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Summary  

While symbolic data exist in their own right, contemporary datasets can be 
too large to analyse using traditional statistical methodologies. Aggregation 
of these large datasets into sets of more managable size perforce produce 
datascts whose entries are symbolic data. This paper studies the deriva- 
tion of basic description statistics, in particular, histograms and mean and 
variances plus joint histograms for interval-valued datasets when logical de- 
pendency rules are present. Algorithms for calculating these histograms are 
also provided. 
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1 I n t r o d u c t i o n  

While symbolic data exist in their own right as small or large datasets, the ad- 
vent of the modern computer has brought with it classical (and/or symbolic) 
datasets that  are too large in size to be analysed using traditional statis- 
tical methodologies even with the computational assistance of those same 
computers that generated such data. Therefore, in order to elicit reasonable 
and appropriate analyses and conclusions from the data, it becomes neces- 
sary to aggregate the data in some meaningful manner first before analyses 
can proceed. How this aggregation occurs will depend on some of the un- 
derlying questions and/or answers being asked and/or sought. For example, 
suppose a dataset consists of the medical records for a country (say), and 
suppose that  apart  from the more-direct medically related variables, there 
are also demographic variables such as the individual's age, gender, town 
or residence, and so on. One basic question may relate to what happens 
across towns or residence sites, while another may be concerned with age 
• gender differences. Thus, these questions led to aggregations by towns, 
or by age x gender, respectively. The number of possible aggregations is 
limited only by the number of such basic questions. Whether ihe original 
data were classical or symbolic data, the aggregated values will now be as 
lists, and/or intervals, and/or modal values, regardless of the nature of the 
aggregation method adopted. For example, a list could be the types of cancer 
observed, Y = {lung, colon . . . .  }; an interval value could be the pulse rate, 
Y = 64 • 1 = (63, 65); a modal value could be a histogram, Y = {(red, Pl), " 
(green, P2), . . .} with Epi -- 1. For a review of symbolic data, see Billard 
and Diday (2003) and for a more detailed description, see Bock and Diday 
(2000). 
In this paper our focus will be on interval-valued data in the presence of 
rules, and in particular on obtaining basic descriptive statistics such as fre- 
quency histograms, joint frequency histograms and sample means and vari- 
ances. Rules, so-called, can arise in two (or three) broadly defined ways. 
The first relates to underlying conditions that exist, be the data classical- or 
symbolic-valued. For example, interest may center on children, in which case 
any analysis conditions the data to contain only children; or, the variables }I1 
and }I2 may be required to satisfy a condition that  ]71 +]I2 =/~ (say), or so on. 
In contrast, when aggregating data into symbolic-valued variables, the very 
action of aggregation may produce data that perforce engage the adoption of 
rule(s) to maintain data integrety. For example, suppose we have values for 
Y1 = age and Y2 = number of children, and suppose we have particular clas- 
sical values Ya = (21, 2), Yb = (10, 0), Y c  = (16, 1) , . . . ,  where Y = (Y1, Y2); 
and suppose further that  the concept of interest, after appropriate aggrega- 
tion, put these three individuals into the same category and produced the 
symbolic interval-valued observation ~ = {(10, 21), (0, 1, 2)}. As it stands, 
the value ~ implies that  persons in the age interval (10, 21) years had (0, 1, 
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2) children, including the possibility that  the 10-year-old had 1 (or 2) chil- 
dren. To maintain data integrity here , i t  is necessary to include a rule such 
as ~, = {If Y1 < 14 (say), then }I2 = 0}. The need for this type of rule is 
unique to symbolic data. The precise nature of such rules could perforce vary 
with the description of the symbolic data value. A possible third type of rule 
is what would amount to a form of data cleaning; e.g., a "rule" such as age 
= Y1 > 0, could be used to catch observed (classical, or symbolic) values 
of Y1 = -15  (say, an obvious miskeying situation). In some circumstances, 
data cleaning rules are absorbed into either of the first two categories defined 
above. Data cleaning rules however do need to be present for datasets too 
large to be "eye-balled" for correctness. 

Since classical data are but single points in p-dimensional space (where p is 
the number of variables), rules are relatively easy to manage. However, since 
symbolic values are p-dimensional hypercubes and/or Cartesian products of 
distributions in p-dimensional space, rules can and do create di~culties. We 
focus on rules for interval-valued data; the methodology can be extended to 
histogram-valued data reasonably easy conceptually (less easy computation- 
ally!) 

Bertrand and Goupil (2000) derived formula for finding the univariate his- 
togram and sample mean and variance for a single interval-valued variable 
Y without rules. They also developed the corresponding results for multi- 
valued (list) data with and without rules. To accommodate rules, their basic 
approach was to convert each actual possible symbolic data value into a so- 
called virtual data value where the virtual values were those that satisfied 
the given rule(s). Billard and Diday (2003), alluded to extending Bertrand 
and Goupil's virtual data idea to interval data with rules, but gave no de- 
tails. Our aim here is to develop this concept further and also to extend it to 
finding joint histograms for (II1, ]I2) where Y1 and Y2 are each interval-valued 
variables and where rules exist. We develop our basic approach through rules 
applied to the interval-valued data of Table 1. 

Therefore, in Section 2, we consider the nature of the virtual observation 
space in the presence of rules and show how the virtual observation values 
can be determined. Then, in Section 3, we use these virtual observations to 
obtain ur~ivaxiate histograms under a variety of specific rules. Calculating 
the sample mean and variance in the presence of rules is studied in Section 
4. Derivation of a joint histogram for the bivariate Y = (Y1, ]I2) is considered 
in Section 5. The basic principles involved are discussed and summarized 
in Section 6. These form the nucleus of the methodology required to obtain 
basic statistics for interval-valued data in the presence of rules. In the course 
of these derivations, the need arises for calculating a histogram of histogram- 
valued data and an algorithm for calculating a joint histogram for interval- 
valued data; these algorithms axe outlined in Section 7. 
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2 Observed and Virtual Symbolic Intervals 

The da ta  of Table 1 represent two random variables, viz., Y1 --- Number  
of At-Bats;  and Y2 = Number  of Hits, for baseball players over a season. 
Players are aggregated by teams, so tha t  the resulting team statist ics are 
now intervals. The  results shown in Table 1 are based on actual  (Y1, Y2) 
statist ics for a sample of players from a variety of baseball  teams obtained 
from Vanessa and Vanessa (2004). Some additional results have been inserted 
for illustrative purposes. 

We denote a part icular  realization of Y = (Y1,Y2) by 4 = (41, ~2) with 
~i = (ai, bi), i = 1, 2. Following Bert rand and Goupil (2000), we make the as- 
sumpt ion  tha t  specific (point) values of Y~ are uniformly distr ibuted across the 
interval (ai, bi). Further,  ~ takes values in the p = 2-dimensional hypercube 
(i.e., rectangle) bounded by (al ,  51) x (a2, 52). We denote a specific observa- 
tion by ~(u), which is bounded by the rectangle R(u) = (a1~, blu) x (32~, b2~) 
for u = 1 , . . . ,  n, where n is the number  of observations. 

u 
Team 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

T a b l e  1 - A t - B a t s  a n d  H i t s  b y  T e a m  

Y2 
#At-Bats  #Hi ts  
(289, 538) (75, 162) 
(88, 422) (49, 149) 

(189, 223) (201,254) 
(184, 476) (46, 148) 
(283, 447) (86, 115) 

(24, 26) (133, 141) 
(168, 445) (37, 135) 
(123, 148) (137, 148) 
(256, 510) (78, 124) 
(101, 126) (101, 132) 

Pattern Team # At-Bats 
S 11 (2i2, 492) 
I 12 (177, 245) 
F 13 (342, 614) 
B 14 (120, 439) 
B 15 (S0, 468) 
A 16 (75, 110) 
B 17 (116, 557) 
E 18 (197, 507) 
B 19 (167, 203) 
D 

Y2 
#Hi ts  

(57, 151) 
(189, 238) 
(121, 206) 
(35, 102) 
(55, 115) 
(75, 110) 
(95, 163) 
(52, 53) 
(48, 232) 

Pattern  
B 
G 
B 
B 
I 
C 
I 
B 
H 

To examine these da ta  more closely, we first make the logical deduction tha t  
the Number  of At-Bats  cannot  be less than  the Number  of Hits, i.e., Y1 >- Y2- 
Consider the second observation 4(2). Each of the 41(2) and 42(2) values is 
possible. The  resulting rectangle R(2) has vertices at (Xl, x2) = (88, 49), (88, 
149), (422, 49) and (422, 149). All (Xl, x2) values contained in this rectangle 
appear  as possible values. This includes the vertex value (Xl, x2) = (88, 149), 
i.e., the number  of hits is 149 from 88 a t -bats  - clearly not a logical possibility. 
However, another  player can have 149 hits from 422 a t -ba ts  for example,  and 
so on. Here, the logical rule v : Y1 -> ]I2 implies tha t  the actual  apparent  
hypercube R(u) has to be t ransformed to a vir tual  hypercube V(u)containing 
only those values of R(u) tha t  satisfy the rule v. In contrast,  the observation 
u = 6, with 4(6) = {(24,26),(133,141)} would suggest tha t  the 41 and ~2 
have been transposed.  The  logical rule here catches this, as par t  of a da ta  
cleaning process for example.  

Formally, we adap t  the definition of vir tual  data,  from Ber t rand and Goupil 
(2000), as follows. 
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Definition: The virtual observation space V = V(u)  of an actual  observation 
space R - R(u)  consists of all possible values x in R which satisfy all the 
rules ~ = (~1, v2 . . . )  operat ing on R. Tha t  is, for the observation u, 

V ( u ) =  {x �9 R(u) ,  ~,(x) = 1, for all .~ in ~} (1) 

where vi(x) = 1 if the rule is t rue for the vector-value x and is 0 if the rule 
is not true for x. Let us denote the vir tual  observation by {' = ({~, . . .  ,{p) 
with {~ = (a{,b~), i = 1 , . . . , p .  

To illustrate this further, suppose tha t  for the Table 1 data,  there is a logical 
rule 

v :  Y2 -< aY1- (2) 

Sett ing (~ = 1.0 allows for the removal of x values tha t  are not logically 
possible; while setting a = 0.400, say, is acknowledging tha t  ba t t ing  averages 
(=  Y2/Y1 ) above 0.400 are unlikely and therefore in this present sense also 
not logically possible. The impact  of this rule v on the observed rectangle 
R will produce a virtual hypercube V which has one of the eight pat terns,  
denoted by A, B , . . . ,  I ,  displayed in Figure 1. Those values which fall above 
the line Y2 = aY1 are not logically possible values and so arc excluded from R 
to produce the virtual value V. The  shaded regions correspond to the vir tual  
values V. The  conditions tha t  apply tha t  give v(x) = 1 for the respective 
pat terns  are given in Table 2. 

ill i ~ j ~  ..................... _._ 

A C 

Figure 1 - Pa t te rns  for Virtual V - shaded regions 
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The pattern A corresponds to those observations {(u) for which V ( u )  is 
empty; e.g., {(6) in Table 1. In this case, the underlying condition from 
equation (1) that generates z/(x) = 0 is {O~bl < a2}. The pattern B represents 
those observations that are unaffected by the rule u, i.e., V ( u )  = R ( u ) .  The 
condition that gives u(x) = 1 in equation (1) for these patterns translate, in 
terms of the (ai, b~) values, i = 1, 2, to { a a l  > b2}. 

The four patterns C, D, E, F are similar in that the virtual observation hyper- 
cube is a triangle, though they differ as to whether or not particular triangle 
vertices do or do not fall on the line 112 = aY1. Therefore, the virtual { val- 
ues differ accordingly. Thus, for pattern D, the virtual value for the original 
observation ~ is ~ = ~1 = ( a l ,  h i )  and ~ = (a2,  ab]).  Notice that the virtual 
observation for Y1 (alone) is unaffected by t,. In contrast, for pattern E, I/2 
is unaffected, {~ = ~2, but the Y1 values are affected giving the virtual value 
as ~ = (a2 /a ,  bl). For pattern F,  both II1 and I/2 values are affected by u; 
whereas in pattern C, neither are. Table 3 displays these virtual values {~, 
i =  1,2. 

Pattern 

A 

B 

C 

D 

Table 4.9  - Virtual Patterns and Conditions 

Pattern V Condit ions 

. . ' "  a b  I <_ a 2 
s 

p 
J 

j 7  

" a a ,  <_ b 2 

{oo,=, 
. ab~ = b 2 

.... { : ; : : ; :  

. .  ...... c 

Pattern 
F 

G 

H 

I 

(*) Pattern V Condit ions 

a a ,  > a 2 

. .  ab~ <- b 2 

(*) The  dotted line represents the l ine Y2 = aY~ 

Also shown, in Table 3, are the apparent virtual values for the bivariate pair 
( ~ , ~ )  for the C, D, E and F patterns. When calculating the histogram 
for II1 (or I72) alone, these virtual ~ values are used in the usual manner 
using Bertrand and Goupil (2000) methodology. However, when calculating 
the joint histogram for (II1, Y2), routine application of the methodology (see 
Billard and Diday, 2003) would in this case produce answers as though the 

l ! / I I ! hypercube (~,  ~ )  were the rectangle ( a l ,  bl) x (b2, b~) with area (b 1 - - a l ) ( a  2 --  
I / I a~), instead of the triangle whose vertices are {(al, bl) , (bl, a~), (a~, b~)}, and 

with area lYJ = (b' 1 - a'l)(b' 2 - a'2)/2 where IAJ is the area of the region A. 
Clearly, this feature has to be accommodated, and is addressed further in 
Section 5. The corresponding areas JV I for each pattern C, D, E, F are also 
displayed in Table 3. 
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T a b l e  3 - V i r t u a l  O b s e r v a t i o n  S p a c e  V a l u e s  - by  P a t t e r n  

P a t t e r n  V i r t u a l  ~ 
A 4, 

C ( a l , b l )  
D (al,bl) 
E (a2/o~ , b I ) 
F (a~/o~, b l )  
G { ( a 2 / a ,  b2/o~)p I , 

( b 2 / a ,  b l ) P 2 }  
:"i = I ~ i l / I V l ,  IV l  = I~  

V i r t u a l  ~ 
r 

(a2 ,  b2 ) 
(a 2 , ab  I ) 
(a 2 , b 2 ) 

(0. 2 , ab  I ) 
(a2 ,  b2 ) 

11~ IR2[, [RI]  = (b2 --a21 

Apparent V i r t u a l  ~t 
r 

{ ( a l , b l ) ,  ( a2 ,  b2)} 
{ ( a l , b l ) ,  ( a2 ,  b2)} 

{ ( a l ,  b l ) ,  ( a2 ,  a b l ) }  
{ ( a 2 / o t ,  b l ) ,  (a2,b2)} 

{ ( a 2 / ~ ,  b 1,), ( a 2 , a b t )  } 
{ [ ( ~ / ~ ,  ~ / ' ~ ) ,  ( "2 ,  b~) ]~ l ,  

[(b2/c~, b I ), (a2, b2)]P2 } 
2 / ( 2 ~ ) ,  IR2I = ( ab  I - b2)(b2 -- a ~ ) / ~  

(~1, bl) ((a2' a a l )m '  I {[(al,bl), (a2,aal)lpl, 
[(a 1 , b l ) ,  (cca I , (~bl)]p2 } ( a a  1 , •bl )p2 } 

Pl  = I R I I / I V [ ,  [WI = [RI[ 4 [R2[, [RI[ = (hi -- a l ) ( ~ a l  - a2 ) ,  :R21 = a ( b l  -- a l ) 2 / 2  
{(~,  b 2 / ~ ) p l ,  ( ( - 2 .  ~ a l ) p ~ ,  { [ ( ~ l ,  b 2 / ~ ) ,  ( ~ 1 ,  b ~ ) l p ~ ' ' ,  

I ( b 2 / ~ ,  b ~ ) ,  ( " 2 ,  o, ' , .D lp~* ,  
[ ( t ,2 / ,~ ,  b l  ), ( ~ . ,  ~'2 )Ji':'4, ~ 1' 

~,1 = ( I R l l  I. I - ' t 2 1 ) / I V l  ~,i  = ( IR21 + i n 3 1 ) / i v  I ~o~ '~  = i . a i l / i V l i  = 1 . . . . .  4 
p2 = ( I n 2 1 + l n 4 1 ) / I V I  ~'2 ( I n t l + l n 4 1 ) / I V l  
I n l l  = (b~ - e a l ) 2 / ( 2 ~ ) ,  IR~I = (b~ - ~ ) ( ~  - ~ ) / ~ ,  IR31 = ( ~ b  1 - b 2 ) ( ~ a l  - a 2 ) / ~  

IR4! = ( a b  1 -- b2)(b 2 - c~a l ) /O ,  IV[ = I R l l  + IR21 -t- IR3I { IR4[ 

I 

The two patterns G and H have the c o m m o n  feature that their 4-sided 
(non-rectangular) hypercube can be viewed as the union of  a triangle and 
a rectangle. For the pattern G, the virtual description for Y1 (alone) is now 
a histogram-valued variable (and not the interval-valued observation of the 
original data); while for the pattern H,  i.t is the variable Y2 (considered alone) 
which has a histogram-valued virtual description. Thus,  we can show that in 
pattern G, the virtual observation becomes 

~'l = {(a2/a, b2/a)pl, (b2/o~,bl)p2} (3) 

where the relative frequencies pi, i = 1, 2, are given by 

p~ = IP~l / IV[  (4) 

with 
[RI] = (b2 - a2)2 / (2a) ,  IR2I = (abl - b2)(b2 - a2)/a (5) 

and 
[rl  --11511 + IR2I; (6) 

and where the virtual description of Y2 (alone) is unaffected, with ~. = ~2 = 
(a2, b2). These are displayed in Table 3 for both patterns G and H.  Then,  by 
using the methodology  developed in Billard and Diday (2003) for obtaining 
a histogram of histograms, the respective (univariate) histograms can bc 
obtained. Also, shown in Table 3 is the apparent virtual description of the 
bivariate pair (Y1, Y2). These  too  are now histogram-valued, rather than 
interval-valued, observations. However, again as cautioned above for the 
patterns C, D,E, F, care is required for the "triangle" pieces, viz., R1 - 
[(a2/06 b2/o~), (a2, b2)] in pattern G, and R 2  - [(al, bl), (aa l ,  abl)]  in pattern 
H.  
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(a) c, ene~d ~ r2 

. . . . . .  ....... ..............:.:.:......:.: 

:-~-:'.' ".'.' !:;:'.':~ .".'-". .~:'. .". .": .": .":i" .".' .'-.: .'-: .".' .":: ::: :::: 
:'":':'::':i!i!iiii?iii~)!iiiiiiiiiiiiii!ii?iiiiiiiil 

/ I~)iiiiiiiii!iiii?i!i!iiiii?iiiiii!i!i)iiii!iiil, ' 
49 

a, b~/a b, 

7 

Co) Observation ~(2) 

F2 = a,u 

/ 
:'~i:?:i:i:i:i:iii:i!!:i:i:i:iii:iiiii:i:i 1 

iiii!iii! ii iii !iiiii!i!iiii i ii 

,Yt 
88 149 422 

Figure 2 - Patmrn I Deail :  (a) C~,.aerd, Co) O b ~ r v ~ o n  9(2) 

Finally, we consider the pat tern I,  rcprodnccd in Figure 2a. In these cases, 
the virtual observation space V is a 5-sided hypercube which can be parti- 
tioned into the triangle R1, and three different rectangles R2,R3, R4 with 
respective vertices as indicated in Figure 2a. For data  tha t  follow this pat- 
tern, the virtual values of both  the Y1 and Y2 variables (each considered 
alone) differ from the actual observed values; and in each case the virtual 
values become histogram-valued instead of the original integral-valued. It 
follows that  for ]I1 (alone) the virtual observation is 

where 

~ = {(al, ~I~)Pl, (b2,~, bl)p2} (7) 

p~ = ([R~l + IR21) / IVI ,  p2 = (IR31 + IR.~l) / IVl  (s)  

with 
IRll = (52 - al)2/(2c~), IR2[ = 0 2  - o~al ) (~a l  - a 2 ) / a ,  

IR31 -- (c~bl - b2)(c~al - a2)/~,  IR41 -- (~bl - 52)(52 - c~al)/~ (9) 

and 
IVl = IRl l  + - - .  + IR~I. (lO) 

The virtual observation for ]I2 (alone) is 

~ = {(a2,c~al)p~, ((~al,b2)p~} (!1) 

where 
p~ = (]R2[ + [R3[)/IV[, p~ = (]RI[ + IR4[)/[V[. (12) 
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These values are summarized in Table 3. The table also shows the correspond- 
ing apparent virtual observation for (Y1, Y2) taken together as a bivariate pair. 
Here, we can show that  the virtual value ~' of ~ is 

where 

,~' = {[(a,, ~/o~), (o~a,,b2)]p~*, [(a~, b2/a), (a2, aa,)lp~*, 
[(b2/c~, b]), (a2, cea,)]p;*, [(b2/c~, b,), (aa l ,  bz)]p~* } (13) 

p;* = IR, I / IVh i =  1 , . . . , 4 ,  (14) 

with I/~l and IvI a~ given in equations (9) and (10). Again, the "triangle" 
piece (R1 -= [(al, b2/a),  (c~al, 52)]) requires special care when calculating a 
joint histogram function. 

3 C o n s t r u c t i o n  o f  H i s t o g r a m s  

When, after application of the rule v = (ul,u2,...), the resulting virtual 
dataset consists entirely of interval-valued data, the histogram of the virtual 
dataset can be constructed by using the Bertrand and Goupil methodology 
which is available computat ionally in the SODAS software (and can be found 
on the web at www.ceremade.dauphine.fr /%7Etouati /sodas-pagegarde.htm).  

For comparative purposes, we first give the histogram for the baseball data,set 
of Table 1 when there are no rules. Suppose we build the histogram for 
Y1 = Number of At-Bats  on the rl  = 7 intervals [0 ,100) , . . . ,  [600,650]; and 
suppose the histogram for ]I2 = Number of Hits is constructed on the r2 -- 9 
intervals [0, 50), [50, 75 ) , . . . ,  [200,225), [225,275]. The resulting histograms 
are given in column (a) of Table 4 for 111 and Table 5 for 112, respectively. 

T a b l e  4 - H i s t o g r a m  for  ]I1 = ~ A t - B a t s  

g l  
1 [0,100) 
2 [100,200) 
3 [200,300) 
4 [300, 400) 

[400, 500) 
6 [500,600) 
7 [600,650] 

Histogram (a) vo: (b) u l :  (c) u2: (d) u3 : 
Interval, Ia I No Rules Y1 > 120 Y2 <_ Y1 Y2 < 0.35Y1 

1.802 
5.043 
4.180 
4.099 
3.114 
0.711 
0.051 

4.687 
4.244 
4.162 
3.143 
0.713 
0.051 

0.778 
4.490 
4.701 
4.132 
3.131 
0.716 
0.051 

0.000 
1.491 
2.203 
3.919 
3.601 
1.287 
0.499 

n 19 17 18 13 
268.079 295.500 283.921 370.504 

S 136.101 119.449 125.531 118.946 

e)  /24 : 

4.163 
4.743 
4.174 
3.151 
0.717 
0.051 

17 
297.263 
118.133 

Suppose now interest is restricted to those situations with 120 or more at- 
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bats.  This  t rans la tes  to the  rule 

u l :  {Y1 _> 120}. (15) 

Under  this rule, observat ion 4(6) and 4(16) are deleted entirely. Observa- 
t ions u --  2, 10, 15, and  17, are t runcated;  so tha t  the  v i r tua l  observat ion for 
u -- 2, becomes ~'(2)  = {(120, 422) ,  (49, 149)}; likewise, 4'(10), ~'(15), and 
4'(17) can be found. After  appl ica t ion  of the  rule Ul, all v i r tua l  observat ions 
are integral-valued.  Then,  by bui lding the relevant h is tograms on the same 
h is togram intervals used in column (a), we ob ta in  the  frequencies of column 
(b) in Table 4 for Y1 and Table 5 for }I2, respectively. Compar ing  the  two 
his tograms of columns (a) and (b), we see the  impact  of this  rule. For the  
variable Y1, since this rule direct ly  t runca tes  Y1 values, the  two h is togram 
intervals Igl ,  gl = 1, 2, are clearly affected. However, so are other  h i s togram 
intervals affected (in contras t  to the  corresponding compar ison for classical 
d a t a  when these l a t t e r  intervals are not  affected). Take, e.g., the  h is togram 

T a b l e  5 - H i s t o g r a m  for  }I2 = ~ H i t s  

g2 
1 [0, 50) 
2 [50, 75) 
3 [75, 100) 
4 [100,125) 
5 [125,150) 
6 [150,175) 
7 [175,200) 
8 [200,250) 
9 [225,275] 

Histogram (a) u0: (b) ul : (c) u2 : (d) u3: 
Interval, Ig 2 No Rules Y2 _> 120 Y2 _~ Y1 Y2 ~ 0.35111 

0 .417  
2.784 
3.978 
4.233 
4.144 
0.770 
0.654 
1.169 
0.851 

0.417 
2.784 
3.264 
3.947 
3.144 
0.770 
0.654 
1.169 
0.851 

0.421 
2.854 
4.026 
4.458 
2.990 
0.771 
0.569 
1.631 
0.279 

0.632 
3.342 
3.242 
2.907 
1.721 
0.668 
0.348 
0.125 
0.015 

n 19 17 18 13 
)(  119.684 120.265 116.455 97.795 
S 48.678 50.799 47.207 37.287 

e) V4 : 
(t/l, /'12) 
0.421 
2.834 
3.316 
4.149 
3.030 
0.771 
0.569 
1.631 
0.279 

17 
117.871 
48.112 

interval  Ig 1 ---- I3 = I200, 300) all of whose internal  values are valid under  
ul. Take also, e.g., the  contr ibut ion of the  u = 2 observat ion to this  /3 
interval.  Then,  the  v i r tual  da t a  value 4~ (2) contr ibutes  a por t ion  equal to  
(300 - 200)/(422 - 120) = 100/302 to the  frequency o f / 3 ,  while the  original  
d a t a  41(2) contr ibutes  the  amount  (300 - 200)/(422 - 88) = 100/334 ( 5  
100/302) to  the frequency in /3. A comparison of columns (a) and (b) in 
Table 5 for the  h is togram for the Y2 variable also reveals differences. This  
occurs even though the rule ul does not  involve Y2 directly, and  even though 
for every observat ion u the  v i r tual  4~(u) = 42(u). The  impac t  of ul on the  
h is togram for Y2 is a reflection of the u = 6 and u = 16 observat ions being 
deleted.  
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Suppose now we apply the rule of equation (2) with a = 1.0, viz., 

u2 : Y1 >_ ]I2, (16) 

i.e., the number of hits cannot exceed the number of at-bats. Table 6, column 
(a) identifies the pat tern  of the virtual  observation in the presence of this 
rule. Columns (b) and (c) give the virtual observation value for Y1 and ]I2, 
respectively, for each case by utilizing Table 3. For example, clearly when 
u = 1, pa t tern  n pertains. Hence, ~ = El, ~2 = ~2; also, ~' = ( ~ , ~ )  = ~. 
The u = 2 observation under u2 reduces to a virtual observation space with 
pat tern  I (see Figure 2b). It is really verified that  the areas IRil, i = 1 , . . . ,  4, 
and IYl are 

JR1] = 1860.5,  IR21 --  2379,  IR31 = 10647, IRa1 = 16653, IVI = 31539.5.  

T a b l e  6 ( i )  - V i r t u a l  ~ a n d  ~ u n d e r  r u l e  u2 : Y1 _> ]I2 

Team (a) (b) 
' = Hits 

Ul B ~' :(2Y89, 53#8) 
2 I {(88, 149), 0.134; (149, 422), 0.866} 
3 F (201, 223) 
4 B (184, 476) 
5 B (283, 447) 
6 A r 
7 B (168, 445) 
S E (137, 148) 
9 B (256, 510) 
10 D (101, 126) 
11 B (212, 492) 
12 G {(189, 238), 0.778; (238, 245), 0.222} 
13 B (342, 614) 
14 B (120, 439) 
15 I {(80, 115), 0.066; (115, 468), 0.934} 
16 C (75, 110) 
17 I {(116, 163), 0.072; (163, 557), 0.928} 
18 B (197, 507) 
19 H (167, 203) 

(r 
~ : Y2 = # At-Bats 

(75, 162) 
{(49, 88), 0.413; (88, 149), 0.587} 

(201, 223) 
(46, 148) 
(86, 115) 

r 
(37, 135) 

(137, 148) 
(78, 124) 

(101,126) 
(57, 151) 

(189, 238) 
(121,206) 
(35, 102) 

{(55, 80), 0.428; (80, 115) 0.572 l 
(75, 110) 

{(95, 116), 0.321; (116, 163) 0.679} 
(52, 53) 

{(48, 167) 0.869; (167, 232), 0.131} 

Hence, the virtual values for this observation become ~'(2) = ( ~ ( 2 ) , ~ ( 2 ) )  
where for Y1 (considered alone), by substi tut ion into equations (7)-(9), we 
have 

~ ( 2 )  = {(88,149), 0.134; (149,422), 0.866}; 

for ]I2 considered alone, from equations (9)-(12), 

~ (2 )  = {(49, 88), 0.413; (88, 149), 0.587}; 

and that  for (Y1, ]I2) the virtual value is, from equations (9), (10) and (13), 

~'(2) = {[(88,149), (88,149)],0.059; [(88, 149), (49,88)],0.075; 

[(149,422), (49, 88)], 0.338; [(149,422), (88,149)], 0.528}. 
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Under this rule, only the u = 6th observation fails entirely, as a pa t t e rn  A 
vir tual  observation. However, only the nine observations corresponding to 
u = 1,4, 5, 7,9, 11, 13, 14, 18, are unaffected by this rule, to be identified as 
a pa t t e rn  B value. The  remaining eight observations are affected in various 
ways (with a variety of pa t terns  occuring) but  with all eight observations hav- 
ing some port ion of the original R(u) space eliminated as not being logically 
possible under u2. The  virtual values for all the observations in the datase t  
of Table 1 after application of the rule u2 axe displayed in Table 6 in columns 
(b), (c), and (d) for the variable Y1, Y2 and (Y1, Y2), respectively. Clearly, the 
vir tual  dataset  contains histogram-valued observations. An algori thm for the 
determinat ion of a his togram from histogram-valued observations is outlined 
in Section 7. Therefore, building our histograms for ]I1 (or Y2) on the same 
his togram intervals as were used previously, we can obtain the his tograms for 
Y1 (and ]I2) as displayed in column (c) of Table 4 (and Table 5, respectively). 

T a b l e  6 (ii) - V i r t u a l  ( '  = ( ~ ,  ~ )  u n d e r  ru l e  u2 : Y1 ~> ]I2 

(d) 

1 {(289, 538), (75, 162)} 
2 {[(88, 149), (88, 149)], 0.059; [(88, 149), (49, 88)], 0.075; 

[(149, 422), (49, 88)], 0.338; [(149, 422), (88, 149)], 0.528} 
{(201, 223), (201, 223)} 
{(184, 476), (46, 148)} 
{(283, 447), (86, 115)} 

r 
{(168, 445), (37, 135)} 
{(137, 148), (137, 148)} 
{(256, 510), (78, 124)} 
{101, 126),(101, 126)) 
{(212, 492), (57, 151)} 

{[(189, 238), (189, 238)], 0.778; [(238, 245), (189, 238)], 0.222} 
{(342, 614), (121, 206)} 
{(120, 439), (35, i02)} 

{[(80, 115), (80, 115)], 0.027; [(80, 115), (55, 80)], 0.039; 
[(115, 468), (55, 80) l, 0.389; [(115, 468), (80, 115)], 0.545} 

((75, 110), (vs, 110)} 
{[(116, 163), (116, I63)], 0.039; [(I16, 163), (95, 116), 0.034; 
[163, 557), (95, 116)], 0.286; [(163, 557), (116, 163), 0.641} 

{(197, 507), (52, 53)} 
{[(167, 203), (48, 167)], 0.869; [(167, 203)(, 167, 232)], 0.131} 

Column (d) of Table 4 and Table 5 give the corresponding his tograms for Y1 
and ]I2, respectively, when in equation (2), (~ = 0.350, i.e., under the rule 

v 3 : Y 2 ~  0.350Y1. (17) 

In this case, several more of the original observations have vir tual  values 
which follow pat te rn  A, as would be expected; and the resulting his tograms 
reflect this restriction. This is especially evident for the Ig 2 = / 8  = [200,225) 
interval for the his togram for the number  of hits Y2- Under v3, the u = 3 and 
u = 12 observations are deleted by vir tue of their becoming pa t t e rn  A values 
in their vir tual  space. Yet, both  of these observations, contr ibuted nonzero 
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frequencies to this I8 interval for the histograms of columns (a), (b) and (c) 
in Table 5. We can show that  ~2(3) = (201,254) and ~2(12) = (189,238) 
contributed a frequency equal to 0.453 and 0.510, respectively, with a total 
contribution of 1.063 when there were no rules. 

Finally, column (e), in Table 4 and Table 5 provides the histogram results 
for the set of rules 

v4 : (vl, v2) -- {Y1 >- 120 and ]I2 -< ]I1} (18) 

for Y1 alone and ]I2 alone, respectively. The details are omitted. 

4 Sample  Means  and Variances  

Formulae for calculating the empirical mean and variance for interval-valued 
data were given by Bertrand and Goupil (2000) and for histogram-valued data 
by Billard and Diday (2003). We have seen how rules in effect transform 
the actual interval-valued data R(u) into virtual data V(u), u = 1 , . . .  ,n, 
with these virtual data also being interval-valued or histogram-valued values. 
Thus, use of the Bertrand-Goupil or Billard-Diday formula subsequently ap- 
ply. For completeness, we provide here the formula for histogram-valued 
data. 

Suppose our random variable Y has histogram values ~(u) = { (a~j, buj), Puj;j = 
1 , . . . , s~}  with ~ j p ~ j  = 1, where, for observation u, p~j is the relative 
frequency (or probability) of taking values on the j t h  interval (a~j, buy), 
j = 1 , . . . , s ~  where Su is the total number of histogram-intervals. Note 
that  when s~ = 1 and hence Puj = 1 for all j ,  we have an interval-valued 
observation. Then, from Billard and Diday (2003), the sample mean is given 
by 

f" = , ~  (a~j + b~j)p~j (19) 

and the sample variance o ~ and standard deviation S are found from 

oO2 1 8~ 1 ~~(a~j + buj)Puj = + a jb j + 

u=l ~ j = l  
(20) 

Therefore, by using equations (19) and (20) on the original data  of Table 1, 
we obtain the Y and oO values as shown in Table 4 for the Number of At-Bats 
]71, and in Table 5 for the Number of Hits ]I2- Likewise, under the rules 
Vl , . . . ,  v4, we can apply these equations (19) and (20) to the relevant virtual 
data to obtain the corresponding values for Y and oO; these are also displayed 
in Table 4 and Table 5 for Y1 and I/2, respectively. 
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5 Joint Histograms 

Principles underlying the univariate case apply to constructing histograms 
for p > 2 variables. For illustrative clarity, let us take p = 2 and let us 
construct the joint histogram for Y = (Y1, ]I2) on the histogram rectangles 
R(gl,g2) = {[hal,hbl) x [ha2, hb2)}, gl = 1 , . . . , r l ,  g2 = 1 , . . . , r2 .  Then, 
whenthere are no rules present, we have from Billard and Diday (2003) that 
the frequency that observations lie in the rectangle Rglg 2 is 

O(gl,g2) = ~ JR(U) N R(gl,g2)[ (21) 
IR(u) l u 

The relative frequency is Pglg2 = O(gl, g2)/n. 

An algorithm for calculating these Pg~g2 and O(gl, g2) terms is given in Sec- 
tion 7. To illustrate this, we construct a joint histogram for Y = (Y1, Y2) 
using the baseball data of Table 1. Suppose we take histogram intervals 
on ]I1 as [0, 50), [50,200),. . . ,  [500,650] and the histogram intervals on ]I2 as 
[0,75), [75,125),. . . ,  [225,275]. Thus, e.g., for gl = 3, g2 = 4, we have the 
histogram rectangle R(3, 4) = [200,350) x [175,225). The observed frequen- 
cies are shown in Table 7. The corresponding relative frequencies pglg2 are 
plotted in Figure 3. 

When rules are present we replace the actual observation R(u) by its virtual 
�9 observation V(u). When the V(u) values are themselves rectangles, then the 

same computational algorithm used for equation (21) pertains. It is often 
the case that this virtual space V(u), itself a multi-sided hypercube, can 
be partitioned into components. The patterns G, H, I for the baseball data 
are examples of such partitioning. When these components are themselves 
rectangular, then again use of the basic joint histogram algorithm of Section 
7 pertains. 

g2 

Table  7 - Jo in t  H i s t o g r a m  for 

1 2 3 gl  

\ 

]"2 ~ Y1 [0, 50) [50,200) 
\ 

[0, 75) 0.000 0.544 1.473 
[75,125) 0.000 2.668 2.556 

[125,175) 1.000 1.686 0.749 
[175,225) 0.000 0.644 0.826 
[225,275] 0.000 0.302 0.549 

Freq Y1 1.000 5.844 6.153 

Y1, Y2) - N o  R u l e s  (u0) 

4 5 

[200,350) [350 -- 500) [500 -- 650] 

1.161 
2.783 
1.095 
0.201 
0.000 
5.240 

Freq Y2 

0.022 3.201 
0.204 8.211 
0.384 4.914 
0.153 1.824 
0.000 0.850 
0.763 19 

Some of the virtual observations in the baseball example have components 
that are triangles. For these components, routine use of this basic algorithm 
treats these triangular pieces as though they are rectangles. For these com- 
ponents, appropriate adjustment has to be made. We omit the details. 
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T a b l e  8 - J o i n t  H i s t o g r 8  

gl I 2 [ 

Y2 ~ Y1 [0,50) [50,200) g~ 
\ 

2 [75,125) 0.000 
3 [125,175) 0.000 
4 [175,225) 0.000 
5 [225,275] 0.000 

Freq Yt 0.000 

r a m  f o r  (Y1, Y2) - R u l e  u2 :Y2 -< Y1 

4 

B r 

[200,350) [350 - 500) [500 - 650l 

1 �9 
2.589 
0.767 
1.626 
0.220 

1.167 
2.801 
1.105 
0.201 
0.00O 

0.023 
0.206 
0.386 
0.153 
0.000 

6.690 5.274 0.768 

b'~req 112 

3.275 
8.484 
3.761 
2.201 
0.279 

18 

Thus, to i l lustrate,  we construct  the joint  h is togram for the baseball  da ta ,  
when the  rule v2 holds on the same his togram intervals as were used above 
in Table 6 and Figure 3. The observed frequencies are displayed in 'Fable 8, 
and the relative frequencies are p lot ted  in Figure 4. 

.- ~ - [?~-. 

I~igure 3 - Joint Histogram (Y1, Y2). No Rules Figure 4 - Joint Histogram (Y1, Y2), under Rule v 2 

6 Basic Principles 

Suppose  we have observations on the p-dimensional  variable Y = (Y1,.. . ,  Yp) 
with Yj taking values on the interval ~j = (aj ,  bj), j = 1 , . . .  ,p,  for each obser- 
vat ion u = 1 , . . . ,  n. Let R(u) be the p-dimensional  rectangle tha t  represents  
thc observat ion u. Let there b c a  set of rules v = (Ul, u2 , . . . ) .  

The  basic issue is to find tha t  subspace V(u) of R(u) which represents  those 
values of R(u) for which the rule u holds; i.e., those x = ( x ~ , . . . , x p )  such 
tha t  vi(x) = 1, for all rules ui; see equation (1). For some u, this  V(u) = r 
the  empty  set; for other  u, this  V(u) = R(u), the original observation; and 
for others,  this V(u) is a nonempty  p-dimensional  rcctanglc V(u) - R*(u) 
contained in R(u), i.e., V(u) - R*(u) C_ R(u). For these observations,  the  
ad jus tment  to thc relevant calculat ion for the descript ive s ta t i s t ic  of interest  
is routine.  

Frequently,  the v i r tual  observat ion V(u) is a p-dimensional  non-rec tangular  
hypercube.  However, it is usually thc case tha t  this v i r tual  space can be 
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partitioned into components each of which is itself a rectangle (or a shape 
such as a triangle which is clearly a half-rectangle). For example, pat tern I 
obscrved for the baseball da ta  under rule ~2 (see Table 3) can be partit ioned 
into components Rj,  j -- 1 , . . . ,  4. Each component,  Rj is a proportion, pj, of 
the whole virtual space V, with V = U R j ,  and Epj = 1, for a given u. Each 

J 
Rj component is then added to the dataset  as though it were an "observa- 
tion" but is an observation with probability weight pj. This necessitates a 
probability weight of p = 1 for those observations u for which V(u)  is itself a 
p-dimensional rectangle. When all virtual components {R j, j = 1, 2 , . . . }  are 
rectangles, then the direct use of the methodologies presented herein apply. 

When (as in the baseball example) an Rj is a triangle, adjustment has to 
be made to ensure that  the calculated area of the "triangle" is indeed that,  
and not the area of the corresponding rectangle. Components  Rj  tha t  are 
not rectangles are different. In some instances, this non-rectanglar shape in 
and of itself is not a problem though calculating the probability might (but 
should not in general) be tricky. Situations that  are otherwise difficult will be 
treated elsewhere. This present work assumes V(u)  can be parti t ioned into 
rectangular components (with appropriate adjustment for trianglar pieces). 

7 H i s t o g r a m  A l g o r i t h m s  

7 . 1  U n i v a r i a t e  H i s t o g r a m s  o f  H i s t o g r a m  - V a l u e d  D a t a  

An algorithm for calculating the histogram of a set of histogram-valued data  
is briefly outlined as follows. Suppose tile random variable Y has realizations 

~(u) = {(~j = [a~,j,bu.7),puj; j : l , . . . , s ~ }  

for each u = 1 , . . .  ,n,  where Puj is the observed relative frequency on the 
interval [auj, but) with ~-~Puj = 1, and where su is the number of histogram 

J 
intervals for the data  value u. In the virtual descriptions of patterns G, H, 
I in Section 4, s~ = 2. Note that  w h e n s ~  = 1, and hencep l  = 1, the ob- 
servation is interval-valued (as a special case of histogram-valued variables). 
Suppose we want to construct a histogram of these {~ (u), u = 1 . . . .  , n} obser- 
vations. Let there be r histogram intervals Ig = [ha, hb), g = 1 , . . . ,  r -  1, and 
I~ = [ha, hb], where clearly in I1, ha ~ minu,j a~,j, and in I t ,  hb > maxu j  b~,j. 
Then, from Billard and Diday (2005), the observed frequency for the his- 
togram interval [g is given by 

ll,~,,j n I~11 (22) 
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where, for each u = 1 , . . . ,  n, Z(g) is the set of all ~uj intervals which overlap 
with Ig and where ]IA]] is the length of the interval A. The relative frequency 
is pg -- O(g)/n. 

The basic algorithm for computing O(g) from equation (22) essentially re- 
quires ascertaining the precise nature of the (~uj V1 Ig) term across all j = 
1, . . .  ,s~ values, taking specific care of the exact endpoint values (auj,b~j) 
and (ha, hb) and their relative relationships with each other. Once all possi- 
bilities have been identified, the process is reasonably straightforward. The 
algorithm is presented as a SAS macro; using SAS is not essential. 

The algorithm itself is presented in Appendix A. This algorithm has in effect 
three components. The first (identified A) relates to the various initial com- 
mands to set up the computer program (such as options, titles, ...) including 
reading in the data. This version of the algorithm assumcs data are inputted 
a s  

= {[aj, bj)pj; j = 1 , . . . ,nsu}  

where nsu = max~ s~. Adjustments to the data to accommodate data where 
s~ :/= s for all u (commonly the case) can also be made at this data manip- 
ulation stage (or the appropriate terms in the core macro of part B can be 
adjusted if preferred). For ease of presentation, we assume these are appro- 
priately handled in the first stage A. The core macro utilizes generic terms 
for the maximum number of data-histogram intervals (nsu), the first and 
last histogram ha values (first_ha, and last_ha) and the histogram interval 
length (hinc). Thus, thesc are also set in Part A. 

Part B is the core macro, here called "hist".  Part B1 addresses the values 
of the frequencies to be added (the add term) for each data histogram entry 
and its relationship to the histogram interval (ha, hb). Part B2 adds these 
frequencies over all data values and calculates the relative frcquencies. This 
part also includes a simple format for outputting the resulting frequencies 
and relative frequencies (here referred to as 'probabilities'); whatever format 
suits the reader should be substituted. This macro can then be invoked to 
calculate the O(g) and pg for a given g. 

Rather than repeatedly invoking the 'hist' macro for each Ig, we can, alter- 
natively, use part C which is a simple macro, called 'histall ' ,  which calcu- 
lates all the histogram frequencies over all 19 inside a simple do-loop routine. 
Then, this 'histal l '  macro can be called once, to give O(g) and pg for all 
g = 1 , . . . , r .  This is particularly useful when all histogram intervaL@ Ig are 
of the same length. 

Clearly, this is a basic algorithm to calculate O(g) and pg. Variations to 
accommodatc different features (e.g., histograms with different Ig interval 
lengths) can be readily made. 
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7 . 2  J o i n t  H i s t o g r a m s  f o r  I n t e r v a l - V a l u e d  D a t a  

Let the p-dimensional interval-valued observation be Y = (]I1, . . . ,  Yp) with 
Yv taking values on the interval (av, b~), v = 1 , . . .  ,p. We want to construct 
the joint histogram for the two variables (Y~, Yj); for illustrative clarity we 
take (Y1, ]I2). We may rewrite equation (21) as 

/ - / b; - a; (231 
o(g l ,g2)  = E \ b l  - a , /  \b2 - a 2 /  

7t 

where R* = {(a~, b~) • (a~, b~)} is the rectangle which represents the intersec- 
tion of the data rectangle R(u) and the histogram rectangle I(gl, g2). This 

a* b* R* rectangle can be empty. We note that the interval ( i, i), i = 1,2, may 
or may not overlap with the relevant ('ha, hb) interval, and that  the various 
possibilities observed when calculating the histogram of histogram data in 
Section 7.1 pertain here also (see Appendix A); but they pertain for both 
the Y1 and ](2 dimensions. More specifically, O(gl,ge) is the sum (over all 
observations) of cross-product terms, with each cross-product term equM to 
the product of one term from each of Y1 and ]I2. A basic algorithm is given in 
Appendix B and proceeds as follows. Part  A, as before relates to the relevant 
preliminary program statements, including the input of the data. 

Calculation of the O(gl, g2) of equation (23) consists of two parts, presented 
here as macros under Parts B and C, respectively. The macro of Part  B, 
called ' h i s t '  (comparable to but different from the 'h i s t '  macro of Section 
7.1) calculates the term (b* -a~)/(b, -a,)  for a single v value. This macro is 
written to allow for any specified v value (as shown in, e.g., the a&v term). 
This term is called prod&k. This macro will be invoked twice, once for each 
k value (e.g., k = 1 and k = 2), to give a product term value of prodl  and 
prod2 (for Y1, and Y2, respectively) for each observation u. 

The second macro of Part  C, called 'hist2 ' ,  reads in the calculated prodl  
and prod2 terms, takes their product and sums these over all observations, 
i.e., it completes the cMculation of equation (23). The cross-product and 
their summation is achieved via an IML routine, as shown. This particular 
macro calculates the observed joint frequency and the corresponding joint 
probability for a single histogram rectangle. There are also included simple 
format lines for printing these results. Thus, invoking the 'h is t2 '  macro will 
produce the joint histogram value for a given histogram rectangle. A third 
macro, along the lines of the 'h i s ta l l '  macro shown in (Part C) of Section 7.1 
(see Appendix A), could also be written to enable all histogram rectangles 
to be considered with one invocation. The details are omitted. 

There is one final, but important, feature. Let us first consider standard 
rectangular ~ spaces; i.e., consider 2-dimensional interval-valued rectangular 
data  R(u) for all u such as when there are no rules, or for 2-dimensional 
virtual data V(u) which are also rectangles. For these situations, the algo- 



205 

r i thm as described thus far proceeds without any problem. However, when, 
as often occurs, the virtual observation V(u)  is the union of smaller rectan- 
gles each with some probability pi < 1, then appropriate adjustment must 
bc made. For example, in the baseball example, under the rule vs, we see 
from Table 6(ii) tha t  the virtual observation for the u = 2 contains the rect- 
angle [(149,422), (88,149)] with probability p = 0.528 (5  1). In contrast, the 
virtual observation for u = 1 is the same as the actual observation, viz., the 
rectangle [(289,538), (75,162)] with probability p = 1. We saw from Section 
6 that  in general a non-rectangular V(u)  can be decomposed into nonover- 
lapping rectangles Rj(u) ,  j = 1 , . . .  ,k, each with probability pj, ~pj  = 1. 
Therefore,  in the data  input and manipulation stage (of Par t  A), these rect- 
angles and probabilities are calculated. We treat each of these Rj (u )  as 
though it were a whole "observation" but with probability p = pj (instead 
of the initially set p = 1 value). This is reflected in the ' h i s t '  macro by 
summing these probabilities to obtain the sample size n ( n ~ v  = nSzv + p&v, 
of line 4, instead of the more intuitive n -= n + 1). It is also reflected in the 
'h i s t2 '  macro by taking the product  prodl  �9 prod2 �9 p l  in the IML routine. 

8 C o n c l u s i o n  

Rules can have many forms and can impact da ta  in various ways. While 
our study herein focused on logical dependency rules on interval-valued data,  
other forms of data  may require different types of rules. There can also be 
situations where the rule itself varies depending on the "value" of the sym- 
bolic data  (interval-valued or not). For example, outlier values may induce 
their own dependency rules. In another situation, it may be that  one vari- 
able is correlated with another variable (as is prevalent with medical and /or  
biologically based variables) with the resulting need for rules that  are them- 
selves observation-dependent. In a different direction, once histograms (for 
example) have bccn developed in the presence of rules, then other paramet-  
ric distribution procedures (such as fitting, estimation, and so forth) can be 
developed. The field is wide-open for more research. 

A p p e n d i x  A - H i s t o g r a m  A l g o r i t h m  

(A): program option (statements), as approprite; 
data one; 
title (statements); 

input data (statements); 
/* Data Histograms: 

Data(u) = {(al, bl)pl ..... (as, bs)ps}, u= i, �9 �9 . n ,  
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where s=#data-histogram intervals, and 

n=Number of Observations */ 

%let nsu= ; 

Xlet first_ha = 

%let last_ha= 

%let hinc= ; 

%\end{quote} 

/* #intervals Data histogram, 

nsu >= max(su, u=l .... n)*/ 

; /* First ha value */ 

; /* Last ha value */ 

/* Width of Histogram interval (ha, hb)*/ 

(Bl):/*Macro for Histogram on Histogram Interval (ha, hb) */ 

~acro hist(datain=, dataout =, ha = ); 

data ~dataout; 
set &datain end=last; 

ha=~ha; 

hb=~ha +&hinc; 

retain add freq n O; 

%do j= 1%to nsu; 
/*Each j corresponds to each data histogram j piece */ 

if a&j < ha & b&j <= ha then do; 

add=O; 

end; 
if a&j <= ha & b&j > ha & b~j < hb then do; 

add=p~j* (b&j-ha) / (b&j-a~j) ; 

end; 

if a~j > ha ~ b&j < hb then do; 

add=p&j; 
end; 

if a&j=ha & b&j=hb then do; 

add=p&j; 

end; 

if a~j > ha ~ a&j < hb & b~j >= hb then do; 

add=p~j * (hb-a~j) / (b&j -a~j ) ; 
end; 

if a&j < ha & b&j > hb then do; 
add=p&j * (hb-ha) / (b&j -a~j ) ; 

end; 

if a&j > ha & akj >= hb then do; 

add=O; 

end; 

if a&j < ha & b&j = hb then do; 

add=paj*(hb-ha)/(b&j-a&j); 

end; 
else if a&j=ha & hb < b~j then do; 
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a d a = p & j * ( h b - h a ) / ( b ~ j - a & j ) ;  
end; 

(B2) : freq=freq+add; 

output ; 

Zend; 

n=n+ i; 

if last then do; 

prob=sum/n; 

file print; 

put "Interval g = ("ha ..... hb 3.0"): 

Probability = " prob 6.4; 

end ; 

run; 

y~nend hist ; 

Frequency = " freq 8.4 " 

(C): /*macro to calculate all histogram frequencies 

in one step */ 
7~acro histall(datain=, dataout=); 

data &dataout; set &datain; 

Zdo h = &first_ha Zto &last_ha Zby &hinc; 

Y~ist (datain=one,dataout=two,ha=&h); 

Zend; 

run; 

7~end histall; 

/* call macro to do complete histogram over 

all histogram intervals */ 

Y~istall(datain=one, dataout=two); 

/* c a l l  macro to  do one h i s t o g r a m  i n t e r v a l  */ 
Y~is t  (da t a in=one ,da t aou t= two ,ha=125) ;  
quit; 

A p p e n d i x  B - Jo int  H i s t o g r a m  A l g o r i t h m  

(A): Program option statements, as appropriate; 

data one; 

input data statements; 

/*Data intervals Data(u)={(av, bv), v=l,...,p}, u = 1 .... ,n; 

n = # observations. 
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Set initial probabilities pv = i; see text. */ 

(B): /*Macro fo r  Histogram Ca lcu l a t i on  */ 
/* Var iable  v l ,  Histogram I n t e r v a l  = (hal ,  h b l ) ,  

and v a r i a b l e  v2, Histogram I n t e r v a l  = (ha2, hb2); 
Jo in t  Histogram Frequencies  on 
Histogram Rectangle (hal ,  hb l )x (ha2 ,hb2)* /  

Y~acro hist(datain=, dataout=, v =, ha = , hb=, k=); 

data  kda taout ;  
se t  &datain; 
r e t a i n  prodak nav O; 
n&v = n&v + p~v; 

if a&v < ~ha ~ b~v <= &ha then do; 

prod&k=O; 

end; 

if a~v <= ~ha & b~v > &ha ~ b&v < &hb then do; 

prod&k=(b&v-~ha)/(b&v-a&v); 

end; 

if a~v > &ha ~ b&v < &hb then do; 

prod&k=l; 

end; 

if a&v=&ha & b&v=&hb then do; 

prod&k=l; 

end; 

if a&v > ~ha ~ a~v < &hb & b&v >= &hb then do; 

prod&k=(~hb-a&v)/(b&v-a&v); 

end; 

if a~v < ~ha ~ b~v > &hb then do; 

prod~k=(&hb-&ha)/(b&v-a~v); 

end; 

if a&v > ~ha & a&v >= &hb then do; 

prod&k=O; 

end; 

if a~v < ~ha ~ b&v = &hb then do; 

prod&k=(&hb-&ha)/(b&v-a&v); 

end; 

if a&v=&ha & ~hb < b~v then do; 

prod&k=(&hb-~ha)/(b&v-a&v); 

end; 

output; 

run; 

~nend hist; 
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(C): /*Macro to find the 2-dim histogram frequencies*/ 
Y~nacro hist2(datain2=, dataout2=, vl=, hal=, hbl=, v2=, 

ha2=, hb2=); 
data data2; set ~datain2; 
%hist(datain=&datain2, dataout=twol, v=~vl, ha= &hal, 

hb= &hbl, k=l); 

%hist(datain=&datain2, dataout=two2, v=&v2, ha= &ha2, 
hb= ~hb2, k=2); 

data ~dataout2; 
merge two1 two2; 
proc iml; 
use &dataout2; 
read all var {prod1 prod2 pl} into pr; 
c=J(nr,1,0); 
c=pr[ ,1]#pr[ ,2]#pr[ ,3] ;  
nob=sum(pr[,3]); 
j o i n t f r e q = s u m ( c ) ;  
jointprob=jointfreq/nob; 
print "Frequency for (&hal,&hbl)x(~ha2,~hb2) = " jointfreq; 
print "Probability for (&hal,~hbl)x(~ha2,&hb2) = " 

jointprob; 
print "Number of Observations = " nob; 
~end hist2; 

/*Invoke macro */ 

%hist2(datain2=use,dataout2=two,vl=l,hal=O,hbl=50,v2=2, 
ha2=O,hb2=75); 

quit ; 
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