  =Lx  x , , ] ) ,  , = ,  ..... ~ 

the interval  correlat ion is computed as follow (Gioia & Lauro 2005): 

corr (x~ . x~ ) = [ 1 rain h (xLr , . . . , x ,~ , r ;XLs , - . .Xn , s )  , max h (xLr . . . . ,Xn . r ;X l~ , . . . , xn ,  s 

t 
XirEXIr Xir~Xir 
xis eX& x is e Xis 

i=l,...,n i=l,.. .n 

where h ( X l ,  r . . . . .  Xn ,  r ; Xl, s ..... xn, s ) is the function in (1). 

Analogously, given the single-valued variable Xr, the s tandardized  Sj=(sir)i, of Xr 
is given by: 

Xir  - "Xr i = 1  ..... n (2) 
2 "  S i r  ~l-~ . O'r 

- 2 where Xr and crr are the mean and the variance of Xr respectively. 

When an interval-valued variable X r  I is given, following the same approach of 

(Gioia & Lauro 2005), the component sir in (2), for each i = l  ..... n, transforms into 
the following function: 

Xir -- X r 
S i r ( X  ir ' " ' X n r  ) =  ~J'~R .O  2r 

! - - |  I 
a s  Xir varies in L~-ir ' Xir ], i = l  ..... n. The s tandardized  interval  component sir of 

X /  may be computed by minimizing/maximizing function (3), i.e. calculating 

the following set: ll ] S i r =  rain S i r ( X i r , . . . X n r  ) , m a x  S i r ( X i r , . . . X n r  ) 

x ir EXit  x ir ~Xir  

i=l,..,n i=l, , .n 

(4) 

1 in (4) is the interval of  the standardized component si, that may be computed Sir 

when each component xir ranges in its interval of values. For computing the 
interval standardized matrix S t of an n xp matrix X/, interval (4) may be computed 
for each i=1 ..... n and each r = l  ..... p. Given a real matrix X and indicating by S the 
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standardized of X, it is defined the product matrix: SS'=(ss '~. Given an interval 
matrix X ~, the product of S t by its transpose will not be computed by the interval 
matrix product (S)ISt but by minimizing/maximizing each component of SS'when 
x U varies in its interval of values. The interval matrix (Ss,) I = ((ss'~)1 ) is: 

= rain ss ' i j  ( x i j , . . . x j )  . . . .  x j 

xij~X~j x~j~X d 

Li=/,...n i=l,...n 
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