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A Fuzzy TOPSIS Method for Robot Selection
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A fuzzy TOPSIS method for robot selection is proposed, where
the ratings of various alternatives versus various subjective
criteria and the weights of all criteria are assessed in linguistic
terms represented by fuzzy numbers. The values of objective
criteria are converted into dimensionless indices to ensure
compatibility between the values of objective criteria and the
linguistic ratings of subjective criteria. The membership func-
tion of each weighted rating is developed by interval arithmetic
of fuzzy numbers. To avoid complicated aggregation of fuzzy
numbers, these weighted ratings are defuzzified into crisp
values by the ranking method of mean of removals. A closeness
coefficient is defined to determine the ranking order of alterna-
tives by calculating the distances to both the ideal and nega-
tive-ideal solutions. A numerical example demonstrates the
computational process of the proposed method.
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1. Introduction

To improve product quality and increase productivity, robot
selection has always been an important issue for manufacturing
companies. Many potential robot selection attributes (or
criteria), e.g. cost, load capacity, man–machine interface, avail-
ability of diagnostic software, etc. must be considered for the
selection of a particular robot [1–5]. In general, these attributes
can be classified into two categories [5]:

1. Objective attributes – these attributes are defined in numeri-
cal terms, e.g. cost, reliability, load capacity, repeatability,
and positioning accuracy.

2. Subjective attributes – these attributes have qualitative defi-
nitions, e.g. vendor’s service contract, training, man-machine
interface, and programming flexibility.
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Many precision-based methods for robot selection have been
developed [1–4,6,7]. All the above methods are developed
based on the concepts of accurate measurement and crisp
evaluation, i.e. the measuring values must be exact. However,
in real life, measures of subjective attributes, e.g. man–machine
interface and programming flexibility, may not be precisely
defined by decision-makers. Moreover, the evaluation of robot
suitability versus subjective criteria and the weights of the
criteria are usually expressed in linguistic terms [5,8]. Thus,
Liang and Wang [5] proposed a fuzzy multi-criteria decision-
making (MCDM) approach for robot selection. Despite the
merits, the Liang and Wang [5] method has the following limi-
tations:

1. The equation for converting objective criteria cannot ensure
compatibility between the values of objective criteria and
the linguistic ratings of subjective criteria. For example,
assume that the evaluation of three alternatives under a
benefit criterion are A1 � (20,40,65), A2 � (30,55,75), and
A3 � (35,75,95). By Liang and Wang’s direct relationship
Eq. [5], the conversion of A3 is (0.15,0.44,1.12). This does
not fall between [0,1] and results in incompatibility between
the converted A3 and the fuzzy numbers defined in [0,1].
This same problem also exists in their inverse relationship
equation.

2. The multiplication of two positive triangular fuzzy numbers
is treated as a triangular fuzzy number. This may not be
correct. The membership function of the multiplication of
two positive triangular fuzzy numbers can be clearly
developed.

3. The ranking method, i.e. maximising set and minimising
set [9] used in Liang and Wang method was shown to be
illogical by Liou and Wang [10] in 1992.

To solve these limitations, this work proposes selecting a
robot via a fuzzy TOPSIS method. The technique for order
preference by similarity to an ideal solution (TOPSIS) was
initiated by Hwang and Yoon [11]. This technique is based
on the concept that the ideal alternative has the best level for
all attributes considered, whereas the negative-ideal is the one
with all the worst attribute values. A solution from TOPSIS
is defined as the alternative which is simultaneously the farthest
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from the negative-ideal and the closest to the ideal alternative.
In fuzzy TOPSIS, some (or all) attributes are represented by
fuzzy numbers [12].

In the proposed fuzzy TOPSIS method, the conversion of
objective criteria is performed by applying the Hsu and Chen
method [13], which ensures compatibility between the values
of objective criteria and the linguistic ratings of subjective
criteria. The membership function of each weighted rating of
each alternative versus each criterion, is developed by using
interval arithmetic of fuzzy numbers. To avoid complicated
aggregation of irregular fuzzy numbers, these weighted ratings
are defuzzified into crisp values by the ranking method of
mean of removals [14], and then, a closeness coefficient is
defined to determine the ranking order of alternatives by
calculating the distances of alternatives to both the ideal and
negative-ideal solutions. Finally, a numerical example demon-
strates the computational process of the proposed method.

2. Fuzzy Numbers

Definition 1. A real fuzzy number A is described as any fuzzy
subset of the real line R with membership function fAwhich
possesses the following properties [15] where a, b, c, and d
are real numbers:

1. fA is a continuous mapping from R to the closed interval
[0,1].

2. fA (x) � 0, for all x � (��, a].
3. fA is strictly increasing on [a, b].
4. fA (x) � 1, for all x � [b, c].
5. fA is strictly decreasing on [c, d].
6. fA (x) � 0, for all x � [d, �).

We may let a � ��, or a � b, or b � c, or c � d, or d
� +�. Unless elsewhere specified, it is assumed that A is
convex, normal and bounded, i.e. �� < a, d < �.

The membership function fA of the fuzzy number A can also
be expressed as:

fA(x) � �
f L

A(x)

1

f R
A(x)

0

(a � x � b)

(b � x � c)

(c � x � d)

otherwise

(1)

where f L
A (x) and f R

A (x) are the left and right membership
functions of fuzzy number A, respectively.

The fuzzy number A is a triangular fuzzy number if its
membership function fA is given by [16]:

fA(x) � �
(x � a)/(b � a)

(x � c)/(b � c)

0

(a � x � b)

(b � x � c)

otherwise

(2)

where a, b and c are real numbers.

Definition 2. The �-cut of fuzzy number A can be defined
as [16]

A� � �x�fA(x) � �,�, where x � R, � � [0,1]

A� is a non-empty bounded closed interval contained in R,
and it can be denoted by A� � [A�

l, A�
u], where A�

l and A�
u

are the lower and upper bounds of the closed interval, respect-
ively. For example, if triangular fuzzy number A � (a, b, c),
then the �-cut of A can be expressed as:

A� � [A�
l , A�

u] � [(b � a)� + a, (b � c)� � c] (3)

Given fuzzy numbers A and B, A, B � R+, the �-cuts of A
and B are A� � [A�

l, A�
u] and B� � [B�

l
, B�

u], respectively. By
interval arithmetic, some main operations of A and B can be
expressed as follows [16]:

(A ⊗ B)� � [A�
l + B�

l , A�
u + B�

u] (4)

(A < B)� � [A�
l � B�

u, A�
u � B�

l ] (5)

(A ⊗ B)� � [A�
l B�

l , A�
u B�

u] (6)

(A � B)� � � A�
l

B�
u

,
A�

u

B�
l
� (7)

(A ⊗ r)� � [A�
l r, A�

u r], r � R+ (8)

3. Ranking Fuzzy Numbers with Mean of
Removals

A review of many fuzzy number ranking methods can be seen
in [12,17–20]. However, no one can rank fuzzy numbers
satisfactorily in all cases and situations [20]. In this paper, the
mean of removals by Kaufmann and Gupta [14] is applied to
help complete the proposed method. Consider a fuzzy number
A � [a, b, c, d], A � R, as illustrated in Fig. 1. The left
removal of A, denoted by AL, and the right removal of A,
denoted by AR, are defined as follows:

AL � b � �b

a

f L
A (x) dx (9)

AR � c + �d

c

f R
A (x) dx (10)

The left and right removals stretch from the vertical axis at
0 on the x-axis to the left and right membership functions of
A, respectively. The meanings of AL and AR can also be seen
from Fig. 1. Clearly, the fuzzy number A becomes larger if
AL and/or AR are larger. Thus, both AL and AR must be
considered when ranking fuzzy numbers. The mean of the AL

and AR is then defined as:

M(A) � . (AL + AR) (11)

In this paper, M(A) is used to rank fuzzy numbers. The
larger the M(A), the larger is the fuzzy number A. Therefore,

Fig. 1. The left and right removals of A.
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for any two fuzzy numbers Ai and Aj, if M(Ai) > M(Aj), then
Ai > Aj. If M(Ai) � M(Aj), then Ai � Aj. Finally, if M(Ai) <
M(Aj), then Ai < Aj.

4. Review of Liang and Wang Method

A quick review of the Liang and Wang method [5] is as
follows. Let Tit, i � 1 ~ m, t � h + 1 ~ k, denote the objective
attribute values assigned to robot Ri by the committee for
objective criterion Ct, i.e. Mit. The following conversion equ-
ation are applied:

For direct relationship:

Mit � Tit � [T1t ⊗ % ⊗ Tmt] (12)

For inverse relationship:

Mit � T�1
it � T�1

1t ⊕ % ⊕ T�1
mt  (13)

Let Xitj � (qitj, oitj, pitj), i � 1 ~ m, t � 1 ~ h, j � 1 ~
n, be the linguistic rating assigned to robot Ri by decision-
maker Dj for subjective criterion Ct. Let Atj = (ctj,atj,btj), t � 1
~ k, j � 1 ~ n, be the linguistic weighting given to criterion
Ct by decision-maker Dj. Define

Mit � � (1/n) ⊗ (Xit1 ⊕ % ⊕ Xitn) (i � 1 � m, t � 1 � h)

(qit, oit, pit), (i � 1 � m, t � h + 1 � k)
(14)

and

Nt � (1/n) ⊗ (At1 ⊕ % ⊕ Atn) (t � 1 � k) (15)

where Mit and Nt are the average fuzzy suitability ratings of
robot Ri under criterion Ct as well as the importance weight
of criterion Ct.

qit � 	n

j � 1

qitj / n, oit � 	n

j � 1

oitj/n,

pit � 	n

j � 1

pitj /n ct � 	n

j � 1

ctj / n,

at � 	n

j � 1

atj / n, bt � 	n

j � 1

btj / n

The fuzzy suitability index Gi and its membership function
of the ith robot can be produced as follows:

Gi � (1/k) ⊗ [(Mi1 ⊗ N1) ⊕ % ⊕ (Mik ⊗ Nk)] (16)

fGi
(x) � (17)

�
�Hi1 + [H2

i1 + (x � Yi) / Ti1]. (Yi � x � Qi)

Hi2 � [H2
i2 + (x � Zi) / Ui1]. (Qi � x � Zi)

0 otherwise

where,

Ti1 � 	k

t � 1

(oit � qit)(at � ct)
k

,

Ti2 � 	k

t � 1

[qit (at � ct) + ct(oit � qit)]
k

Ui1 � 	k

t � 1

(pit � oit)(bt � at)
k

,

Ui2 � 	k

t � 1

[bt(oit � pit) + pit(at � bt)]
k

Hi1 �
Ti2

2Ti1

,

Hi2 � �
Ui2

2Ui1
,

Yi � 	k

t � 1

qitct

k
,

Qi �

	k

t � 1

oitat

k
,

Zi �

	k

t � 1

pitbt

k

By applying Chen’s maximising set and minimising set [9]
with an index of rating attitude k � 0.5, the ranking value
UT(Gi) of the fuzzy suitability index Gi is expressed as:

UT(Gi) � [Hi2 � (H2
i2 + (xR � Zi) / Ui1). (18)

+ 1+ Hi1 � (H2
i1 + (xL � Yi1).]/2

where x1 � inf E, x2 � sup E, E � �
m

i � 1
Ei, Ei � �x�fGi

(x) 	

0�, i � 1 � m,

xR � �2x1 + 2Hi2(x2 � x1) + (x2 � x1)2 / Ui1 � (x2 � x1)

[ (2Hi2 + (x2 � x1) / Ui1)2 + 4(x1 � Zi) / Ui1].}/2

xL � �2x2 + 2Hi1(x2 � x1) + (x2 � x1)2 / Ti1 � (x2 � x1)

[(2Hi1 + (x2 � x1) / Ti1)2 + 4(x2 � Yi) / Ti1 ].}/2

Despite its merits, the Liang and Wang method has limi-
tations, which have been stated in Section 1. To resolve
these limitations, a fuzzy TOPSIS method is suggested in the
next section.

5. A Fuzzy TOPSIS Method

Assume that a committee of n decision-makers (Dj, j � 1 ~
n) is responsible for assessing m alternatives (Ai, i � 1 ~ m)
under each of k criteria (Ct, t � 1 ~ k) as well as assessing
the importance weights of the criteria, where the suitability
ratings of alternatives under subjective criteria as well as the
weights of all criteria are assessed in linguistic terms [8]
represented by triangular fuzzy numbers. Criteria (Ct, t � 1 ~
k) are classified into subjective and objective criterion.
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5.1 Aggregate the Importance Weights

Many methods are available to pool the decision-makers’ opi-
nions, for example, mean, median, max, min, and mixed oper-
ators [21]. Each of the operators has its limitations. Criteria
for selecting an appropriate aggregation operator can be found
in Zimmermann [22]. Since the average operation is the most
commonly used aggregation method, in this paper, the mean
operator is used to pool the decision-makers’ opinions [5].

Let Wtj � (atj, btj, ctj), t � 1 ~ k, j � 1 ~ n, be the
linguistic weight assigned to criterion Ct by decision-maker Dj.
The aggregated linguistic weight, Wt � (at, bt, ct), t � 1 ~
k, for criterion t from n decision-makers’ opinions can be
calculated by:

Wt � (1/n) ⊗ (Wt1 ⊕ Wt2 ⊕ % ⊕ Wtn) (19)

where,

at �

	n

j � 1

atj

n
, bt �

	n

j � 1

btj

n
ct �

	n

j � 1

ctj

n

5.2 Aggregate Ratings of Alternatives under
Subjective Criteria

Let Ritj � (oitj, pitj, qitj) where i � 1 ~ m, t � 1 ~ h, j � 1
~ n, denote the linguistic rating assigned to alternative Ai by
decision-maker Dj for subjective criterion Ct. The mean oper-
ator is also used to pool the decision-makers’ opinions. The
aggregated linguistic rating, Rit � (oit, pit, qit) where i � 1 ~
m, t � 1 ~ h, of alternative Ai under subjective criterion Ct

from n decision-makers’ opinions can be calculated by:

Rit � (1/n) ⊗ (Rit1 ⊕ Rit2 ⊕ % ⊕ Ritn) (20)

where,

oit �

	n

j � 1

oitj

n
, pit �

	n

j � 1

pitj

n
, qit �

	n

j � 1

qitj

n

5.3 Convert the Objective Criteria

The objective criteria (fuzzy or non-fuzzy) can be classified
into two categories: benefit (B) and cost (C). Objective criteria
may have incommensurable units. To ensure compatibility
between the fuzzy (or non-fuzzy) evaluation values of objective
criteria and the linguistic ratings of subjective criteria, the
fuzzy (or non-fuzzy) evaluation values of objective criteria
must be converted into a compatible scale (into dimensionless
indices) [5]. In this paper, the conversion is performed by
applying the Hsu and Chen method [13] since it preserves the
property that the ranges of converted triangular fuzzy numbers
belong to [0,1]. If Tit � (git, uit, vit) where i � 1 ~ m, t � h
+ 1 ~ k, represents the fuzzy (or non-fuzzy) total cost/benefit
assigned to alternative Ai versus objective criterion Ct, then
the converted objective criteria, Rit � (oit, pit, qit) where i �
1 ~ m, t � h + 1 ~ k, can be calculated by:

For benefit criteria

Rit � (git / v*t,uit / v*t,vit / v*t) for t � B (21)

where v*t � max
i

vit, oit � git / v*t, pit � uit / v*t, qit � vit/v*t,

i � 1 � m, t � h + 1 � k.

For cost criteria

Rit � (g�
t / vit,g�

t / uit,g�
t / git) for t � C (22)

where g�
t � min

i
git, oit � g�

t / vit, pit � g�
t / uit, qit �

g�
t / git, i � 1 � m, t � h + 1 � k.

5.4 Construct the Weighted Decision Matrix

Sit � Wt ⊗ Rit (23)

where Sit, i � 1 ~ m, t � 1 ~ k, denotes the elements of the
weighted suitability decision matrix S, i.e. S � [Sit]m 
 k.

The membership function of Sit, i.e. the weighted rating, can
be developed by Eqs [3] and [6] as follows [19]:

S�
it � W�

t ⊗ R�
it� [(bt � at)� + at, (bt � ct)� + ct]

⊗ [(pit � oit)� + oit, (pit � qit)� + qit]� [(bt � at)(pit

� oit)�2 + [at(pit � oit) + oit(bt � at)]� + atoit,

(bt � ct)(pit � qit)�2 + [ct(pit � qit) + qit

(bt � ct)]� + ctqit]

We now have two Eq. to solve, namely:

(bt � at)(pit � oit)�2 + [at(pit � oit)

+ oit(bt � at)]� + atoit � x � 0 (24)

(bt � ct)(pit � qit)�2 + [ct(pit � qit) (25)

+ qit(bt � ct)]� + ctqit � x � 0

Let Eit1 � (bt � at)(pit � oit), Fit1 � at(pit � oit) + oit(bt �
at), Eit2 � (bt � ct)(pit � qit), Fit2 � ct(pit � qit) + qit(bt �
ct), Vit � atoit, Yit � btpit, Zit � ctqit.

Equations (24) and (25) can be expressed as:

Eit1�
2 + Fit1� + Vit � x � 0 (26)

Eit2�
2 + Fit2� + Zit � x � 0 (27)

Only roots in [0,1] will be retained in (26) and (27). The
left membership function, i.e. f L

Sit
(x), and the right membership

function, i.e. f R
Sit

(x), of Sit can be developed as follows:

f L
Sit

(x) � �� Fit1 + [F2
it1

+ 4Eit1 (x � Vit)].�/2Eit1 (Vit � x � Yit) (28)

f R
Sit

(x) � ��Fit2 � [F2
it2 (29)

+ 4Eit2 (x � Zit)].�/2Eit2 (Yit � x � Zit)

The membership function of Sit may not yield a triangular
shape. When Eit1 � 0, f L

Sit
(x) � (x � Vit) / Fit1. Similarly, when

Eij2 � 0, f R
Sit

(x) � (x � Zit) / Fit2 Furthermore, if Eit1 � Fit1 �
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0, there is no left membership function; and if Eit2 � Fit2 �
0, there is no right membership function. For convenience, Sit

can be expressed as:

Sit � (Vit,Yit,Zit; Eit1, Fit1,Eit2,Fit2) (i � 1 � m, t (30)
� 1 �k)

5.5 Determine the Ideal and Negative-Ideal
Solutions

To avoid a complicated calculation of irregular fuzzy numbers,
all Sit terms (i � 1 ~ m, t � 1 ~ k) are defuzzified into
crisp values Sit terms by Eq. (11) [18]. Then, we define the
ideal (I+) and negative-ideal (I�) solutions as:

I+ � (s+
1, %, s+

t , %, s+
k) (31)

I� � (s�
1 , %, s�

t , %, s�
k ) (32)

where s+
t � max

i
{sit} and s�

t � min
i

{sit}.

5.6 Calculate the Distance of Each Alternative from
I+ and I�

The following Eq. are applied to calculate the distance of each
alternative from I+ and I�.

d+
i � 
 	k

t � 1

(sit � s+
t )2 �

.

(i � 1 � m) (33)

d�
i � 
 	k

t � 1

(sit � s�
t )2 �

.

(i � 1 � m) (34)

where d+
i denotes the distance between each alternative and

the ideal solution, d�
i denotes the distance between each alterna-

tive and the negative-ideal solution.

5.7 Calculate Closeness Coefficient

The closeness coefficient of alternative Ai with respect to ideal
solution A+ can be defined as:

Ci �
d�

t

d+
t + d�

t

(0 � Ci � 1, i � 1 � m) (35)

Clearly, an alternative Ai is closer to I+ than to I� as Ci

approaches 1, suggesting that the evaluation grade of Ai

increases with Ci. The closeness coefficient Ct, can be regarded
as the evaluation value of alternative At. Thus, the larger Ci,
the higher priority the alternative Ai.

6. Numerical Example

The numerical example from Liang and Wang [5] is used to
illustrate the feasibility of the proposed fuzzy TOPSIS method.
Assume that a manufacturing company requires a robot to

Table 1. The robot selection criteria.

Subjective criteria Objective criteria

Man–machine interface (C1) Purchase cost (C4)
Programming flexibility (C2) Load capacity (C5)
Vendor’s service contract (C3) Positioning accuracy (C6)

Table 2. The weights of criteria and the average weights.

Criteria Decision makers Average weights (Wt)

D1 D2 D3 D4

C1 H VH VH H (0.6000, 0.8500, 1.0000)
C2 M VH H VH (0.5250, 0.8000, 0.9500)
C3 L M L M (0.1000, 0.4000, 0.6500)
C4 L M M M (0.1500, 0.4500, 0.7250)
C5 VH H VH VH (0.6500, 0.9250, 1.0000)
C6 H H VH VH (0.6000, 0.8500, 1.0000)

Table 3. Ratings of robots under subjective criteria and the average rat-
ings.

Criteria Robots Decision makers Average ratings (Rit)

D1 D2 D3 D4

C1 R1 VG G F F (0.5000, 0.7000, 0.8500)
R2 G F G F (0.4500, 0.6500, 0.8500)
R3 G VG F G (0.5750, 0.7750, 0.9250)

C2 R1 F G P G (0.3750, 0.5750, 0.7750)
R2 F VG G VG (0.6250, 0.8250, 0.9250)
R3 G VG F G (0.5750, 0.7750, 0.9250)

C3 R1 F G F F (0.3750, 0.5750, 0.7750)
R2 G VG F G (0.5750, 0.7750, 0.9250)
R3 VG G G G (0.6500, 0.8500, 1.0000)

Table 4. The values under objective criteria.

Robots Purchase cost Load capacity Positioning
($ 
 1000), C4 (lb), C5 accuracy

(�in), C6

R1 (72.5,73,74) (48.5,50,52) (0.11,0.12,0.14)
R2 (69,70,72) (44,45,46.5) (0.15,0.16,0.18)
R3 (67.5,68,70) (43.5,45,47.5) (0.16,0.17,0.19)

perform a material-handling task. After preliminary screening,
three robots R1, R2, and R3 are chosen for further evaluation.
A committee of four decision-makers, D1, D2, D3, and D4 is
formed to conduct the evaluation and to select the most suitable
robot. The robot selection criteria and the importance weights
of the criteria are shown in Tables 1 and 2, respectively. The
ratings of three subjective criteria are shown in Table 3. The
data of objective criteria is shown in Table 4.

The linguistic terms represented by triangular fuzzy numbers
for evaluating the alternative robots under subjective criteria
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are: VP � very poor � (0, 0, 0.2), P � poor � (0, 0.2, 0.4),
F � fair � (0.3, 0.5, 0.7), G � good � (0.6, 0.8, 1), VG �
very good � (0.8, 1, 1). The linguistic terms represented by
triangular fuzzy numbers for evaluating the importance weights
for criteria are: VL � very low � (0, 0, 0.3), L � low �
(0, 0.3, 0.5), M � medium � (0.2, 0.5, 0.8), H � high �
(0.5, 0.7, 1), VH � very high � (0.7, 1, 1) [5].

By Eqs (19) and (20), the average weights for criteria and
the average ratings for robots versus subjective criteria can be
obtained, and they are also presented in Tables 2 and 3,
respectively. By Eqs (21) and (22), the converted values of
objective criteria of alternative robots can be obtained as:

R14 � (0.9122, 0.9247, 0.9310), R24 � (0.9375, 0.9643,
0.9783), R34 � (0.9643, 0.9926, 1.0000)

R15 � (0.9327, 0.9615, 1.0000), R25 � (0.8462, 0.8654,
0.8942), R35 � (0.8365, 0.8654, 0.9135)

R16 � (0.7857, 0.9167, 1.0000), R26 � (0.6111, 0.6875,
0.7333), R36 � (0.5789, 0.6471, 0.6875)

By Eq. (30), the weighted ratings, Sit (i � 1 � 3, t � 1 �
6), can be produced as:

S11 � (0.3000, 0.5950, 0.8500; 0.0500, 0.2450; 0.0225,
�0.2775)

S12 � (0.1969, 0.4600, 0.7363; 0.0550, 0.2081; 0.0300,
�0.3063)

S13 � (0.0375, 0.2300, 0.5038; 0.0600, 0.1325; 0.0500,
�0.3238)

S14 � (0.1368, 0.4161, 0.6750; 0.0037, 0.2755; 0.0018,
�0.2607)

S15 � (0.6063, 0.8894, 1.0000; 0.0079, 0.2752; 0.0029,
�0.1135)

S16 � (0.4714, 0.7792, 1.0000; 0.0327, 0.2750; 0.0125,
�0.2333)

S21 � (0.2700, 0.5525, 0.8500; 0.0500, 0.2325; 0.0300,
�0.3275)

S22 � (0.3281, 0.6600, 0.8788; 0.0550, 0.2769; 0.0150,
�0.2338)

S23 � (0.0575, 0.3100, 0.6013; 0.0600, 0.1925; 0.0375,
�0.3288)

S24 � (0.1406, 0.4339, 0.7092; 0.0080, 0.2853; 0.0038,
�0.2792)

S25 � (0.5500, 0.8005, 0.8942; 0.0053, 0.2452; 0.0022,
�0.0959)

S26 � (0.3667, 0.5844, 0.7333; 0.0191, 0.1986; 0.0069,
�0.1558)

S31 � (0.3450, 0.6588, 0.9250; 0.0500, 0.2638; 0.0225;
�0.2888)

S32 � (0.3019, 0.6200, 0.8788; 0.0550, 0.2631; 0.0225,
�0.2813)

S33 � (0.0650, 0.3400, 0.6500, 0.0600, 0.2150; 0.0375,
�0.3475)

Table 5. Relative closeness to ideal solution.

Robots d+
i d�

i Ci

R1 0.2108 0.2385 0.5308
R2 0.2282 0.1875 0.4510
R3 0.2380 0.1985 0.4547

S34 � (0.1446, 0.4467, 0.7250; 0.0085, 0.2935; 0.0020,
�0.2803)

S35 � (0.5438, 0.8005, 0.9135; 0.0079, 0.2488; 0.0036,
�0.1166)

S36 � (0.3474, 0.5500, 0.6875; 0.0170, 0.1856; 0.0061,
�0.1436)

By Eqs (31)–(34), the distances of alternative robots, Ri

from I+ and I� can be obtained, and they are displayed in
Table 5. By Eq. (35), the closeness coefficient Ci of each
alternative robot to I+ can be obtained, and they are also
displayed in Table 5. According to Table 5, the ranking order
of the three robots is R1, R3 and R2. Thus, the best selection
is robot 1. By the Liang and Wang method [5], the ranking
order of the three robots is R3 (0.5180), R2 (0.4944), and
R1 (0.4635).

7. Conclusions

Liang and Wang [5] proposed a fuzzy multi-criteria decision-
making approach for robot selection. Despite the merits, the
Liang and Wang method has several limitations. To resolve
the limitations, a fuzzy TOPSIS method for the robot selection
problem is suggested, where the importance weights of different
criteria and the ratings of various alternatives under different
subjective criteria are assessed in linguistic terms represented
by triangular fuzzy numbers.

In this work, the Hsu and Chen conversion method [13] is
applied to ensure the compatibility between the values of
objective criteria and the linguistic ratings of subjective criteria.
The membership function of each weighted rating of each
alternative versus each criterion is clearly developed. To avoid
complicated calculation of fuzzy numbers, these weighted rat-
ings are defuzzified into crisp values to help calculate the
distances of each alternative to both the ideal and negative-
ideal solutions. A closeness coefficient is then defined to
determine the ranking order of alternatives. A numerical
example has demonstrated the computational process of the
proposed method. The proposed method can also be applied
to other fuzzy management problems.
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