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This work presents the development of a method to achieve
optimal roughing of a hemisphere in terms of least machining
time and maximum material removal from the original material
block. This is considered as a problem formulation case study
in the field of genetic algorithm applications – a preamble to
more complex and generic geometry. A genetic algorithm is
used off-the-shelf as an optimisation tool. Three different pro-
cess parameters are used to model the problem : the number
of scallops, the height of each scallop, and the tools used.
Multiple tools are considered, in particular their diameters,
maximum depths of cut and maximum feed allowed, as defined
in a tool database, whereas the strategy of the tool path on
each slice (but not the path details) is taken as known. Fitness
functions that can be used independently or combined are the
cutting time and the remaining material. The proposed method
results in a concentrated result table containing the sequence
of the tools employed and the corresponding scallop heights.

Keywords: CNC tool paths; Genetic algorithm; Rough machin-
ing; Tool selection

1. Introduction

Computer numerically controlled (CNC) machining of sculpted
surfaces is supported by a multitude of computer-aided manu-
facturing (CAM) systems in three to five axes. However,
optimality of the tool paths produced by those systems is still
an issue. Most systems require the user to mentally split the
surface to be machined into regions and apply some strategy
(e.g. constant z-height, zigzagging, etc.) to each region. In
roughing, in particular, where tools can be changed at will in
order to accelerate the cutting process, much improvement
could be achieved by the choice of the correct combination of
cutting strategy and tools. This is a planning task and, apart
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from experience (which in the strict sense of optimality is of
questionable value), few formal methods could prove helpful
in tackling it successfully. Genetic algorithms, as a recent
optimisation tool [1] can be one these methods, but before
exploring this further, past approaches will be reviewed briefly.

In 1993, Dong et al. proposed an optimal rough machining
of sculptured parts on a CNC milling machine in terms of
least machining time [2]. The contour map cutting method is
used to generate CNC tool paths based on the CAD model of
sculptured parts. The part and stock geometry related para-
meters, including the number of cutting layers and the distri-
butions of cutting depth, and the process parameters of feedrate
and depth of cut, are optimised. The problem is presented as
a nested mixed discrete constrained nonlinear programming
formulation, and the optimisation tool used was a mixture of
Powell’s conjugate direction method, the mixed penalty
approach, and the branch and bound strategy for integer pro-
gramming, with no further details given.

A fuzzy basis material removal optimisation approach, albeit
with a control flavour, to compensate for the variation of
cutting speed owing to the change of gradient on a sculptured
surface in the machining process is reported in [3]. A constant
cutting force is maintained by adjusting the cutting feedrate
for each cutting point, taking into account other machining
parameters, such as tool life and surface gradient.

In [4], a maximum effective cutting radius approach is
presented to solve the cutter selection problem for multi-axis
machining. This is based on geometric evaluation.

Lim and Menq [5] propose two advanced strategies for
machining planning, namely a cutting path/adaptive feedrate
strategy and a control surface strategy in order to achieve
higher productivity and product quality simultaneously for
sculptured surface productions. In the former, machining time
is reduced by cutting along low force/low error machining
directions and by maximising feedrates. In the control surface
strategy, machining errors are minimised by using a compen-
sated control surface based on predicted machining errors.

The method developed in [6] uses an efficient volume model
to simulate the cutting process, whereas the calculation of the
optimal feedrate takes the main technological aspects of 3-axis
milling into account.
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Lin and Lee [7] proposed an adaptive CNC tool-path gener-
ation algorithm for precision machining of parts with freeform
surfaces. From the current reference point of the cutting tool,
the method can predict the next reference point of the tool for
a given feed. If the predicted reference point does not satisfy
a specified dimension tolerance, then the method will adjust
itself according to the adaptive rules.

Yazar et al. [8] aim to develop a method for estimating the
cutting forces in 3-axis milling so that the NC programmer
can optimise the machining parameters, and to establish the
"best" rough milling strategy to reduce machining time and
cost. The paper focuses on optimising the feedrate to improve
machining efficiency in end milling.

Lin and Gian [9] sought to generate machining instructions
directly from the 3D point data derived from either contact or
non-contact measuring devices, considering issues such as use
of ordered data points to fit a smooth surface, automatic
selection of multiple cutting tools, and generation of cutter
paths for rough machining. The selection and optimisation of
cutting tools are based on the criteria of maximum material
removal and minimum tool changes, whereas the generated
NC cutter path ensures fast machining and the required sur-
face quality.

Five-axis CAM software is introduced in [10], varying the
tool inclination during tool path generation, in order to achieve
the best combination of scallop height, workpiece accuracy,
surface roughness, and machining cost.

Lee and Chang [11] explore a methodology for applying
computational geometry techniques to extract machining infor-
mation of geometric constraints from a given complex surface
design to support the process planning activity.

Chen and Woo [12] deal with the question of whether 3-
or 4-axis machines with a different cutter could achieve the
same task. Based on observations made on the geometry of
the cutting tools and the degrees of freedom in 3-, 4-, and 5-
axis NC machines, a new class of geometric algorithms is
induced on the unit sphere.

A systematic tool-path generation methodology is presented
in [13], which incorporates interference detection and optimal
tool selection for machining freeform surfaces on 3-axis CNC
machines using ball-end cutters. The machining time of each
available tool is estimated by considering tool size, scallop
height, and accessible surface area. The combination of tools,
which possesses the minimum overall machining time, is selec-
ted as the optimal tool sizes.

Tool positioning in end milling of freeform surfaces is
achieved in [14] based on evaluating the interference for a set
of test points distributed around the circumference of the tip
of the tool. Distinction is made between the cases of semi-
finishing and finishing, which can be performed using a large
diameter flat-end tool and a toroidal tool, respectively.

A feedrate optimisation program was developed in [15]
from the relationship between optimal feedrate and local shape
features, the latter being recognised by comparing NC codes
of neighbouring points.

New methods of offset surface generation and milling tool
selection are given in [16]. First, the workpiece area cut by a
tool is calculated by detecting contact points between the tool
and the workpiece in a lattice space model. A tool set is coded

as a binary bit string. It is assumed the tools would be used
in the reverse order of radius value and cut their corresponding
area as entirely as possibly.

The work presented in the following sections started after
realisation of the lack of optimality considerations in commer-
cially available CAM software. Cutting simulation of a number
of different surfaces using all the available roughing strategies,
as offered by a leading CAM system, led to the observation
that the necessary time for the rough machining of a part is
one to two orders greater than the respective time for the
finishing of the same part – following any roughing strategy,
except, perhaps, for high-precision surfaces, where the mini-
mum surface roughness is crucial, requiring small feedrates
and therefore long tool paths.

Optimisation is taken to mean the minimisation of the
machining time, which is mainly due to the rough machining
of a surface. In addition, the finishing pass, which is always
required after roughing, sets the requirement of “least material”
remaining after roughing, in order to achieve higher finishing
feedrates and lower tool wear, and also to achieve the desired
surface roughness.

The application of optimisation methods, especially genetic
algorithms, in the area of sculptured surface milling is com-
pletely new. Therefore, work would be expected to start mod-
estly by tackling a known shape, experimenting with modelling
parameters and gaining confidence, before constructing full
optimisation models of generic sculptured surface milling. For
this reason, the work presented focuses on a hemisphere as a
milling artefact and examines modelling parameters for optimal
roughing of this shape with multiple tools.

2. Genetic Algorithms

A genetic algorithm (GA) is a stochastic optimisation pro-
cedure, which can solve complex problems by imitating Dar-
winian theories of evolution on a computer. The concept behind
the creation of genetic algorithms is the global optimisation of
an objective function in a complex multi-modal search space
[17]. This happens irrespectively of the nature of the studied
phenomenon, meaning that the physical parameters of the
problem are considered either as variables or as constants in
its computational representation. Thus, a genetic algorithm can
be used as an optimisation tool for any model, regardless of
its physical substance [18].

Given that there are many off-the-shelf genetic algorithms
available, the main step in the optimisation procedure is to
develop a numerical model of the physical phenomenon and
to define the problem variables. Variables belonging to the
numerical domain may be combined and encoded into a series
of binary strings (rows of ones and zeros) to form “numerical
chromosomes”. Using a random function, the genetic algorithm
creates a group of chromosomes, referred to as the population.
The members of the population, namely the chromosomes, are
ranked according to the fitness function of the GA. The latter
is a function that evaluates the objective function solution by
the given chromosomes. The "fittest" chromosomes are allowed
to survive and reproduce with each other, through continuously
cycling genetic operators, in order to obtain a new "generation"
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of the population that is comprised of supposedly better chro-
mosomes.

Although a number of genetic operators have been defined
in published works, they are based mostly on the classic ones,
namely inversion, mutation, and crossover. Inversion is applied
to a single chromosome and reverses the order of the genes
contained between two randomly selected points. Mutation is
also applied to a single chromosome, and changes the allele
of a randomly selected single gene to another possible value.
Crossover is applied to two “mating” chromosomes. A cross-
over point is randomly selected for both of them and the second
parts of each chromosome are swapped (simple crossover). This
has also been the subject of many variations, e.g. partially
matched or linear order crossover.

A genetic algorithm specifies how genetic operators are
applied to a population to generate offspring, and how these
replace members of the population and when the process stops.

Depending on the design of the GA, a population can have
a constant or variable number of members. A powerful search
engine is thus available which inherently preserves the critical
balance needed in any search: the balance between exploitation
(taking advantage of information already obtained) and explo-
ration (searching new areas) [17]. The new population is then
decoded back from the binary form to the variable form to
reveal the actual solution. This procedure iterates in every
generation until the GA converges.

A genetic algorithm’s output – the value of the control
variables and corresponding value of the fitness function – is
usually a straightforward result. The fitness function is mainly
responsible for the choice of the fittest chromosomes, and it
should be designed with special attention [18].

In some cases, neural networks or other artificial intelligence
methods are used, so as to lead to a better solution more
quickly, by ensuring that those chromosomes with the best
characteristics are in the solution [19].

3. Problem Modelling Concepts

3.1 General

First, a particular strategy for cutting hemispheres on 3-axis
machining centres should be adopted. In this work, this is
simply a “machining cylindrical slices” strategy. Each slice
has a particular height and is machined by a particular tool.
A slice can be machined by a circular tool path if the stock
is not large compared to the tool diameter (simplest case) or
by an additional zigzag tool path if there is much more material
to clear before the cylindrical stock itself can be cleared.

Therefore, the complete solution to the problem consists of
the set of slices (and corresponding scallop) heights, which in
the general case are not equal, together with corresponding
tools and the toolpath (circular plus any zigzagging necessary).

The quality of rough milling relies on criteria such as the
least machining time and the least remaining material at the
end of the roughing process. An important factor is the correct
tool choice according to the geometric characteristics (diameter,
depth of cut, engagement, etc.) and the applied feedrates. Note
that owing to the cutting strategy selected only end-mill cutters
need be, and indeed are, considered here.

The developed algorithm automatically exports the optimal
tool combination for the roughing of the given surface,
assuming a set of the available tools on a CNC machine.

The rapid movements of the cutter are considered negligible,
because their feedrates are one to two classes of magnitude
higher than those of the cutting movements. This, of course,
also depends on the tool type.

For the implementation of the method, a genetic algorithm
is used. For the purposes of this work, this optimisation
algorithm is considered to be a “black box” which outputs
values for different parameters within a prefixed range; the
value of the objective function is fed back until its convergence
is achieved. Details of the genetic algorithm tools can be found
in [19].

3.2 Definition of the Original Block

Figure 1 shows the original block of material and the hemi-
sphere to be machined. Let R be the radius of the hemisphere
and K1, K2 and K3 be the distances from the hemisphere to
the borders of the block along the X, Y and Z axes, respectively.
Minimisation of machining time does not depend on K3, there-
fore K3 can be set to zero. The size of the original block is
(2R + 2K1) � (2R + 2K2) � R. The dimension Ai, see Fig. 2,
is defined as Ai = √(R + K1)2 + (R + K2)2 � Ri, where Ri is the
radius of the circle on a layer parallel to the base of the
hemisphere at a Z-height where the base of the ith scallop lies.

3.3 Optimisation Criteria and Fitness Evaluation
Functions

The distribution of the roughing steps from top to bottom of
the hemisphere can be assessed according to the least remaining
volume criterion.

Fig. 1. Original material block definition. (a) XZ view. (b) XY view.
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Fig. 2. Definition of Ai and Ri.

Optimality on each slice, as well as in the set of all slices
can be judged according to the least machining time criterion.

3.3.1 Remaining Volume

Owing to the symmetry of the considered surface (hemisphere),
instead of the volume of each scallop, the area in the XZ-
plane of the first quadrant, which lies under the scallops and
over the semicircle of the Y = 0 plane, is used for the volume
in the objective function, see Fig. 3. In this way the calculations
are simplified.

The area under each scallop and over the semi-circle is
different in each scallop and it is defined by an iterative
relation:

Es = Zscallop (Xprev � X)

where Zscallop is the height of each scallop, X is the x-
coordinate of the top intersection point of the scallop and the
semicircle and Xprev is the X value for the previous scallop.
Evidently, the initial and final values for the calculations must
be given by the user.

The total remaining area is then calculated simply as follows:

E = �N
i=1

Es �
�R2

4
(1)

3.3.2 Cutting Time

For the calculation of the cutting time, the tool-path length
must first be calculated. It is assumed that the shape of the
tool path is as in Fig. 4. The time Eq. is as follows:

T = �
i

ti = �
i

�Cii

TraceX(dii)
uii

(2)

+ Cij

TraceY(dij)
uij

+
TraceZ(dik)

uik

+ Penalty�

Fig. 3. The hatched area represents the remaining volume of material
after the machining.

Fig. 4. The toolpath used for the method along with the original block
limits and the final contour in a XY view for the ith scallop.

where,

the first index i is the serial number of the current step/scallop;
the second index i, j, k indicates the cutting direction of the
tool with diameter d (i is for linear passes in the direction of
x-axis, j is for linear passes in the direction of y-axis and k
is for circular passes around the z-axis);
Cii, Cij are coefficients that have the value 0 or 1 depending
on whether or not the specific pass is cut;
TraceX(dii) and TraceY(di) denote the length of the passes
realised by the dii and dij tools along the x and y direction,
respectively, if Cii and Cij are different from 0;
TraceZ(dik) denotes the length of the circular pass that is
always carried out by the dik tool around the z-axis;
Penalty stands for a time penalty for tool change;
uii, ui and uik denote the feedrates of the tools dii, dij, and
dik, respectively.

3.3.3 Combined Objective Function

A combination of the above two criteria may be built by using
relative weights. Typically, this is

O =
�1T + �2E

�1 + �2

(3)

where λ1 and λ2 are weighing coefficients (real non-negative
numbers) which satisfy the equation �1 + �2 = 1.

4. Implementation Details

For a demonstration of the optimisation possibilities, a number
of tools were considered, see Table 1, for machining medium
alloy steel castings taken from a major tool manufacturer’s
catalogue [20], (T25M inserts).

In order for the algorithm to begin, the number of scallops
to be generated is given first with upper and lower limits set
by the relation N = R/MaxDepth (see also Table 1). For
example, for R = 50 mm and MaxDepth = 5–16 mm, it is
calculated that 3 � N � 10. The number of scallops is
determined by the user.
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Table 1. Tool Database of used tools and relevant measures.

Number Type Diameter Max. depth Max feed
(mm) of cut (mm) (mm min�1)

1 End mill/drill 12 5 464.4
2 End mill/drill 15 5 371.5
3 End mill/drill 18 5 309.6
4 End mill/drill 20 7 356.7
5 End mill/drill 25 8 315.9
6 End mill/drill 32 11 246.8
7 End mill/drill 40 11 197.5
8 End mill/drill 50 11 158.0
9 End mill/drill 25 7 947.8

10 End mill/drill 32 8 740.4
11 End mill/drill 40 12 592.4
12 End mill/drill 50 12 473.9
13 End Mill 12 5 658.2
14 End Mill 16 5 987.3
15 End Mill 20 7 789.8
16 End Mill 25 8 631.8
17 End Mill 32 8 740.4
18 Deep End Mill 25 16 662.4
19 Deep End Mill 32 16 776.3
20 Deep End Mill 40 16 828.0
21 Deep End Mill 50 16 828.0

4.1 Multiple Slice Optimisation

A genetic algorithm, which is termed the “outer GA”, provides
(optimises) the heights H(i) of the i = 1, %, N-1 scallops.
The height of the last scallop is calculated by the equation
�
i
H(i) = R.

The upper limits for H(i) are given by the maximum of the
variable MaxDepth of the tools. The lower limits are set
according to logical constraints, so that the time required for
the algorithm is not excessive. The height of each scallop and
its base diameter together determine the geometric characteristic
of the remaining material, Rlim, which is measured along the
radius of the semicircle leading to the farthest scallop vertex,
see Fig. 5. The maximum value for Rlim, is set by the user.
Here, it was set to 12 mm, which is a value connected to the
maximum depth of cut of a tool for a finishing operation.

Once a scallop height distribution (chromosome) is proposed,
a geometric check is run in order to establish the group of
tools that can cut each scallop, as far as their Diameter and

Fig. 5. Definition of Rlim.

Max Depth of Cut are concerned. The main criterion for a
tool to be admissible is that its Max Depth of Cut should be
greater than the scallop height. In that way, the validity of the
chromosome is ensured.

The value of the optimisation function, i.e. the area under
the scallops and above the semicircle, is calculated as:

E = �N
i=1

[Ri·Hi] �
�R2

4

where R1 = R (the radius of the hemisphere) and RN+1 = 0
and N is the number of scallops.

Instead of the above, the total cutting time minimisation
could be used. This is the sum of the best cutting time result
for each slice optimised for the distribution of scallop height.

A third possibility is the consideration of total cutting time
together with remaining scallop area as the evaluation tool by
assigning non-zero relative weights λ1 and λ2 according to Eq.
(3). The previous two possibilities correspond to marginal cases
with λ1 = 1, λ2 = 0 and λ1 = 0, λ2 = 1, respectively.

4.2 Single Slice Optimisation

The other optimisation criterion is cutting time per slice, which
is calculated by Eq. (2), and refers to the use of a particular
tool diameter and tool path selection strategy.

Admissible tools whose diameter is greater than Ai, will be
considered for a circular path strategy around the Z-axis,
otherwise linear passes should be cut along the X and Y
directions and then around the Z-axis.

In this second case, it is necessary to define the geometry
of the linear passes and thus the block of material remaining,
as controlled by angle f, see Fig. 6.

This is the task of the “inner GA”, which generates the
optimum value of angle f. The limits of angle f are given
from the relations :

f1 = arctan � R
R + K1

�, f2 = arctan �R + K2

R �
Aik, is defined similarly to Ai, but for the internal block.
Aik is set equal to the diameter of each tool of the group.
Depending on the comparison between K1 and K2, the side

of the block to be cut first is decided. Experience has proved
that it is best to cut the wider side first. This decision leads
to the definition of the number of passes cut along the x and

Fig. 6. Definition of angle f that is handled by the inner genetic
algorithm.
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y directions as a function of the diameter dik and dii or dij of
the tool used. Therefore, two matrices containing values of the
linear pass lengths that will be cut along these two directions
are created accordingly. The expressions for calculating the
number of passes along the x and y axis, the length of tool
path, and the time penalty are given in Table 2.

A partial case of the method is when Κ1 = Κ2 = Κ, meaning
that the initial block is square in the xy-plane. In this case,
the angle fo = 45° and it is supposed that the internal block
is also square on the same plane. Therefore, there is no reason
to call the inner GA. Because of symmetry, it is considered
that the same tool is used along the two cutting directions x
and y, i.e. dii = dij.

5. Results and Discussion

To test the method developed, some software was developed
in C++ in order to program the application that calls the GA
tool. The implementation was targeted at proving the method’s
feasibility and obtaining estimates of execution time, conver-
gence behaviour and a judgement on the degree of realism of
the results and, as a consequence, also of the model con-
structed.

The target was the minimisation of rough cutting time of a
hemisphere with R = 50 mm from an original block with the
following dimensions 130 � 150 � 50 along the x, y, and z
directions, respectively. The number of scallops was taken as
N = 8. The range of the values for angle f managed by the
slave genetic algorithm was [0.61, 0.832], as defined by the
original block geometry. Τhe weights used in the evaluation
function were λ1 = 0 and λ2 = 1.

The program outputs two data files. The first (Solution.log)
gives the value of cutting time for each scallop, the minimum
value of the objective function and the number of the gener-
ation of the genetic algorithm in which it appeared, see Table
3. The other (Scallops.log) presents the tools used with their

Table 2. Basic expressions for calculating scallop and pass parameters.

K2 � K1 Κ1 � Κ2 K2 = K1

Number of passes
Nx

int�(A + R)sin f0 � (dik + Ri)sin f
dii

� + 1 int�(A + R)sin f0 � (dik + Ri)sin f
dii

� + 1 int�(A + R)sin 45° � (dik + Ri)sin 45°
dii

� + 1

Ny
int�(A + R)cos f0 � (dik + Ri)cos f

dij
� + 1 int�(A + R)cos f0 � (dik + Ri)cos f

dij
� + 1 int�(A + R)sin 45° � (dik + Ri)sin 45°

dii
� + 1

Tool path length
TraceX(dii) 4Nx((A + R)sin f0 � (dik + Ri)sin f) + 2dii 4Nx(R + K1) + 2dii 4N(R + K) + 2dii

TraceY(dij) 4Ny(R + K2) + 2dij 4Ny((A + R)cos fo � (dik + Ri)cos f)+2dij 4N((A + R)cos 45° �
(dik + Ri)cos 45°) + 2dii

Angle f0 45°
f0 = arctan �R + K2

R + K1
�

Time penalty = 4P if dii 	 dij 	 dik 	 dik�1 4P if dii 	 dij 	 dik 	 dik�1 2P if dii 	 dik 	 dik�1

3P if dii 	 dij 	 dik and dij = dik�1 3P if dii 	 dij 	 dik and dii = dik�1 P if dii 	 dik and dii = dik�1

2P if dii = dij 	 dik and dij 	 dik�1 2P if dii = dij 	 dik and dii 	 dik�1 P if dii = dik 	 dik�1

P if dii = dij = dik�1 	 dik P if dii = dij = dik�1 	 dik 0 if dii = dik = dik�1

0 if dii = dij = dik = dik�1 0 if dii = dij = dik = dik�1

Table 3. Results in the output file Solution.log.

# Objective(s): 1 401.1392
# at generation : 53
Total variables (incl. frozen): 7
5.3999 4.0370 4.0534 4.2331 5.2504 5.7116 6.0862 (15.2284)

IDs (idx is the serial number of the tool that cuts along the
x-axis, idy is the serial number of the tool that cuts along the
y-axis and idz is the serial number of the tool that cuts around
the z-axis) in the tool database for each scallop, and the time
for the rough cutting of each scallop, see Table 4.

The results of Tables 3 and 4 are presented in Figs 7 and
8, respectively. As can be seen in Fig. 7, the scallop heights
are not constantly decreasing; there appears to be a minimum
at points 2 to 4. This can be explained by keeping in mind
that there are no geometrical constraints for the dimension
Rlim, which can take any value (λ1 = 0). This is the reason
why the upper scallops are larger.

The program required several hours to run on a PC Pentium
550 MHz, 128 MB RAM with 3000 evaluations of each of
the genetic algorithms used. An “evaluation” is a user-defined
parameter of the genetic algorithm that refers to the number

Table 4. Results in the output file Scallops.log.

Scallop idx idy idR Time (s)
Number

1 0 0 21 37.79
2 0 0 21 37.62
3 20 20 20 68.24
4 9 9 9 57.67
5 20 20 20 68.00
6 9 9 21 63.80
7 9 9 21 65.91
8 21 21 21 71.63
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Fig. 7. Scallop height distribution.

Fig. 8. Scallop cutting time.

of the objective function calls. The result is optimum for this
specific number of evaluations. The higher the number of
evaluations allowed, the more dependable the optimisation
result is, but the higher the computational cost.

The high execution time is attributed to the continuous
domain of the problem (scallop height values) combined with
the large number of tools (21) considered in the tool pool.
Using a commercially available GA optimisation tool the com-
putation time would normally be much higher. This is because
special convergence acceleration techniques were employed in
the software used in this work [19]. However, high execution
time should not misguide the reader, because the work does
not claim to offer a practical industrial tool, but just to
introduce a new approach that through further improvement
might become practical. Note that in [19] the analogous prob-
lem encountered in shape optimisation of airfoils was connected
to the need to run CFD computations within the evaluation
function. It was overcome by using a neural network to replace
most of the computations after training conducted with a set
of initial CFD results.

The genetic algorithms used offer the possibility of viewing
the value of the objective function on an appropriate data file
(Conv.log). By creating the respective diagram, see Fig. 9, it
can be seen that the solution obtained is satisfactory and that
the value of the objective function will not be improved by
more than 0.5% in the present evaluation as the number of
the generations increases.

Fig. 9. Data in the Conv.log file.

According to the results, the decreasing distribution of the
scallop heights does not necessarily offer the minimum total
cutting time and the minimum remaining material on the
desired surface, as at first thought. This specific solution means
that for the given criteria there is a scallop height distribution
in which the intermediate heights are minimum.

Table 4 gives as optimum tools those with ID numbers 9,
20, and 21. These tools, however, are not those with the
maximum feedrates, see Table 1, but those which when com-
bined give the minimum cutting time for each scallop and for
the whole process.

During the current study, the rapid movements of the tools
were neglected on purpose. The reason for this is that the
rapid feedrates are between ten and a hundred times greater
(~10000 mm min�1 on a typical CNC machine) than for the
cutting movements and that the length of the rapid movements
is at least ten times smaller than for the cutting movements.
For this reason, a tool change penalty could absorb the rapid
move time realistically.

The output of the implemented part of the algorithm is the
value of the cutting time, but in general it is the value of the
objective function that includes time, area, etc. Hence, the
output value should be considered relatively, not absolutely.
This means that this value is not the real cutting time for the
given surface, even if it can give a very good approximation
of it. We need to be reminded here of the initial objective of
the exercise, which was to find the sequence of tools among
the available ones and the scallop height distribution that
produces the minimum cutting time among the possible combi-
nations.

If calculation of the absolute cutting time of the specific
toolpath is desired, it suffices to take into consideration the
data related to height distribution and tool usage and to run a
simulation on either a CAM system or on a CNC machine.

6. Conclusions and Recommendations for
Further Work

The value of the method presented is that, for a typical tool
path, the optimal tool usage is found and the height distribution
of the created scallops is calculated. The calculations are
performed off-line within the part programming process. A
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relative drawback is execution time, if a workstation or a
parallel computer system is not available.

Further generalisation of the method may also involve differ-
ent tool types. In such a case, problems of modelling of the
different types of tool would be confronted, whereas criteria
for the correct choice of tool type should be developed and
the effects on the surface using a certain tool type should be
fully defined (scallop pattern in 3 dimensions).

In addition, if the surface to be cut were more complex,
e.g. if it had pockets, islands, etc., then the rapid movement
time would not be negligible and it would be necessary to
take it into account.

The number of scallops given by the user could be determ-
ined–optimised within the same procedure. The simple way
would be to include all the above in a loop with a changing
number of scallops (certainly within prescribed limits), which
involves many computations. The elegant thing to do, however,
would be to include the number of scallops within the problem
representation chromosome, and allow the GA to change its
values according to the results of the same evaluation function
presented in this paper (time plus remaining volume).

The above are extension directions within a wider plan,
which includes generic optimisation of the rough machining
and finishing of freeform surfaces of different types, using a
variety of tool types and cutting strategies on CNC machines.
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