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Globalisation and the advent in manufacturing technology have
resulted in a more turbulent and rapidly changing market,
where more and more unpredictable factors influence market
opportunities. In order to maintain a steady share of the
market and to survive in a competitive environment, it is
necessary to respond rapidly to changes. Agile manufacturing
is a manufacturing paradigm developed to meet the challenges
which stem from an unpredictable global market. This work
attempts to explore the possibility of solving an assembly
line balancing problem using a novel tabu-enhanced genetic
algorithm approach. An attempt is made to compare the qual-
ities of the optimised solutions produced by genetic algorithms
and tabu search. A case study on a tower computer assembly
was used to validate the proposed approach. The details of
the approach as well as a case study are presented.
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1. Introduction

Globalisation and the advent of manufacturing technology have
resulted in a turbulent and rapidly changing market. In order
to seize a steady market share and survive in a competitive
environment, it is necessary to respond rapidly to changes [1–
3]. Agile manufacturing is a manufacturing paradigm developed
by the Iacocca Institute in 1991 to meet the challenges stem-
ming from an unpredictable global market. In this respect, one
of the ways to achieve agile manufacturing is to adopt a
product modularity approach as proposed by He and Kusiak
[4]. Such an approach enables the realisation of product variety
and results in the standardisation and interchangeability of
component parts. Product modularity is often realised through
component swapping/sharing, fabricate-to-fit or sectional modu-
larity [5]. Ulrich [6] further suggested that the implementation
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of product modularity is dependent on its product architecture.
Standardisation allows certain components to be used for differ-
ent products. This, in turn, allows the resources for product
development and capital expenses to be amortised across a
large number of units, and the possible exploitation of higher-
volume and more efficient production technology that helps in
lowering manufacturing cost. Furthermore, the lead time for
the production of individual components that form the finished
products can be shortened and more resources can be chan-
nelled to customise differentiating components [5]. This also
implies that the assembly line for a product, which is based
on the design concept of product modularity, can be split
into two separate subassembly lines, namely a basic operation
subassembly line and a variant operation subassembly line [4].
As a result, for a variety of products, all of them would
first go through the same basic operation subassembly line.
Subsequently, they would be assembled in the variant operation
subassembly line according to the respective desired features
or functional requirements. As the product mix and options
increase, the complexity of the variant operation subassembly
line will increase correspondingly. As a result, scheduling of
the variant operation subassembly line becomes a critical factor
in determining the efficiency of the entire assembly line. By
focusing on line-balancing and optimising heuristic scheduling
of the variant operation subassembly line, the objective of
achieving agility in manufacturing can possibly be realised.

He and Kusiak [4] employed tabu search (TS) for the
assembly line design problem. Two different heuristic schedul-
ing rules, namely the shortest total processing time (STPT)
[7,8] and the shortest adjusted processing time (SAPT) [9]
were experimented with. In their work, the initial solutions
required by TS were generated using two different approaches,
namely a randomised approach and a so-called sequential
assignment procedure (SAP). Essentially, SAP is a line balanc-
ing technique aimed at maximising the equality of the average
processing time among all the stations in an assembly line
[4,10]. Comparisons were subsequently made between the two
heuristic scheduling rules. The emphasis on the initial solution
is necessary in TS as it plays a significant role in deciding
the quality of the final optimised solution [11–13]. Compu-
tational results showed that for complex problems, there is no
significant difference in the results generated by both rules.
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However, SAPT performed significantly better for simple prob-
lems, that is, an assembly line with few stations and a small
variety of products.

The configuration of an assembly line is also known as an
assembly line balancing problem, which is basically NP-hard.
Artificial intelligence techniques such as simulated annealing,
neural networks, genetic algorithms (GAs) or TS can be used
to derive a near optimal solution [14,15]. This paper presents
work that leads to the development of a TS enhanced GA
approach to agile manufacturing. An attempt is made to com-
pare the qualities of the optimised solutions produced by GAs
and TS. A case study on a tower computer assembly was used
to validate the proposed approach. The details of the approach
as well as a case study are presented.

2. Genetic Algorithms and Tabu Search

2.1 Genetic Algorithms

Genetic algorithms are search algorithms based on the mech-
anics of natural selection and natural genetics. They combine
the survival-of-the-fittest string structures or chromosomes with
a structured yet randomised information exchange to form a
search algorithm with some of the innovative flair of a human
search. This implies that GAs use random choices as a tool
to guide a highly exploitative search. Through randomisation,
they are able to exploit the search space effectively with
improved performance [16,17].

A special property of GAs is that they maintain a population
of chromosomes or potential solutions to be processed, whereas
all other methods process a single point in the search space.
By working on a population of chromosomes instead of a
single point, GAs ensure that the probability of reaching a
false peak is reduced. Many search techniques require auxiliary
information in order to work properly. For example, gradient
techniques require derivatives, which are determined analyti-
cally or numerically, in order to obtain a near optimal value.
The heavy reliance on such information or restrictive assump-
tions about the search space limits the capability of these
methods when the information is not available or difficult to
obtain. By contrast, GAs are blind. To perform an effective
search for a better chromosome, they only require pay off
value, which is also known as the objective function value or
fitness value, associated with an individual chromosome. This
makes GAs a more canonical method than many search
schemes. In GAs, genetic operators are applied to successive
chromosomes to create new chromosomes. These operators are
simple and involve nothing more complex than random number
generation, string copying, and partial string exchanging.
Despite their simplicity, the results obtained are impressive. In
comparison to classical methods, GAs belong to a class of
general purpose search methods and are domain independent.
They employ probabilistic transition rules to guide their search.
GAs are different from random algorithms as the elements of
directed and stochastic search are inherent within them. They
simply use random choice as a tool to guide a search toward
regions of the search space having a probable improvement.

Because of this, GAs are also more robust than many existing
directed search methods.

2.2 Tabu Search

Tabu search (TS) is a meta-heuristic that guides a local heuris-
tic search procedure to explore the solution space beyond local
optimality. The heuristics may be a high-level procedure or
may embody some simple descriptions of available moves for
transforming one solution into another, together with an asso-
ciated evaluation rule [11–13]. TS makes use of a memory
structure to keep track of the search history. This memory
structure is of two types, namely short-term memory and
long-term memory. In this work, only short-term memory is
considered. Short-term memory constitutes a form of explo-
ration that seeks to make the best move to attain the highest
value. In addition, the candidate solutions satisfy imposed
constraints such as assembly or movement constraints. Short-
term memory keeps track of the attributes of candidate solutions
and possesses the ability of setting the status of a move as
tabu. It has three main components, namely candidate list
strategy also known as the initial solution, tabu tenure, and
aspiration criteria.

Candidate List Strategy or Initial Solution

In situations where the neighbourhood is large or its elements
are expensive to evaluate, the candidate list strategy is neces-
sary in order to restrict the number of solutions examined in
an iteration. It provides a list of good moves that are feasible.
This is analogous to selecting a good solution from the neigh-
bourhood for further evaluation.

Tabu Tenure

A tabu list is commonly used to set the tabu status of an
attribute during the search process. In this list, tabu tenure is the
parameter that monitors and controls the number of iterations so
that a move is kept tabu-active. Tabu tenure can vary for
different combinations of attributes. It can also change over
different intervals of time or stages of a search. A dynamic
and robust form of search can be attained through the change.

Mathematically, the tabu-active status of an attribute, A, can
be expressed as follows.

TabuEnd (A) = TabuStart (A) + TabuTenure (A)

Alternatively,

Current Iteration � TabuStart Iteration (A) + TabuTenure (A)

Aspiration Criteria

During the search process, some moves may be labelled as
tabu, and may lead to an inability to obtain good solutions, as
restricted moves cannot be performed. In order to initiate the
move, its tabu-active status has to be overridden using the
aspiration criteria.
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Table 1. Methods for generating initial solutions.

Random SAP GAs

1 Unstructured Unstructured Structured search
2 No comparison No comparison Comparison allowed
3 Feasibility manually Feasibility manually Feasibility checked

checked checked automatically
4 Heuristic based Systematic Heuristic based

3. The Approach

3.1 Integration of Genetic Algorithms and Tabu
Search – an Overview

Tabu search (TS) involves the use of a move to perform a
search. The evaluated move is the best move selected out of
several moves from a candidate list per iteration. Normally, a
candidate list consists of five or more recorded moves. It plays
the role of identifying the best move among all candidate
solutions through evaluating certain attributes. The main idea
is to have a good comparison among the moves so as to select
the best. TS requires a good initial solution to reduce the
search time and improve the quality of the solution [4]. The
integration of GAs with TS would allow the near optimal
solution generated by GAs to be further exploited by TS. As
already mentioned, He and Kusiak [4] have successfully shown
that a sequential assignment procedure (SAP) provides a good
initial solution for TS compared to that generated randomly.
Table 1 shows a comparison of the three techniques. Genetic
algorithms allow comparison to be made among the chromo-
somes or the solutions generated. This property ensures that
good initial solutions for TS are generated.

The TS memory structure is employed to keep track of the
historical records of the search. The type of memory structure
used is dependent upon the application domain. For example,
long-term memory structure is effective for global exploration,
whereas, short-term memory is good for local exploitation. The
application of memory structure is advantageous, as the search
for near optimal solutions can be better controlled. It enables
a near optimal solution to be obtained relatively fast and easily.
However, if the search space is extremely large and noisy, the
use of a memory structure requires considerable time for
exploration in order to decide a “single move”. In addition,
the implementation can be complicated. A more reasonable
approach is to initiate a quick exploration through the search
space using GAs and employ TS to explore certain regions of
interest, decided by GAs.

Table 2. Classification of various meta-heuristic algorithms.

Meta-heuristic Classification

Genetic algorithms Memoryless/ random sampling/ population
based

Tabu search Adaptive memory/ systematic neighbourhood
search / one solution to another

Glover [13] classified a few well-known algorithms based
on the following criteria.

1. The use of adaptive memory.
2. The kind of neighbourhood exploration used.
3. The number of current solutions carried forward per iter-

ation.

From Table 2, it can be seen that the search mechanism
employed by GAs and TS is entirely different. This also shows
that their integration would enable them to complement each
other. More specifically, owing to the memoryless property of
GAs, the optimal solution is achieved by chance rather than
through any structural procedure. This implies that the search
is blind. In the worst case scenario, GAs may lead to a search
cycle with no obvious solution. If the structured memory of
TS is used to complement the GAs search after a suitable
number of generations, the chances of obtaining a global
optimum may be improved significantly.

3.2 Implementation

Genetic Algorithms

Briefly, the implementation of GAs involves the following
generic steps.

Initialisation. An initial list of candidate solutions or chromo-
somes are generated randomly. The feasibility of these chromo-
somes is checked.

Fig. 1. Working flowchart using tabu search.
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Table 3. Assembly constraints for computer tower assembly.

Constraints Type of rules/constraints Job index A Job index B

1 0–1 3–12
2 7–8 9
3 Operation A before operation B 10–11 12
4 13–16 17–28
5 20–21 22
6 20–21 27–28

Notes:
1. Table 4 depicts a table showing configuration type vs. order number.
2. Table 5 shows the details of assembly operations, job index and assembly time.

Fitness evaluation. For ensuring the feasibility of chromosome
candidate solutions, the repair algorithm or the penalty
approach is frequently used. In this work, the penalty approach
was adopted as feasible chromosomes can retain certain charac-
teristic of its parent strings without the loss of any vital
information associated with them. Feasible chromosomes are
then decoded and subjected to a fitness evaluation. In this
case, a feasible chromosome is one that satisfies all the con-
straints and its penalty value is zero. The fitness function
which is also known as the cost function proposed by He and
Kusiak [4] is used here.

BC[S(p)]=�IS(p) + �WS(p)

where,

1. Both � (unit idling time cost) and � (unit inventory holding
cost) are taken as 1.

2. Only the waiting time within and between stations, together
with the idling time between stations are considered.

3. All waiting and idling time associated with the first product
are ignored.

The fitness function is dependent upon the inputs from STPT,
which predetermines the ordering sequence of the products to
be processed. STPT schedules the products such that the one
with the least total operation time will be assembled first.
Genetic operations. Pairs of chromosomes are selected ran-
domly using the roulette wheel approach for crossover and
mutation operations [16] to reproduce a new population of

Table 4. Assembly jobs involved in different computer tower configuration.

Type Assembly jobs (represented by job index) Order

1 0, 2, 3, 4, 7, 9, 10, 14, 17, 18, 19, 20, 22, 23, 24, 28 7
2 0, 2, 4, 6, 8, 10, 12, 14, 17, 19, 20, 23, 24, 26, 28 6
3 0, 2, 3, 4, 5, 6, 7, 10, 13, 17, 18, 21, 22, 23, 24, 25, 26, 27 8
4 0, 2, 4, 5, 6, 8,9, 10, 12, 13, 17, 19, 21, 22, 23, 24, 25, 26, 27 4
5 0, 2, 3, 5, 6, 7, 9, 10, 13, 17, 18, 19, 21, 22, 23, 25, 26, 27 3
6 0, 2, 5, 8, 10, 12, 14, 17, 20, 23, 25, 28 9
7 1, 2, 3, 4, 7, 11, 16, 17, 18, 19, 20, 23, 24, 26, 28 5
8 1, 2, 4, 6, 8,9, 11, 12, 15, 17, 19, 21, 22, 23, 24, 26, 27 7
9 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27 6

10 1, 2, 4, 5, 6, 8, 11, 12, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27 10
11 1, 2, 3, 5, 6, 7, 11, 16, 17, 18, 19, 20, 23, 25, 28 2
12 1, 2, 5, 8, 9, 11, 12, 16, 17, 20, 22, 23, 25, 28 4

Note: Refer to Table 5 for job index.

chromosomes. The order crossover (OX) method from path
representation is adopted in this work. The details of the OX
method are reported in the work of Michalewicz [17] and will
not be described here. Upon completion of the genetic oper-
ations, the new population of chromosomes is subject to the
same cycle of treatment, that is, fitness evaluation and gen-
etic operations.

Tabu Search

Figure 1 shows a flowchart of the TS implementation. It
comprises 6 essential steps.

Step 1. Obtain a good initial solution using GAs. The best
feasible solution obtained by GAs is used here as the input to
the TS.
Step 2. Derive a candidate list of solutions and perform
cost evaluation.

(i) In each TS generation, a list of 5 candidate solutions
is gathered by performing a random single-move with
respect to the current initial/optimal solution.

(ii) The 5 candidate solutions are then compared and the
best solution is, in turn, compared with the current
optimal solution.

(iii) If the new candidate solution is better than the current
optimal solution, a TS move is initiated and the search
for an optimal solution proceeds to the next generation.
Otherwise, a new candidate list will be randomly cre-
ated and Step 2 (ii) is repeated.
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Table 5. Description of job operation denoted by respective job index.

Job index Operations Time

0 Assemble socket type motherboard together with its corresponding tower 4
casing type

1 Assemble slot type motherboard together with its corresponding tower casing 4
type

2 Insert SD ram onto the ram slot on its respective motherboard 5
3 Insert sound card onto the sound card slot on its respective motherboard 6
4 Insert modem card onto the modem card slot on its respective motherboard 6
5 Insert ethernet card onto the ethernet card slot on its respective motherboard 6
6 Insert scanner card onto the scanner card slot on its respective motherboard 6
7 Insert PCI type VGA card onto the PCI type VGA slot on its respective mother- 5

board
8 Insert AGP type VGA card onto the AGP type VGA slot on its respective moth- 5

erboard
9 Insert VGA chipset cooler onto the corresponding VGA card 4

10 Insert socket type CPU onto the socket type CPU slot on its respective mother- 3
board

11 Insert slot type CPU onto the slot type CPU slot on its respective motherboard 5
12 Insert CPU cooler onto the corresponding CPU 3
13 Set up vertical tower casing (big) for assembly 5
14 Set up vertical tower casing (small) for assembly 4
15 Set up horizontal tower casing (big) for assembly 5
16 Set up horizontal tower casing (small) for assembly 4
17 Assemble CD rom onto its respective tower casing 6
18 Assemble CD writer onto its respective tower casing 6
19 Assemble DVD rom onto its respective tower casing 6
20 Assemble IDE type hard disk onto its respective tower casing 7
21 Assemble SCSI type hard disk onto its respective tower casing 7
22 Assemble hard disk cooler onto its respective hard disk 5
23 Assemble floppy drive onto its respective tower casing 6
24 Assemble zip 250 drive onto its respective tower casing 5
25 Assemble Jaz 2GB drive onto its respective tower casing 5
26 Assemble magnetic optical drive onto its respective tower casing 5
27 Assemble power box (big) onto its respective tower casing 8
28 Assemble power box (small) onto its respective tower casing 7

(iv) The process will stop once the termination criterion
is met.

Step 3. Create a TS move. Typically, there are two different
types of TS move, namely a move between two stations and
a swap between two operations. The type of TS move is
selected randomly:

(i) Move. The move between stations is confined only to
operations at the ends of each station. Mathematically,

Move = [X, Sfrom, Sto]

where X is the operation to be moved, Sfrom is the station that
the operation previously assigned, and Sto is the station that
the operation currently assigned.

(ii) Swap. For every swap made, the check for assembly
constraint is performed to ensure the feasibility of the
swap. An invalid swap is regenerated. Mathematically,

Swap = [X, fro/to, to/fro]

where X is the operation to be swapped, fro represents the
logic “0”, to represents the logic “1”, [x, 0, 1] represents an
operation that swaps x to the front.

Step 4. Tabu status of a move. When a move in a generation
becomes tabu, a notation, gentabu, is assigned accordingly. The

tabu status was checked using a tabu list by comparing the
current generation with respect to the sum of gentabu and the
corresponding tabu tenure (Section 2.2).
Step 5. Cost function. The same GA cost function is used to
evaluate the solution before initiating the move. As already
mentioned, it is dependent on the inputs from STPT, which
predetermined the ordering sequence of the products to be
assembled. A comparison with the previous solution is then
made. If a better solution is found, the cost is registered and
a move is initiated.
Step 6. Termination criterion. Steps 2–5 are repeated until the
termination criterion is met. In this work, when a candidate
solution repeats itself seven times in a single generation, the
search is terminated. This implies that the search process is
terminated when no better solution is found after 35 invalid
moves.

4. A Case Study

A computer tower assembly was used to evaluate the effective-
ness of the proposed approach. Typically, the assembly process
can be quite involved, as different assembly operations must
be performed for various port interfaces, for example. Gener-
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Fig. 2. Search result for computer tower assembly using GAs.

ally, more flexible product architecture has more scope for a
good assembly design. The situation is further complicated by
mixed configurations for different product variants that are
in demand.

Product variants result from assembling different main
assemblies such as motherboards and casings according to
customer needs. Analysis shows that two assembly operations,
namely screwing and inserting, are frequently used. The screw-
ing operation is performed when a part such as a motherboard
must to be assembled onto the tower casing. The inserting
operation is commonly performed when, for example, a card
is to be placed onto the motherboard. Further analysis shows
that the computer tower assembly comprises two groups of
assembly operations (Tables 3 to 5).

Group I. All components relevant to the motherboard (Job
Indices 0~12).

Group II. All components relevant to the tower casing (Job
Indices 13~28).

Assembly rules for Group I operations:
1. Motherboard/parts. All the parts to be assembled onto the

motherboard should be assembled after the motherboard has
been installed onto the tower casing.

2. VGA card/cooler. The VGA chipset cooler can only be
assembled onto the VGA card after the card has been
installed.

3. CPU/cooler: The CPU cooler can only be assembled onto
the CPU after the CPU has been installed.

Table 6. Computational results based on GAs using 10 different seeds.

S1 S2 S3 S4 S5 S6 Generations Cost

SS1 16 15 14 0 13 1 11 21 7 20 2 22 27 8 23 17 19 24 10 6 3 18 28 25 26 9 5 4 12 2157 4092
SS2 14 13 16 15 21 0 1 11 20 18 7 2 3 4 28 23 27 25 10 17 22 12 8 5 6 9 24 26 19 1706 3948
SS3 16 14 0 15 13 1 8 11 10 4 20 19 21 7 17 23 6 12 5 9 27 28 25 3 22 2 26 18 24 2403 4108
SS4 15 14 16 0 1 10 7 8 13 19 4 11 9 18 20 23 21 24 22 12 27 5 17 25 26 6 28 2 3 1764 4118
SS5 15 16 14 13 1 0 20 10 18 19 11 5 21 17 28 2 4 22 3 8 12 23 7 9 24 27 26 6 25 465 4018
SS6 16 13 0 15 1 6 14 4 21 20 26 8 11 17 27 23 28 22 10 2 19 18 25 7 5 3 12 24 9 337 4139
SS7 13 15 16 14 26 1 19 0 25 20 3 8 21 2 4 17 18 7 10 24 27 23 28 11 22 9 5 6 12 1818 3776
SS8 14 16 15 1 0 11 13 26 6 20 4 8 25 21 23 17 18 7 9 3 19 5 10 28 27 22 12 2 24 1682 4332
SS9 14 13 16 15 26 1 0 18 17 11 10 25 20 23 24 4 21 7 2 8 22 3 5 12 27 28 6 9 19 385 4240
SS10 13 16 15 14 1 0 11 21 19 8 10 20 7 17 24 23 12 5 3 28 9 27 2 4 25 26 22 18 6 997 3326

Assembly rules for Group II operations:

4. Tower casing/parts: All the parts to be assembled onto the
tower casing should be assembled only after the tower
casing is ready.

5. Hard disk/cooler. The hard disk cooler can only be
assembled onto the hard disk after the disk has been
installed.

6. Hard disk/power box. The power box should be assembled
after the hard disk has been installed.

Table 3 summarises the relationship between two assembly
operations according to the above assembly rules/constraints.

5. Results and Discussions

5.1 Results Generated by Genetic Algorithms

Figure 2 shows the results generated by genetic algorithms.
Genetic algorithms move swiftly to look for near optimal
solutions, that is, minimum cost. This is characterised by a
rapid decrease in cost in the first hundred generations, after
which, the search for near optimal solutions proceeded at a
slower pace. The search process is non-deterministic, which
clearly indicates the randomness of GAs. Table 6 shows the
near optimal results obtained using 10 different random seed
numbers. In this case study, a total of 29 operations were
assigned to six work stations in the order of “5, 5, 5, 5, 5,
4”. Each search involved 2500 generations. Solution SS10,
which is the best among the 10 trial runs, is found in the
997th generation with an optimal cost of 3326. The optimal
configuration for the various work stations, stations 1 to 6, is
shown in columns 2 to 7 (S1–S6). For example, operations
13, 16, 15, 14, and 1, and operations 0, 11, 21, 19, and 8 are
assigned to stations 1 and 2 of solution SS10, respectively.

5.2 Results Generated by Tabu Search

(i) Poor and Good Initial Solutions

Figures 3 and 4 show the TS results based on a poor initial
solution (PIS) and a good initial solution (GIS), respectively.
In this case, the PIS was generated randomly whereas the GIS
was essentially solution SS1 in Table 6. Both solutions were
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Fig. 3. TS results derived using a poor initial solution.

Fig. 4. TS results derived using a good initial solution computed by GAs (Table 8, Seed 3).

further optimised by a TS using 10 different random seed
numbers. The results are shown in Tables 7 and 8 respectively.
The best results obtained are shown in Figs 3 and 4. The
outcome was expected, as it shows that the quality of the near
optimal solution is dependent upon the initial solution used.
Furthermore, in terms of the duration of search, GIS appears
to converge faster than to PIS. This is logical as an inferior
initial solution has more room for improvement.

(ii) Further Optimisation of GAs Results Using TS

The results shown in Fig. 4 can also be used to compare the
performance between GAs and the TS enhanced approach. In

Table 7. TS results derived using a poor initial solution.

S1 S2 S3 S4 S5 S6 Cost

PIS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 13757
Seed 1 1 0 2 4 3 5 6 8 7 11 10 9 12 14 13 15 16 17 18 19 21 20 22 23 24 25 26 28 27 10808
Seed 2 0 1 2 4 3 5 6 8 7 9 11 10 12 13 15 14 16 17 18 19 20 21 22 23 24 26 25 27 28 11530
Seed 3 0 1 2 3 4 5 6 8 7 9 10 11 12 13 14 16 15 17 18 19 21 20 22 24 23 25 26 28 27 10763
Seed 4 0 1 2 3 4 5 6 8 7 9 10 11 12 13 14 16 15 17 18 19 21 20 22 24 23 25 26 28 27 10778
Seed 5 0 1 2 3 4 5 6 8 7 9 11 10 12 13 15 14 16 17 18 19 21 20 22 24 26 23 25 28 27 10986
Seed 6 0 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 20 22 24 23 26 25 28 27 11000
Seed 7 0 1 2 3 4 5 6 7 8 9 11 10 12 13 15 16 14 17 19 18 21 20 22 24 23 26 25 28 27 11300
Seed 8 0 1 2 4 3 5 6 8 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 27 11007
Seed 9 0 1 4 2 3 5 6 8 7 9 10 11 12 13 14 15 16 17 18 19 21 20 23 22 24 25 27 26 28 11864
Seed 10 0 1 2 3 4 5 6 8 7 9 10 11 12 13 14 15 16 17 18 19 21 20 23 22 24 25 26 28 27 11071

this case, using TS, a further 29% improvement in cost can
be obtained, compared to that of GAs. From Table 8, it can
be seen that the improvement is fairly consistent for different
random seed numbers. This also demonstrates the robustness
of the TS enhanced approach. Figure 5 shows the relative
improvement attained by different random seed numbers.
Further investigations were carried out to verify the above
observation using the rest of the near optimal solutions (SS2 –
SS10) generated by GAs. The results obtained are summarised
in Fig. 6. It is observed that TS, in general, improves the GA
results by 900 on average for cost. In the case of SS10, which
is the best result generated by GAs, the TS enhanced approach
manages to reduce the cost from 3326 to 2534. Table 9
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Table 8. TS results derived using a good initial solution computed by GAs (Table 6, SS1).

S1 S2 S3 S4 S5 S6 Cost

GIS (SS1) 16 15 14 0 13 1 11 21 7 20 2 22 27 8 23 17 19 24 10 6 3 18 28 25 26 9 5 4 12 4092
Seed 1 16 15 14 0 13 1 11 21 7 20 2 22 27 8 23 17 19 24 6 10 3 18 28 25 9 26 5 4 12 3702
Seed 2 16 15 14 0 13 1 11 21 7 20 2 22 27 8 23 17 19 24 6 10 3 18 28 25 9 26 5 4 12 3536
Seed 3 15 16 14 0 13 1 11 21 7 20 2 22 27 8 17 23 19 10 24 3 18 6 28 9 25 26 5 4 12 2891
Seed 4 16 15 14 0 13 1 11 7 21 20 2 22 27 8 23 17 19 24 10 6 3 18 25 28 9 26 5 4 12 3730
Seed 5 15 16 14 0 13 1 11 21 20 7 2 22 27 8 23 17 19 24 10 3 6 18 28 25 26 9 5 4 12 3051
Seed 6 15 16 14 0 13 1 11 20 21 7 22 2 27 8 17 23 19 24 10 6 3 18 28 25 26 4 9 5 12 2911
Seed 7 16 14 0 15 13 1 11 21 20 7 2 22 27 8 23 17 19 24 10 6 3 18 28 25 26 9 5 4 12 3467
Seed 8 16 15 14 0 13 1 11 21 7 20 2 22 27 8 23 17 19 24 10 6 3 18 28 25 9 26 5 4 12 3717
Seed 9 16 15 14 0 13 1 11 21 7 2 20 22 27 8 23 17 19 24 10 6 3 18 28 25 26 9 5 4 12 3933
Seed 10 16 15 14 0 13 1 11 21 2 7 20 22 27 8 23 17 19 24 10 6 3 18 28 25 9 26 5 4 12 3858

Table 9. Ordered and number of operations to be assigned to each station.

Optimum assignment of operations Generation Cost

GA (SS10) 13 16 15 14 1 | 0 11 21 19 8 | 10 20 7 17 24 | 23 12 5 3 28 | 9 27 2 4 25 | 26 22 18 6 997 3326
GA/TS 13 16 15 14 1 | 0 11 21 19 8 | 10 20 7 17 24 23 12 5 | 28 3 27 | 2 9 25 4 | 26 22 18 6 1005 2534

Fig. 5. A comparison between GA and GA/TS using SS1.

Fig. 6. Comparison of GAs and GA/TS (SS1–SS10).

summarises the operation sequences obtained using GAs and
the TS enhanced approach. From the table, it can be deduced
that all the assembly constraints have been satisfied. For
example, Table 10 (a) shows that stations 1 and 2 comprise
operations 13, 16, 15, 14 and 1, and operations 0, 11, 21, 19,
and 8, respectively. It is noted that operations 13–16 refer to
the type of casing to be used, whereas operations 0–1 concern

Table 10. (a) Operations assigned to the respective stations. (b) The
respective operations to be performed on product type 1 in each station.

{a)
Station 1 13 16 15 14 1
Station 2 0 11 21 19 8
Station 3 10 20 7 17 24
Station 4 23 12 5 3 28
Station 5 9 27 2 4 25
Station 6 26 22 18 6
(b)
Station 1 14
Station 2 0 19
Station 3 10 20 7 17 24
Station 4 23 3 28
Station 5 9 2 4
Station 6 22 18

the assembly of the motherboard onto the casings, as indicated
in Table 5. This shows that the assembly process starts with
the setting up of a casing, and then follows by assembling the
motherboard. With these two main components assembled,
subsequent assembly operations simply involve securing of
parts either into the casing or onto the motherboard at other
stations. Further analysis reveals that none of the assembly
constraints listed in Section 4 has been violated. This implies
that the assembly sequence obtained using the TS enhanced
GA approach is feasible. Table 10(b) shows an example of a
typical product (type 1) that can be assembled using the
configuration established in this work.

6. Conclusion

The work yields a novel approach that combines the strengths
of GAs and TS. A case study on the assembly of a computer
tower assembly was used to ascertain the performance of the
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proposed approach. The assembly problem was first solved
using GAs with 10 different random number seeds. It has been
shown that GAs were able to generate near optimal solutions
after several hundred generations. The importance of the initial
solution to TS was then established. This is obtained by using
one of the near optimal solutions obtained by the GAs as a
good initial solution, and a randomly generated one as a poor
initial solution. From a comparative study, it appears that a
good initial solution is crucial for an effective tabu search.
The 10 near optimal solutions obtained by GAs were then
evaluated using TS. It has been ascertained that the results
obtained were superior to those of GAs. This also demonstrates
the robustness of the TS enhanced GA approach. The assembly
sequence suggested by the proposed approach was then investi-
gated. It is clear that the configuration derived is for a typical
product (type 1) that can be assembled using the configuration.
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